3,359 research outputs found

    A macroscopic analytical model of collaboration in distributed robotic systems

    Get PDF
    In this article, we present a macroscopic analytical model of collaboration in a group of reactive robots. The model consists of a series of coupled differential equations that describe the dynamics of group behavior. After presenting the general model, we analyze in detail a case study of collaboration, the stick-pulling experiment, studied experimentally and in simulation by Ijspeert et al. [Autonomous Robots, 11, 149-171]. The robots' task is to pull sticks out of their holes, and it can be successfully achieved only through the collaboration of two robots. There is no explicit communication or coordination between the robots. Unlike microscopic simulations (sensor-based or using a probabilistic numerical model), in which computational time scales with the robot group size, the macroscopic model is computationally efficient, because its solutions are independent of robot group size. Analysis reproduces several qualitative conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values of the ratio of robots to sticks, the existence of optimal control parameters that maximize system performance as a function of group size, and the transition from superlinear to sublinear performance as the number of robots is increased

    Modeling and Analysis of Beaconless and Beacon-Based Policies for a Swarm-Intelligent Inspection System

    Get PDF
    We are developing a swarm-intelligent inspection system based on a swarm of autonomous, miniature robots, using only on-board, local sensors. To estimate intrinsic advantages and limitations of the proposed possible distributed control solution, we capture the dynamic of the system at a higher abstraction level using non-spatial probabilistic microscopic and macroscopic models. In a previous publication, we showed that we are able to predict quantitatively the performances of the swarm of robots for a given metric and a beaconless policy. In this paper, after briefly reviewing our modeling methodology, we explore the effect of adding an additional state to the individual robot controller, which allow robots to serve as a beacon for teammates and therefore bias their inspection routes. Results show that this additional complexity helps the swarm of robots to be more efficient in terms of energy consumption but not necessarily in terms of time required to complete the inspection. We also demonstrate that a beacon-based policy introduces a strong coupling among the behavior of robots, coupling which in turn results in nonlinearities at the macroscopic model level

    Analysis of Dynamic Task Allocation in Multi-Robot Systems

    Full text link
    Dynamic task allocation is an essential requirement for multi-robot systems operating in unknown dynamic environments. It allows robots to change their behavior in response to environmental changes or actions of other robots in order to improve overall system performance. Emergent coordination algorithms for task allocation that use only local sensing and no direct communication between robots are attractive because they are robust and scalable. However, a lack of formal analysis tools makes emergent coordination algorithms difficult to design. In this paper we present a mathematical model of a general dynamic task allocation mechanism. Robots using this mechanism have to choose between two types of task, and the goal is to achieve a desired task division in the absence of explicit communication and global knowledge. Robots estimate the state of the environment from repeated local observations and decide which task to choose based on these observations. We model the robots and observations as stochastic processes and study the dynamics of the collective behavior. Specifically, we analyze the effect that the number of observations and the choice of the decision function have on the performance of the system. The mathematical models are validated in a multi-robot multi-foraging scenario. The model's predictions agree very closely with experimental results from sensor-based simulations.Comment: Preprint version of the paper published in International Journal of Robotics, March 2006, Volume 25, pp. 225-24

    Diversity and Specialization in Collaborative Swarm Systems

    Get PDF
    This paper addresses qualitative and quantitative diversity and specialization issues in the frame- work of self-organizing, distributed, artificial systems. Both diversity and specialization are obtained via distributed learning from initially homogeneous swarms. While measuring diversity essentially quantifies differences among the individuals, assessing the degree of specialization implies to correlate the swarm’s heterogeneity with its overall performance. Starting from a stick-pulling experiment in collective robotics, a task that requires the collaboration of two robots, we abstract and generalize in simulation the task constraints to k robots collaborating sequentially or in parallel. We investi- gate quantitatively the influence of task constraints and type of reinforcement signals on diversity and specialization in these collaborative experiments. Results show that, though diversity is not explicitly rewarded in our learning algorithm and there is no explicit communication among agents, the swarm becomes specialized after learning. The degree of specialization is affected strongly by environmental conditions and task constraints, and reveals characteristics related to performance and learning in a more consistent and clearer way than diversity does

    Control and Coordination in a Networked Robotic Platform

    Get PDF
    Control and Coordination of the robots has been widely researched area among the swarm robotics. Usually these swarms are involved in accomplishing tasks assigned to them either one after another or concurrently. Most of the times, the tasks assigned may not need the entire population of the swarm but a subset of them. In this project, emphasis has been given to determination of such subsets of robots termed as ”flock” whose size actually depends on the complexity of the task. Once the flock is determined from the swarm, leader and follower robots are determined which accomplish the task in a controlled and cooperative fashion. Although the entire control system,which is determined for collision free and coordinated environment, is stable, the results show that both wireless (bluetooth) and internet (UDP) communication system can introduce some lag which can lead robot trajectories to an unexpected set. The reason for this is each robot and a corresponding computer is considered as a complete robot and communication between the robot and the computer and between the computers was inevitable. These problems could easily be solved by integrating a computer on the robot or just add a wifi transmitter/receiver on the robot. On going down the lane, by introducing smarter robots with different kinds of sensors this project could be extended on a large scale for varied heterogenous and homogenous applications
    • …
    corecore