36,157 research outputs found

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ‘appropriate’ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ‘appropriate’ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined

    Closing the loop: assisting archival appraisal and information retrieval in one sweep

    Get PDF
    In this article, we examine the similarities between the concept of appraisal, a process that takes place within the archives, and the concept of relevance judgement, a process fundamental to the evaluation of information retrieval systems. More specifically, we revisit selection criteria proposed as result of archival research, and work within the digital curation communities, and, compare them to relevance criteria as discussed within information retrieval's literature based discovery. We illustrate how closely these criteria relate to each other and discuss how understanding the relationships between the these disciplines could form a basis for proposing automated selection for archival processes and initiating multi-objective learning with respect to information retrieval

    CacophonyViz: Visualisation of Birdsong Derived Ecological Health Indicators

    Get PDF
    The purpose of this work was to create an easy to interpret visualisation of a simple index that represents the quantity and quality of bird life in New Zealand. The index was calculated from an algorithm that assigned various weights to each species of bird. This work is important as it forms a part of the ongoing work by the Cacophony Project which aims to eradicate pests that currently destroy New Zealand native birds and their habitat. The map will be used to promote the Cacophony project to a wide public audience and encourage their participation by giving relevant feedback on the effects of intervention such as planting and trapping in their communities. The Design Science methodology guided this work through the creation of a series of prototypes that through their evaluation built on lessons learnt at each stage resulting in a final artifact that successfully displayed the index at various locations across a map of New Zealand. It is concluded that the artifact is ready and suitable for deployment once the availability of real data from the automatic analysis of audio recordings from multiple locations becomes available

    A pilot inference study for a beta-Bernoulli spatial scan statistic

    Get PDF
    The Bernoulli spatial scan statistic is used to detect localised clusters in binary labelled point data, such as that used in spatial or spatio-temporal case/control studies. We test the inferential capability of a recently developed beta-Bernoulli spatial scan statistic, which adds a beta prior to the original statistic. This pilot study, which includes two test scenarios with 6,000 data sets each, suggests a marked increase in power for a given false alert rate. We suggest a more extensive study would be worthwhile to corroborate the findings. We also speculate on an explanation for the observed improvement

    CacophonyViz : Visualisation of birdsong derived ecological health indicators

    Get PDF
    The purpose of this work was to create an easy to interpret visualisation of a simple index that represents the quantity and quality of bird life in New Zealand. The index was calculated from an algorithm that assigned various weights to each species of bird. This work is important as it forms a part of the ongoing work by the Cacophony Project which aims to eradicate pests that currently destroy New Zealand native birds and their habitat. The map will be used to promote the Cacophony project to a wide public audience and encourage their participation by giving relevant feedback on the effects of intervention such as planting and trapping in their communities. The Design Science methodology guided this work through the creation of a series of prototypes that through their evaluation built on lessons learnt at each stage resulting in a final artifact that successfully displayed the index at various locations across a map of New Zealand. It is concluded that the artifact is ready and suitable for deployment once the availability of real data from the automatic analysis of audio recordings from multiple locations becomes available

    Mapping an ancient historian in a digital age: the Herodotus Encoded Space-Text-Image Archive (HESTIA)

    Get PDF
    HESTIA (the Herodotus Encoded Space-Text-Imaging Archive) employs the latest digital technology to develop an innovative methodology to the study of spatial data in Herodotus' Histories. Using a digital text of Herodotus, freely available from the Perseus on-line library, to capture all the place-names mentioned in the narrative, we construct a database to house that information and represent it in a series of mapping applications, such as GIS, GoogleEarth and GoogleMap Timeline. As a collaboration of academics from the disciplines of Classics, Geography, and Archaeological Computing, HESTIA has the twin aim of investigating the ways geography is represented in the Histories and of bringing Herodotus' world into people's homes

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou
    • 

    corecore