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Abstract

In this paper, we present a macroscopic analytical model of collaboration in a group of
reactive robots. The model consists of a series of coupled differential equations that describe
the dynamics of group behavior. After presenting the general model, we analyze in detail
a case study of collaboration, the stick pulling experiment, studied experimentally and in
simulation by Ijspeert et al.[14]. The robots’ task is to pull sticks out of their holes, and it
can be successfully achieved only through collaboration between two robots. There is no
explicit communication or coordination between the robots. Unlike microscopic simulations
(sensor-based or using a probabilistic numerical model), whose computational time scales
with the robot group size, the macroscopic model is computationally efficient, because
its solutions are independent of robot group size. Analysis reproduces several qualitative
conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values
of the ratio of robots to sticks, the existence of optimal control parameters that maximize
system performance as a function of group size, and the transition from super-linear to
sub-linear performance as the number of robots is increased.
Keywords: robotics, mathematical modeling, swarm intelligence

1. Introduction

Swarm Intelligence [3] is an innovative computational and behavioral metaphor for solving
distributed problems, that takes its inspiration from the biological examples provided by
social insects [6]— ants, termites, bees, and wasps — and by swarming, flocking, herding,
and shoaling phenomena in vertebrates [26]. The abilities of such systems appear to
transcend the abilities of the constituent individual agents. In most biological cases studied
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so far, the robust and capable high level group behavior has been found to be mediated
by nothing more than a small set of simple low level interactions between individuals, and
between individuals and the environment. The Swarm Intelligence approach emphasizes
distributedness and exploitation of direct (robot-to-robot) or indirect (via the environment)
local interactions among relatively simple agents.

The main advantages of the application of the swarm approach to the control of a
group of robots are three-fold: (i) scalability: the control architecture is kept exactly the
same from a few units to thousands of units; (ii) flexibility: units can be dynamically
added or removed, they can be given the ability to reallocate and redistribute themselves
in a self-organized way; (iii) robustness: the resulting collective system is robust not only
through unit redundancy but also through the unit minimalistic design [5, 20]. Although
a formal and quantitative definition of minimalism has yet to be formulated for collective
systems, minimalistic design in swarm intelligence implies an effort to keep the resources
for computation, sensors, actuators, and communication as low as possible for each unit,
while aiming at having as smart as possible group behavior.

In the last few years, the swarm intelligence control principles have been successfully
applied to a series of case studies in collective robotics: aggregation [2, 21, 20] and segre-
gation [13], beacon and odor localization [11, 12], collaborative mapping [4], collaborative
transportation [15, 17], work division and task allocation [16, 1], flocking and foraging [23].
All these works have been performed using groups of simple, autonomous robots or embod-
ied simulated agents, exploiting local communication forms among teammates (implicit,
through the environment, or explicit, wireless communication), and fully distributed con-
trol. Sometimes, due to technical difficulties in experimentation with real robots, local
explicit communication [23, 4, 12] or specific environmental information (e.g. nest en-
ergy in [16]) has been obtained with the help of absolute positioning systems and/or global
communication. While global communication capabilities, if used extensively, represent a
bottleneck for the scalability of the collective system, global positioning systems, depending
on their specific implementation, can achieve performances independent of the team size
(e.g. GPS or the system used in [4]) and, therefore, represent suitable technical aids for
applying the swarm intelligence approach to artificial systems. Unfortunately, the lack of
rigorous, scalable methodologies for designing and analyzing such fully distributed robotics
systems has, for the moment, prevented a more extensive application of the Swarm Intel-
ligence approach to real-world applications such as traffic regulation [31] or surveillance
[7].

This article aims at contributing to research in swarm intelligence (i) by making a
quantitative study of how collaboration in a group of simple reactive, autonomous robots
can be obtained and controlled through the exploitation of local interactions, and (ii) by
proposing a novel methodology for mathematical analysis of group behavior based on a
system of differential equations.

2. Collaboration in Robots

Collaboration can significantly improve the performance of a multi-agent system. In “strict-
ly collaborative” systems [20], collaboration is an explicit requirement, because no single
agent can successfully complete the task on its own. Such systems are common in insect
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as well as human societies, e.g., transport of objects too heavy or awkward to be lifted
by a single ant, flying the space shuttle, playing a soccer match, etc. Collaboration in
a group of robots has been studied by several groups [24, 22, 29, 17, 30, 14]. We will
focus on a specific case study initiated by Martinoli and collaborators [22] and studied in
detail by Ijspeert et al.[14], that take a Swarm Intelligence approach to collaboration. In
this system collaboration in a group of simple reactive agents was achieved entirely through
local interactions, i.e., without explicit global communication or coordination among robots.
Because of a purely swarm approach, this system is a compelling and effective model of
how collaboration may arise in natural systems, such as insect societies. In addition, the
simplicity of the robots’ interactions lends itself to mathematical analysis. In this paper we
will propose and study an analytical model of collaboration in a group of robots, presenting
the general case first, then analyzing the system studied by Ijspeert et al. and comparing
results of analysis to experimental results and simulation.

As mentioned in the previous section, there has been relatively little prior work in math-
ematical analysis of multi-robot systems in general and collaboration in particular, with the
exception of Sugawara and coworkers’ [28, 29] research. They carried out a quantitative
study of cooperative foraging in a group of communicating robots. They have developed
a simple state-based analytical model and analyzed it under different conditions. In their
system when a robot finds a puck or a collection of pucks, it may broadcast a signal for a
period of time to other robots, which move towards it. The robots pick up pucks and bring
them home. Sugawara et al. did not take the interaction into account explicitly but in an
approximate manner. In our model, we will include the duration of the interaction explicitly,
resulting in a better description of the dynamics of the system. Another difference between
their work and ours is that their system is not strictly collaborative — collaboration via
signalling improves performance but is not a requirement for task completion.

2.1 A Model of Collaboration in Robots

Consider a homogeneous system composed of N robots and M spatially distributed tasks.
The tasks are such that a single robot cannot execute one on its own — a collaboration
between r (r < N) robots is required to successfully complete each task. The task could
be long sticks that have to be pulled out of the ground or heavy objects that need to be
transported by several robots. We consider a Swarm Intelligence approach that uses simple
locally interacting robots to achieve collaboration in the absence of central or hierarchical
control and explicit communication between robots. We consider a homogeneous system in
which each robot has the same simple controller, schematically represented in Fig. 1.

Each robot explores the arena, looking for tasks and avoiding obstacles. If it finds itself
at the location of the task, it prepares to execute it. If there are no robots present at this
location, the robot stops and waits for some period of time τ . If no other robots come to
its aid during this time interval (time out), the robot abandons the task and resumes the
search. If another robot encounters it, the first robot resets its timer1, and both robots
wait for the same time interval τ . Now, there is a group of size two waiting to execute

1. This operation would require communication between robots in the group. However, communication
through the environment rather than explicit communication, may be sufficient to accomplish this goal:
e.g., if a load gets lighter, the robots in the group know another robot has joined them.
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a task. If no other robot encounters the group during the waiting period, both robots
abandon the task and return to the search mode, but if another robot does find it, the
first two robots reset their timers and all three robots wait for a time τ . This is repeated
until a group of size r − 1 is waiting to perform a task. If a robot finds this group during
the time interval τ , the task is completed successfully, and all r robots resume the search;
otherwise, r − 1 robots abandon the task and start searching again. Other designs can also
lead to successful task execution (e.g., communication will help assemble a group of size r
faster than random search); however, we will focus on this simple system and show how to
construct a macroscopic mathematical model to describe the dynamics of collaboration.

Generally, two tools — experiment and simulation — have been available for the study
of multi-robot systems. Experiments with real robots allow researchers to observe swarms
under real conditions; however, experiments are very costly and time consuming, and sys-
tematically varying individual robot parameters to study their effect on the group behavior
is often impractical. Simulations, such as sensor-based simulations for robots, attempt to
realistically model the environment, the robots’ imperfect sensing of and interactions with
it. Though simulations are much faster and are less costly than experiments, still they
suffer from many of the same limitations, namely, they are tedious to perform, and it is
often still impractical to systematically explore the parameter space. Mathematical analysis
provides an alternative to experiment and simulation as a tool for the study of behavior
of multi-robot systems. Using mathematical analysis we can study dynamics of even large
systems, predict their long term behavior, gain insight into system design: e.g., verify the
existence of optimal parameters and estimate their values. In the next section, we present
an analytical model of dynamics in a collaborative system described above. In a later sec-
tion, we will analyze a case study of collaboration in a multi-robot system: the stick-pulling
experiment.

2.2 The Dynamical Model

In order to construct a model of collaboration in a multi-robot system, it is helpful to draw
the macroscopic state diagram of the system (Fig. 2). During a sufficiently short time
interval, each robot can be thought to belong to the search state, or be part of a group
of size one (g1), two (g2), etc. , up to a group of size r − 1 (g(r − 1)). The search state
consists of a set of behaviors associated with looking for tasks, such as wandering around
the arena, detecting objects and avoiding obstacles. We assume that successful completion
of these actions takes place on a short enough time scale that it can be incorporated into
the search state.

In addition to states, we must specify transitions between states. When a searching
robot locates a task in the arena and begins the wait for help, it makes a transition to
state g1. If no help arrives (unsuccessful collaboration), it makes a transition back to the
search state; otherwise, it makes a transition to state g2. Again, if no help arrives, it makes
a transition to the search state; otherwise, it makes a transition to state g3. Therefore,
except for search state, there is one transition to each state and two transitions from the
state. The two transitions from the g(r−1) state correspond to a successful task completion
and unsuccessful collaboration.
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Each of the boxes in the state diagram in Fig. 2 becomes a dynamic variable in the
mathematical model. Let Ns(t) be the number of robots in the search state, Nk(t), 1 ≤ k ≤
r− 1, be the number of groups of size 1 up to r− 1 at time t. Also, let M(t) be the number
of uncompleted tasks at time t. This variable does not represent a macroscopic state, rather
it tracks the state of the environment. A mathematical model describes how the dynamic
variables change in time. We have a choice of two formalisms for the model: (i) a difference
equation, ∆N = N(t+∆t)−N(t), that governs how N changes in time, or (ii) a differential
equation of the form dN(t)/dt. The first model deals with discrete variables, but its results
depend on the choice of ∆t. In the continuum limit, as ∆t → 0, the instantaneous change
in N is given by the derivative dN/dt = lim∆t→0 ∆N/∆t. Here, N must be thought of as a
continuous variable, an approximation of a discrete quantity. Though the approximation is
more accurate for larger values of N , it is often used for moderately large and even smaller
quantities. Additionally, the dynamic variables in our model are average quantities [18];
therefore, it is reasonable to treat them as continuous variables.

We assume that robots and tasks are distributed uniformly around the arena. A series
of differential rate equations describes how the dynamic variables change in time:

dNs

dt
= −αNs(t)

(
M(t) −

r−1∑
k=1

Nk(t)
)
− Ns(t)

r−2∑
k=1

α̃kNk(t) + (r − 1)α̃r−1Ns(t)Nr−1(t)

+αNs(t − τ)
(

M(t − τ) −
r−1∑
k=1

Nk(t − τ)
)

Γ1(t; τ)

+Ns(t − τ)
r−2∑
k=1

kα̃kNk(t − τ)Γk(t; τ) (1)

dN1

dt
= αNs(t)

(
M(t) −

r−1∑
k=1

Nk(t)
)
− α̃1Ns(t)N1(t)

−αNs(t − τ)
(

M(t − τ) −
r−1∑
k=1

Nk(t − τ)
)

Γ1(t; τ) (2)

dNn

dt
= α̃n−1Ns(t)Nn−1(t) − α̃nNs(t)Nn(t)

−α̃n−1Ns(t − τ)
(

M(t − τ) − Nn−1(t − τ)
)

Γn(t; τ), n = 2, . . . , r − 1 (3)

dM

dt
= −α̃r−1Ns(t)Nr−1(t) + µ(t) (4)

where α, α̃n are, respectively, the rates at which a searching robot encounters a task and
a group of size n waiting to execute the task, and τ is the waiting period. Γn(t; τ) is the
fraction of groups of size n to abandon their tasks, and it will be derived below. µ(t) is
the rate at which new tasks are added. The first two terms in Eq. 1 describe a decrease in
the number of searching robots because robots find isolated tasks or join a group waiting
to execute a task. The last three terms describe an increase in the number of searching
robots: the first due to successful task completion, and the last two due to unsuccessful
collaboration, ı.e., when the group times out. The three terms in Eq. 2 correspond to
the three arrows entering and leaving state g1 in Fig. 2. The first term accounts for the
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increase in the number of groups of size one because some robots find tasks that have not
been found by other robots and begin the wait for help. Under the uniform distribution
assumption, the rate at which robots encounter these tasks is proportional to the number
of tasks in the arena, with the proportionality factor given by α. The second term describes
the decrease in the number of groups of size one triggered by the arrival of searching robots
during the waiting period τ , and the final term accounts for the failed collaborations (no
help arrives during period τ), which also lead to a decrease in the number of groups of
size one. The terms in Eqs. 3–4 have similar interpretations. Note that the total number
of robots, N0 = Ns +

∑r−1
k=1 kNk, is conserved; therefore, one of the differential equations

above, e.g., for N1, is superfluous, and the variable can be computed from the conservation
of robots condition.

Γn(t; τ), the fraction of groups of size n that abandoned their tasks at time t, is equivalent
to the probability that no robot came “to help” the group during the time interval [t− τ, t].
To calculate Γn(t; τ) let us divide the time interval [t − τ, t] into K small intervals of
length δt = τ/K. The probability that no robot comes to help during the time interval
[t− τ, t− τ + δt] is simply 1− α̃Ns(t− τ)δt. Hence, the probability for a failed collaboration
is

Γn(t; τ) =
K∏

i=1

[1 − α̃nδtNs(t − τ + iδt)]Θ(t − τ) (5)

≡ exp
[ K∑

i=1

ln[1 − α̃nδtNs(t − τ + iδt)]
]
Θ(t − τ)

The step function Θ(t − τ) ensures that Γn(t; τ) is zero for t < τ . Finally, expanding the
logarithm in Eq.(6) and taking the limit δt → 0 we obtain

Γn(t; τ) = exp[−α̃n

∫ t

t−τ
dt′Ns(t′)]Θ(t − τ) (6)

The collaboration rate is defined as the rate at which tasks are completed: R(t) =
α̃r−1Ns(t)Nr−1(t). Once we know the solutions, Ns(t) and Nr−1(t) at some time, we can
compute the value of the collaboration rate at that time. Note that if no new tasks are
added, R(t) = −dM/dt.

In order to solve equations 1–4, we need to specify initial conditions. One possible set of
initial conditions may be that at t = 0 all the robots are searching and there are no groups.
We will not solve the general case, rather, in the section below we will describe and analyze
a case study of collaboration in robots given by the stick pulling experiments.

3. Case Study: Physical Implementation of the Stick-Pulling Experiment

The stick-pulling experiments were carried out by Ijspeert et al.[14] to study the dynamics
of collaboration among locally interacting simple reactive robots. Figure 3 is a snapshot of
the physical set-up of the experiments. The robots’ task is to locate sticks scattered around
the arena and pull them out of their holes. A single robot cannot pull the stick out by itself
— a collaboration between two robots is required for the task to be successfully completed.
Collaboration occurs in the following way: one robot finds a stick, lifts it partly out of the
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ground and waits for a second robot to find it and complete the task by pulling the stick
out of its hole completely.

The actions of each robot are governed by the same simple controller, outlined in Fig-
ure 4. The robot’s default behavior is to wander around the arena looking for sticks and
avoiding obstacles, which could be other robots or walls. When a robot finds a stick that is
not being held by another robot, it grips it, lifts it half way out of the ground and waits for
a period of time specified by the gripping time parameter. If no other robot comes to its aid
during the waiting period (time out), the robot releases the stick and resumes the search for
other sticks. If another robot encounters a robot holding a stick, a successful collaboration
will take place during which the second robot will grip the stick, pulling it out of the ground
completely, while the first robot releases the stick and resumes the search. After the task
is completed, the second robot also releases the stick and returns to the search mode, and
the experimenter replaces the stick in its hole.

3.1 Real Robots, Embodied Simulations and Microscopic Modeling

Ijspeert et al. studied the dynamics of collaboration in the stick-pulling experiment at
three different levels: by conducting experiments with physical robots; using a sensor-based
simulator of robots; and using a microscopic probabilistic model. The physical experiments
were carried out in groups of two to six Khepera robots in an arena containing four sticks.
Because experiments with physical robots are very time consuming, Webots, the sensor-
based simulator of Khepera robots, was used to systematically explore parameters affecting
the dynamics of collaboration. The Webots simulator [25] attempts to faithfully model the
environment and replicate the experiment by reproducing the robots’ (noisy) sensory input
and the (noisy) response of the on-board actuators in order to compute the trajectory and
interactions of all the robots in the arena. The probabilistic microscopic model, on the
other hand, does not attempt to compute trajectories of individual robots. Rather, it is
a numerical model in which the robot’s actions — encountering a stick, a wall, another
robot, a robot gripping a stick, or wandering around the arena — are represented as a
series of stochastic events, with probabilities based on simple geometric considerations and
systematic tests with one or two real robots. For example, the probability of a robot
encountering a stick is equal to the product of the number of ungripped sticks, and the
detection area of the stick normalized by the arena area. Probabilities of other interactions
can be similarly calculated. The microscopic simulation consists of running several processes
in parallel, one for each robot, while keeping track of the global state of the environment,
such as the number of gripped and ungripped sticks. According to Ijspeert et al. the
acceleration factor for Webots and real robots can vary between one and two orders of
magnitude for the experiments presented here. Because the probabilistic model does not
require calculations of the details of the robots’ trajectories, it is about 300 times faster
than Webots for this experiment.

3.2 Results Obtained at the Three Lower-Level Implementations

Ijspeert et al. systematically studied the collaboration rate, i.e., the number of sticks suc-
cessfully pulled out of the ground in a given time interval, and its dependence on the group
size and the gripping time parameter. Though in that work they also investigated the effects
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of robot heterogeneity and explicit communication, we will focus on a homogeneous system
of non-communicating robots. Ijspeert et al. report very good qualitative and quantitative
agreement between the three different levels of experiments, as shown in Figure 5. The
main result is that, depending on the ratio of robots to sticks (or workers to the amount
of work), there appear to be two different regimes in the collaboration dynamics. When
there are fewer robots than sticks, the collaboration rate decreases to zero as the value of the
gripping time parameter grows. In the extreme case, when the robot grabs a stick and waits
indefinitely for another robot to come and help it, the collaboration rate is zero, because
after some period of time each robot ends up holding a stick, and no robots are available to
help. When there are more robots than sticks, the collaboration rate remains finite even in
the limit the gripping time parameter becomes infinite, because there will always be robots
available to help pull the sticks out. Another finding of Ijspeert et al. was that when there
are fewer robots than sticks, there is an optimal value of the gripping time parameter which
maximizes the collaboration rate. In the other regime, the collaboration rate appears to be
independent of the gripping time parameter above a specific value, so the optimal strategy
is for the robot to grip a stick and hold it indefinitely. They also found that the system is
one of few collaborative systems known to the authors that demonstrates super-linearity,
i.e., for some range of robot group sizes and a given number of sticks, adding a robot not
only increases the global performance of the system but also the relative performance of the
other robots. However, as the robot group size increases, the overcrowding and interference
effects cause the relative collaboration rate to saturate and become sub-linear.

4. The Macroscopic Analytical Model of the Stick-Pulling Experiment

In the following sections we present a macroscopic analytical model of the stick-pulling
experiments in a homogeneous multi-robot system. Such a model is useful for the following
reasons. First, the complexity of a macroscopic model is independent of the system size,
i.e., the number of robots: therefore, the time required to obtain solutions for a system of
5, 000 robots is as long as that to obtain solutions for a system of five robots, whereas for
a microscopic description the time required for computer simulation scales at least linearly
with the number of robots. Second, our approach allows us to derive analytic expressions
for certain important parameters, (e.g., those for which the performance is optimal). It
also enables us to study the stability properties of the system, and see whether solutions
are robust under external perturbation or noise. These capabilities are important for the
design and control of large multi-agent systems.

In order to construct a model of the stick-pulling experiments, it is helpful to write the
macroscopic state diagram of the system. During a sufficiently short time interval, each
robot can be thought to be in one of two states: searching or gripping. The state labels
several related robot behaviors and it is a useful shorthand for thinking about the system.
Using flowchart of the robots’ controller, shown in Fig. 4, as a reference, we can consider the
search state to be the set of behaviors associated with looking for sticks, such as wandering
around the arena (“look for sticks” action), detecting objects and avoiding obstacles; while
the gripping state is composed of the decisions and actions inside the dotted box. We
assume that actions “success” (pull the stick out completely) and “release” (release the
stick) take place on a short enough time scale that they can be incorporated into the search
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state. While the robot is in the obstacle avoidance mode, it cannot detect and try to grip
objects; therefore, avoidance serves to decrease the number of robots that are searching and
capable of gripping sticks. We include avoidance into the model explicitly in Sec. 4.3. For
now, we are interested in the minimal model required to explain the main experimental
results.

In addition to states, we must also specify all possible transitions between states. When
it finds a stick, the robot makes a transition from the search state to the gripping state.
After both a successful collaboration and when it times out (unsuccessful collaboration) the
robot releases the stick and makes a transition into the searching state, as shown in Fig. 6.
These arrows correspond to the arrow entering and the two arrows leaving the dotted box
in Fig. 4. We will use the macroscopic state diagram as the basis for writing down the
differential rate equations that describe the dynamics of the stick-pulling experiments.

4.1 The Dynamical Model

The dynamic variables of the model are Ns(t) and Ng(t), the number of robots in the
searching and gripping states respectively. Also, let M(t) be the number of unextracted
sticks at time t. The latter variable does not represent a macroscopic state, rather it tracks
the state of the environment. We assume that robots and sticks are distributed uniformly
around the arena.

A series of differential rate equations govern the dynamics of the stick-pulling system:

dNs

dt
= −αNs(t)

(
M(t) − Ng(t)

)
+ α̃Ns(t)Ng(t)

+αNs(t − τ)
(

M(t − τ) − Ng(t − τ)
)

Γ(t; τ) (7)

Ng = N0 − Ns (8)
dM

dt
= −α̃Ns(t)Ng(t) + µ(t) (9)

where α, α̃ are the rates at which a searching robot encounters a stick and a gripping robot
respectively, τ is the gripping time parameter, and µ(t) is the rate at which new tasks are
added. The parameters α, α̃, and τ connect the model to the experiment. α and α̃ are
related to the size of the object, the robot’s detection radius, or footprint, and the speed
at which it explores the arena. The three terms in Eq. 7 correspond to the three arrows in
Fig. 6. The first term accounts for the decrease in the number of searching robots because
some robots find and grip sticks. Under the uniform distribution assumption, the rate at
which robots encounter ungripped sticks is proportional to the number of ungripped sticks
in the arena, with the proportionality factor given by α. The second term describes the
successful collaborations between two robots, and the third term accounts for the failed
collaborations, both of which lead to an increase the number of searching robots. The
fraction of failed collaborations, Γ(t; τ), is given by Eq. 6, with α̃n = α̃.

We do not need a differential equation for Ng, the number of gripping robots, because
this quantity may be computed using conservation of robots condition, Eq. 8. The last
equation, Eq. 9, says that the number of unextracted sticks M(t) decreases in time at the
rate of successful collaborations. The equations are subject to the initial conditions that at
t = 0 the number of searching robots is N0 and the number of unextracted sticks is M0.
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To proceed further let us introduce n(t) = Ns(t)/N0, m(t) = M(t)/M0, β = N0/M0,
RG = α̃/α, β̃ = RGβ and a dimensionless time t → αM0t, τ → αM0τ . µ′ is the dimension-
less rate at which new tasks (sticks) are added. n(t) is the fraction of robots in the search
state and m(t) is the fraction of unextracted sticks at time t. Due to the conservation of
the number of robots, the fraction of robots in the gripping state is simply 1 − n(t). The
equations Eq. 7– 9 can be rewritten in dimensionless form as:

dn

dt
= −n(t)[m(t) + βn(t) − β] + β̃n(t)[1 − n(t)] + n(t − τ)[m(t − τ)

+βn(t − τ) − β] × γ(t; τ) (10)
dm

dt
= −ββ̃n(t)[1 − n(t)] + µ′ (11)

γ(t; τ) = exp[−β̃

∫ t

t−τ
dt′n(t′)] (12)

Equations 10–12 together with initial conditions n(0) = 1, m(0) = 1 determine the
dynamical evolution of the system. Note that only two parameters, β and τ , appear in the
equations and, thus, determine the behavior of solutions. The third parameter β̃ = RGβ is
fixed experimentally and is not independent. Note that we do not need to specify α and α̃
— they enter the model only through RG (throughout this paper we will use RG = 0.35,
the value reported in [14]).2 Below we provide a detailed analysis of these equations.

4.2 Analysis

Let is assume that new sticks are added to the system at the same rate that the robots pull
them out. This situation was realized experimentally by replacing the sticks in their holes
after they were pulled out by robots. Therefore, the number of sticks does not change with
time (m(t) = m(0) = 1). A steady-state solution, if it exists, describes the long term time-
independent behavior of the system. To find it, we set the left hand side of Eq. 10 to zero.
Eq. 10 has a non-trivial steady–state solution which satisfies the following transcendental
equation:

−1 + (β + β̃)(1 − n) + (1 − β(1 − n))e−β̃τn = 0 (13)

Figure 7 shows the dependence of the fraction of searching robots in the steady state on
the gripping time τ for different values of the parameter β. Note, that for small enough
β’s n(τ) → 0 as τ → ∞. The intuitive reason for this is the same one given in Section 3.2:
when there are fewer robots than sticks, and each robot holds the stick indefinitely, after
a while every robot is holding a stick, and no robots are searching. For β > 1/(1 + RG),
however, n(τ) → const 6= 0 as τ → ∞. The inset in Fig. 7 shows how a typical solution,

2. The parameter α can be easily calculated from experimental values quoted in [14]. As a robot travels
through the arena, it sweeps out some area during time dt and will detect objects that fall in that
area. This detection area is VRWRdt, where VR = 8.0 cm/s is robot’s speed, and WR = 14.0 cm is
robot’s detection width. If the arena radius is R = 40.0 cm, a robot will detect sticks at the rate
α = VRWR/πR2 = 0.02 s−1. According to [14], a robot’s probability to grab a stick already being held
by another robot is 35% of the probability of grabbing a free stick. Therefore, RG = α̃/α = 0.35. RG is
an experimental value obtained with systematic experiments with two real robots, one holding the stick
and the other one approaching the stick from different angles.
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n(t), relaxes to its steady state value. The oscillations are characteristic of time–delay
differential equations, and their period is determined by τ .

The collaboration rate is the rate at which robots successfully pull sticks out of their
holes. The steady–state collaboration rate R(τ ; β) is given by the following equation:

R(τ, β) = ββ̃n(τ, β)[1 − n(τ, β)] , (14)

where n(τ, β) is the number of searching robots in the steady–state for a particular value
of τ and β, and (1− n(τ, β)) is the number of gripping robots in the steady–state. Figure
8 depicts the collaboration rate as a function of τ . For β > βc the collaboration rate
increases monotonically with τ . However, for β < βc there is an optimal gripping time,
τ = τopt, which maximizes the collaboration rate. To understand this behavior note that
the maximum collaboration rate for a given β is achieved for n(τ, β) = 1/2. For β > βc,
however, the solution of Eq. 13 is always greater than 1/2, so an optimal solution does not
exist. For β < βc a simple analysis gives

τopt =
2
β̃

ln
1 − β/2

1 − 1/2(β + β̃)
, β < βc =

2
1 + RG

(15)

The three curves in Fig. 8 are qualitatively similar to those in Fig. 5 for 2 robots
(β = 0.5), 4 robots (β = 1.0) and 6 robots (β = 1.5). Mathematical analysis reproduces
the following conclusions of Ijspeert et al.: the different dynamical regimes depending on
the value of the ratio of robots to sticks (β) and the optimal gripping time parameter for
β < βc.

4.3 Interference Effects

In the previous section we neglected the effects of interference between robots. Interference
is the result of competition for space between spatially extended robots. When a robot
finds itself within sensing distance of an obstacle (another robot or a wall), it will execute
obstacle avoiding behavior in order to reduce the risk of a potentially damaging collision.
Obstacle avoidance takes time; therefore, interference may impact the performance of the
system. Ijspeert et al. showed that adding more robots can lead to a drastic deterioration in
the system’s performance. We now address this question in the framework of the approach
developed in the previous sections.

To model the avoiding behavior we assume that each time a robot encounters an obstacle
it “halts” for a certain amount of time τav and resumes the search afterwards. Although
this is a very simplified version of the real situation, we found that this approach reproduces
the main effects of the experiment. The macroscopic state diagram, Fig. 6, will be modified
by an inclusion of a new avoiding state, with arrows to and from from the searching state.
A searching robot will make a transition to the avoiding state when it encounters another
robot, which can be in the searching, gripping or avoiding states. After a period of time
τav, the robot will finish executing the avoiding behavior and resume the search. We neglect
avoidance of walls. This effect contributes a constant term for each robot and becomes less
important as the arena area is increased.

Let Nav(t) be the number of robots in the avoiding state at time t. Again, we will
consider a static environment only, where the number of sticks remains constant. Taking
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the avoiding behavior into account modifies the model (cf. Eq. 7) as follows:

dNs

dt
= −αNs(t)

(
M0 − Ng(t)

)
+ α̃Ns(t)Ng(t) + αNs(t − τ)

(
M0 − Ng(t − τ)

)
Γ(t; τ)

−2α1Ns(t)(Ns(t) − 1) − α2Ns(t)Nav(t) − α3Ns(t)Ng(t) +
1

τav
Nav (16)

dNav

dt
= − 1

τav
Nav + 2α1Ns(t)(Ns(t) − 1) + α2Ns(t)Nav(t) + α3Ns(t)Ng(t) (17)

Ng = N0 − Ns(t) − Nav(t) . (18)

The first three terms in Eq. 16 have the same meaning as for Eq. 7. The next three terms
describe the loss in the number of searching robots due to avoidance. The rates at which a
searching robot encounters, and has to avoid, another searching, avoiding, or gripping robot
are given by parameters α1, α2 and α3, respectively. The rate at which avoiding robots
finish the avoiding behavior and resume searching is given, on average, by Nav/τav. The
conservation of the total number of robots is given by Eq. 18.

We are interested in the steady state properties of system (Eqs. 16–17), i.e., dNs/dt =
dNav/dt = 0. Steady state solutions describe the long term, time independent, behavior
of the system. Let ns = Ns/N0, nav = Nav/N0 be the fraction of robots in searching
and avoiding states, respectively. Then, the steady state solutions ns and nav satisfy the
following equations:

(1 − γ)[1 − β(1 − ns − nav)] + β̃[1 − ns − nav] = 0 (19)

− 1
τav

nav + 2β1ns(ns − ε) + β2nsnav + β3ns(1 − ns − nav) = 0 (20)

where ε = 1/N0, β̃ = βα̃/α, βi = βαi/α, (i = 1, 2, 3). The parameter ε describes the finite
size effect. For relatively small systems, such as the ones studied in the experiments, ε is
finite, but it approaches zero as the number of robots in the system becomes large.

We solved Eqs.(19-20) numerically to obtain steady state values of ns and nav which we
can use to calculate the collaboration rate. The collaboration rate, the rate at which the
robots pull sticks out, is given by the following dimensionless expression:

R(t) = ββ̃ns(t)[1 − ns(t) − nav(t)] . (21)

Including the effects of interference does not qualitatively change the behavior of the col-
laboration rate as a function of τ and β. However, we have found that it does affect the
performance of the system as the group size, N0, increases.

Figure 9 shows the optimal (maximal) collaboration rate per robot as a function of the
robot group size and for three different interference strengths. For small N0, the performance
of each robot increases with group size for all interference strengths, which suggests that
the system as a whole performs super-linearly. However, interference and overcrowding, as
measured by τav and the total number of robots, degrade the performance of the system. As
the number of robots grows, the super-linear regime is followed by an almost linear and then
a sub–linear regime for non-zero interference strengths. The saturation and decrease of the
relative performance occurs already for moderately large groups and agrees qualitatively
with results of Ijspeert et al. (see Fig. 12).
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5. Discussion and Future Work

This paper, together with Ref. [14], presents three levels of abstraction for modeling a
robotic experiment: (i) sensor-based simulations, (ii) microscopic numerical model, (iii)
macroscopic analytical model. Each level has its advantages and drawbacks. The sensor-
based simulation is perhaps the most flexible: it allows one to include different types of con-
trollers (both reactive and non-reactive, homogeneous and heterogeneous systems), easily
incorporate specific environmental constraints (e.g., non-uniform stick distribution, special
arena shapes, etc). Because the sensor-based simulations attempts to faithfully reproduce
the environment and the robots’ imperfect interactions with it, its results are most easily
linked to the physical system. However, using this type of simulator requires a substantial
investment in time — from implementing the logic of the controllers, to running the simu-
lations. Also, the bigger the group size, the bigger the computational resources required to
produce results. It is, therefore, impractical to use this model to study very large systems.

The microscopic numerical model does not require the computation of the details of
the robots’ trajectories; therefore, they run much faster than the sensor-based simulations
and require fewer computational resources. The microscopic model can be adapted to
different experiments with relative ease and it can deliver quantitatively accurate data.
The macroscopic mathematical model is slightly more difficult to implement but very fast
— unlike the microscopic model or sensor-based simulations, the time required to obtain
results is independent of the robot group size. Using the macroscopic model, one can
often study the system analytically, obtain expressions for many parameters of interest and
estimate the desired values using these expressions. However, the predictions of this type of
model are sometimes only qualitatively correct, at least for small groups of robots such as
those presented in this paper. In addition, heterogeneous robot systems are easily studied
using microscopic models since individuals are not summarized in a single caste. Each caste
would require a different set of equations in a macroscopic model. Particular spatial or
temporal probabilities distributions are more easily introduced in microscopic models. The
macroscopic model is a deterministic model: given the same initial conditions, the same
solution will always be reached. If it is required to know what the variation or the noise
envelope in the performance of the system is, the probabilistic microscopic model is a better
candidate. All three level of abstraction are complementary to one another, and can be used
alone or together to gain insight into the behavior of multi-robot systems.

In addition to the case of a homogeneous system of non-communicating robots, Ijspeert
et al. studied, in simulation and using the probabilistic model, the cases of communicating
as well as heterogeneous non-communicating robot systems. In the future, we would like to
expand the analytical model to include these cases. Introducing communication is perhaps
the easier of the tasks. Ijspeert et al. describe a simple signalling scheme in which a gripping
robot emits a continuous signal (“call for help”), and searching robots within the hearing
distance move towards the source of the signal. This simple scheme can be treated by the
mathematical model by introducing two dynamic variables: signalling robots and signal-
following robots. Just such a model of interacting foraging robots was studied by Sugawara
and Sano [28]. Constructing a mathematical model of a heterogeneous system of robots is
more challenging. It is an important task, however, because it is difficult to imagine that
in practice, multi-robot systems will be composed of identical robots. One approach is to
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treat a heterogeneous system as a collection of several homogeneous populations, or castes,
of robots. Each population would be described by a set of equations like the ones presented
in this paper, but each with a different set of parameters (in the experimental paper, the
robots were differentiated by their gripping time parameter), and possibly new terms to
describe interactions between populations. Though this approach may appear simplistic,
it has been used successfully in population dynamics, for example, to describe predator-
prey systems [10]. If both tasks and robots are heterogeneous, more complex coordination
strategies will be required. For instance, market-based approaches offer simple analyzable
distributed coordination strategies that may be used with robots [9].

We would like to test our approach by applying it to analyze other multi-robot sys-
tems, including larger systems for which we could do a rigorous quantitative comparison
between theoretical predictions and experimental results. Because of the practical diffi-
culties involved in implementing a large multi-robot system, a detailed comparison with
embodied simulations may be more feasible. This is the approach taken by the studies of
threshold-based algorithms for labor division [1].

Another important challenge is to expand the model to allow learning. The type of
models presented in this paper apply to the simplest Markov-based systems. The next step
is to generalize the model so that the robot’s future state depends not only on the latest
past state, but on the latest n past states. By introducing memory, we would allow robots
to learn from past states and adapt to changing environmental conditions.

6. Conclusion

We have presented a macroscopic analytical model of collaboration in a homogeneous group
of non-communicating reactive robots. We first introduced a general model for the predic-
tion of the collaboration dynamics for a task that requires r robots to be solved. We then
validated the model in a specific case study: the stick pulling experiment. The robots’ task
was to pull sticks out of their holes, and it could be successfully achieved only through a
collaboration between two robots. Mathematical analysis reproduces the main qualitative
conclusions of Ijspeert et al., namely: the different dynamical regimes for different values
of the ratio of robots to sticks (β), the optimal gripping time parameter for β less than the
critical value, superlinearity of the group performance for small group sizes, as well as sat-
uration and decrease in the relative collaboration rate as the size of the group grows. More
significantly, these results were obtained without time consuming simulations. In fact, some
conclusions, such as the importance of the parameter β, fall directly out of simple analysis
of the model, while others, such as an analytical expression for the optimal gripping time
parameter, cannot be obtained without mathematical analysis. Another advantage of the
macroscopic model is the ease of application. Once the macroscopic state diagram is drawn
(from the details of the microscopic robot controller), the rate equations can be written
down directly from it, and numerically solved using available packages, such as Mathemat-
ica or Matlab, or by implementing algorithms from Ref. [27]. For example, starting from
the model without interference, it took one of us (AG) one day to implement the model
with interference, and obtain numeric and analytic results.

In the simple state-based model we studied, the robot’s future state depends only on
its present state (and on how much time it has spent in that state). While the reactive
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robots in the stick-pulling study clearly obey this Markov property, other systems composed
of robots with memory, learning or deliberative capabilities do not, and therefore, cannot
be described by the simple models presented here. As it is common to do, we made some
simplifying assumptions to make the mathematical model tractable. The most important
assumption was that of spatial uniformity — i.e., we assume that robots and sticks were
uniformly distributed in space. The spatial uniformity assumption is used to calculate
how many sticks and gripping robots a searching robot will encounter. For instance, the
rate a searching robot encounters sticks (and makes a transition to the gripping state) is
proportional to the number of ungripped sticks in the arena, with the proportionality factor
given by α. This is a reasonable assumption for robots, because the searching behavior will
tend to smooth out any inhomogeneities in the robots’ distribution; however, it is not a
good description of systems in which the sticks are strongly localized in some area of the
arena.

The mathematical approach presented here is very general and can be applied to other
multi-agent systems. We have used it to study coalition formation in an electronic market-
place [19], platoon formation in traffic flow [8] and in a work in progress on foraging in a
group of robots.
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Figure 1: Schematic of a robot’s controller for collaborative task completion.
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Figure 2: Macroscopic state diagram of collaboration in a multi-robot system. The arrow
marked ‘s’ corresponds to the transition to the search state after a successful col-
laboration has occurred, while the arrow marked ‘u’ corresponds to the transition
after an unsuccessful collaboration, i.e., when waiting time exceeded τ .



Figure 3: Physical set-up of the stick-pulling experiment showing six Khepera robots.
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Figure 4: Flowchart of the robots’ controller reported from [14] with overlapped state
blocks.
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Figure 5: Collaboration rate as a function of the gripping time in homogeneous groups of
two to six robots and four sticks. The large single markers correspond to the
results with the real robots, the linked small markers to those with the Webots
simulator, and the underlying continuous lines to those with the probabilistic
simulation (from Ijspeert et al.[14]).
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Figure 6: Macroscopic state diagram of the multi-robot system. The arrow marked ‘s’
corresponds to the transition from the gripping to the searching state after a
successful collaboration, while the arrow marked ‘u’ corresponds to the transition
after an unsuccessful collaboration, i.e., when the robots time out.



0 10 20 30 40 50
Gripping time parameter

0

0.5

1

S
te

ad
y 

st
at

e 
so

lu
tio

n

0 25 50
t

0

0.5

1

n
(t

)

Figure 7: Steady state solution vs (dimensionless) gripping time parameter τ : for β = 0.5
(short dash), 1 (long dash), 1.5 (solid line). Inset shows a typical relaxation to
the steady state for τ = 5, β = 0.5.
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Figure 8: Collaboration rate per robot vs (dimensionless) gripping time parameter τ for
β = 0.5 (short dash), β = 1 (long dash), β = 1.5 (solid line). These values of
β correspond, respectively, to two, four, and six robots in the experiments with
four sticks (cf. Fig. 5).
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Figure 9: Relative collaboration rate vs the number of robots for different values of inter-
ference strength: τav = 0 (circles), τav = 0.5 (diamonds) and τav = 1.0 (squares).


