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Abstract

This paper addresses qualitative and quantitative diversity and specialization issues in the frame-
work of self-organizing, distributed, artificial systems. Both diversity and specialization are obtained
via distributed learning from initially homogeneous swarms. While measuring diversity essentially
quantifies differences among the individuals, assessing the degree of specialization implies to correlate
the swarm’s heterogeneity with its overall performance. Starting from a stick-pulling experiment in
collective robotics, a task that requires the collaboration of two robots, we abstract and generalize
in simulation the task constraints to k robots collaborating sequentially or in parallel. We investi-
gate quantitatively the influence of task constraints and type of reinforcement signals on diversity
and specialization in these collaborative experiments. Results show that, though diversity is not
explicitly rewarded in our learning algorithm and there is no explicit communication among agents,
the swarm becomes specialized after learning. The degree of specialization is affected strongly by
environmental conditions and task constraints, and reveals characteristics related to performance
and learning in a more consistent and clearer way than diversity does.
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1 Introduction

Artificial swarm systems based on swarm intelligence (SI) consist of relatively simple autonomous
agents. They are truly distributed, self-organized, inherently scalable since there is no global control
or communication mechanism, and exploit an adequate balance between explorative and exploitative
behavior for robustly facing changes in environmental or task conditions (Bonabeau et al., 1999).

Swarm systems can be homogeneous or heterogeneous. A homogeneous system consists of phys-
ically identical entities with the same hardware and software capabilities. A heterogeneous system
may differentiate at different levels: at the hardware level, at the (controller) software level, or
simply because each entity has a unique identifier. In this paper, we use software agents emulating
real robots that differentiate exclusively at the controller level, in particular endowed with different
control parameters.

Homogeneous systems represent a special case of heterogeneous ones. Depending on environ-
mental and task constraints, a homogeneous solution may not be that achieving the best results.
Learning, as an automatic way to adjust control parameters or select rules without a priori assum-
ing the degree of swarm heterogeneity, represents an effective tool to explore not only homogeneous
solutions (Hayes et al., 2003) but also heterogeneous ones (Murciano et al., 1997; Li et al., 2002).
In this paper, we are interested in distributed learning, i.e., adaptation through learning occurs
exclusively in single robot’s controllers (and not, for instance, in an external supervisor unit).
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However, depending on agents’ capabilities in perception and communication, it may be ex-
tremely difficult for a distributed learning algorithm to discover (near-)optimal solutions at the
swarm level. In addition to the inherently large search space characterizing a heterogeneous swarm,
the credit assignment problem due to partial perception of agents drastically increases the difficulty
of distributed learning. Solutions proposed in the literature of multi-agent learning can be roughly
classified according to the type of reinforcement signal adopted, either local or global. The local
reinforcement signal (Matarić, 1998; Parker & Touzet, 2000) rewards a single agent based on the
local assessment about its contribution to the swarm performance. Although this type of reinforce-
ment signal is immediate and exploits the inherent parallelism of the swarm, it just represents a
noisy estimation of the swarm performance. The more limited and local the communication and
perception capabilities (e.g., in extreme cases no communication at all and very short-range sensors)
are, the higher the amount of noise is in the local assessment due to partial perception. On the con-
trary, the global reinforcement signal (Murciano et al., 1997; Versino & Gambardella, 1997; Hayes
et al., 2003), which is often equivalent to the swarm performance, is stabler and more meaningful.
However, this usually implies a reliable way to measure the swarm performance (e.g., a supervisor
or a fully connected, fast communication network among agents) and a more difficult interpretation
of the reinforcement signal at the agent level, especially in heterogeneous systems.

In this paper, we let the distributed learning algorithm explore heterogeneous solutions, aiming to
improve the swarm performance. We consider different task constraints and types of reinforcement
signals, and quantitatively measure diversity and specialization of a team of non-communicating
agents. We support the discussion first with a concrete collaboration experiment concerned with
pulling sticks and then with its generalized versions where the collaboration is extended to k se-
quential or parallel operations—with the analog of pulling longer or heavier sticks. We show that
specialization can arise in all versions of experiments as a function of task constraints and environ-
mental conditions no matter which type of reinforcement signal is used. As long as the diversity in
agents brings advantage to the swarm performance, learning can drive the system to be specialized.

2 Diversity and Specialization

Traditionally, swarm systems have been classified on a bipolar scale as either heterogeneous or
homogeneous depending on whether any of the agents differ from the others. This view is limiting
because it does not permit a quantitative comparison between heterogeneous systems. Quantitative
metrics of swarm diversity and specialization can enable the investigation of issues such as the impact
of diversity on swarm performance and the impact of task constraints on specialization.

The essential idea behind the diversity measure is to cluster similar agents according to a problem-
specific difference measure and look at the pattern they form in the feature space. After some
preliminary tests where we used a heuristic criterion to select the “optimal” clustering and adopted
the number of clusters as the diversity measure (Li, 2002), we adopted Balch’s social entropy (Balch,
1998) as the diversity measure for the stick-pulling experiments. Based on Shannon’s information
entropy, Balch’s social entropy makes a meaningful and stable measure by incorporating details
about the feature space such as the spatial distribution of the clusters.

Specialization means more than just being diverse. While diversity means difference among in-
dividuals no matter whether the difference is good or bad in respect to the swarm performance,
specialization, with the definition “structural adaptation of a part to a particular function,” also
means adaptation in order to fit. When diversity is obtained via an iterative process such as learn-
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ing or evolution, other reasons (e.g., noise in the replication mechanism) can also cause the system
to become diverse. However, a system becomes specialized when, given specific constraints of via-
bility or survival at the agent level, its diversity is caused for better performance. Accordingly, a
specialization metric should measure the part of diversity that enhances the performance.

When looking at a swarm system statically, it is impossible to identify the part of diversity
that corresponds to the performance improvement. We have to put the system into a dynamic
process where its performance and diversity can change and interact. If the performance generally
increases with higher diversity, the system benefits from being more diverse than the initial status,
and the degree of specialization should increase accordingly; otherwise, if the greater diversity does
not help the performance, the degree of specialization should decrease. That is, specialization can
be measured along a dynamic process as a result of the correlation between the diversity and the
performance. If we assume the system starts from a homogeneous setting with no diversity or
specialization, and the diversity d and the swarm performance r changes with time as correlated
random variables, the correlation coefficient between d and r acts naturally as the percentage of
specialization in diversity. To put this in a formula, the degree of specialization can be defines as

s = corrcoef(d; r)× d. (1)

Note that our specialization measure s is negative when d and r are negatively correlated.

3 Stick-Pulling Experiments

Ijspeert et al. (2001) investigated collaboration in teams of non-communicating robots engaged in
a stick-pulling experiment (Figure 1, left). We call their experiment the original one since we will
abstract and generalize it later in Subsection 3.2.

3.1 Original Stick-Pulling Experiment

In the original experiment, robots equipped with gripper turrets and proximity sensors search a
circular arena and pull sticks out of the ground. The stick length has been chosen so that a single
robot is incapable of pulling a stick out completely on its own, but collaboration between two robots
is sufficient for this task. Each robot is characterized by a gripping time parameter (GTP) which is
the maximal length of time that a robot waits for the help of another robot while holding a stick.
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Figure 1: Left: Physical set-up for the stick-pulling experiment. Right: FSM representing the
robot’s controller. Transitions between states are triggered by sensory measurements.
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The behavior of a robot is determined by a simple program (Figure 1, right). The default
behavior is searching for sticks, i.e., wandering in the arena until an object is detected. If a stick
is detected, the robot pulls it up and determines whether another robot is already holding it by
measuring the elevation speed of the gripper arm. If the elevation is fast, there is no other robot
holding the stick and we call such a grip grip1. Otherwise, the robot assumes that another robot is
already holding the stick and therefore “braking” the elevation. Such a grip is named grip2.

After a robot makes a grip1, two cases can occur: either a second robot helps the first one before
the GTP expires (we call this a successful collaboration) or the first robot times out and resumes
the search for sticks. The specific values of GTPs play a crucial role in the overall stick-pulling rate
(defined as the number of sticks pulled out per unit time) which is the metric adopted in all previous
papers1 (Ijspeert et al., 2001; Lerman et al., 2001; Li et al., 2002) and this paper for the swarm
performance. To ensure the stick-pulling rate is reliably measured, experiments usually take a long
time and a stick will be inserted back by the experimenter after it is completely pulled out.

We use the microscopic model developed in (Ijspeert et al., 2001) as the simulation platform,
which represents agents as separate probabilistic finite-state machines (PFSM). The flowchart of a
PFSM is based on the blueprint of the corresponding real robot controller and its transition proba-
bilities are computed using simple geometric considerations and systematic experiments with one or
two real robots. Unlike macroscopic models (see for instance (Lerman et al., 2001; Martinoli & Eas-
ton, 2002) for the same experiment) which intrinsically assume agents can be clustered into certain
castes, microscopic models allow us to study issues related to distributed learning and specialization
since each agent is a separate PFSM. Furthermore, in contrast to other agent-based models, the
way this model is constructed allows for quantitatively accurate predictions while being four or five
orders of magnitude faster than other popular simulation tools such as sensor-based embodied sim-
ulations (Ijspeert et al., 2001). Therefore, although we have not tested our results using real robots
or realistic simulations, we believe that their validity is not limited to abstract agents.

3.2 Generalized Stick-Pulling Experiments

The strict collaboration property of the stick-pulling task has a major influence on swarm diver-
sity and specialization. In order to emphasize this effect, we abstract and generalize the original
experiment so that a successful collaboration requires now k (> 2) robots instead of just two.

Sequential Collaboration: Pulling Longer Sticks One way to extend the original experiment
is to assume longer sticks so that one robot can only pull a stick up by 1/k of its length. k consecutive
grips, which may be called grip1, grip2, . . . , and gripk, respectively, are thus needed for pulling out
a stick entirely. If the robot currently holding the stick times out, it will drop the stick so that
further robots will have to start over from grip1. We call this type of collaboration required for
pulling longer sticks sequential collaboration. Note that we do not really need more than two robots
in order to complete the task. Theoretically, two robots with very large GTPs are able to pull out
sticks of any length but inefficiently, if they help each other alternately.

Parallel Collaboration: Pulling Heavier Sticks Another way to extend the original experi-
ment is to suppose the sticks are shorter but heavier so that one robot is too weak to lift a stick up.

1The collaboration rate (the number of successful collaborations per unit time) was in fact used in the previous
papers. It is equivalent to the stick-pulling rate when exact one successful collaboration is required for a stick pull-out.
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Exact k robots are needed simultaneously to lift a stick and pull it out. When a robot finds a stick,
it grips the stick until timing out or until there are enough robots to lift the stick, whichever comes
earlier. Robots do not reset their timers when a new robot joins the pulling. Distinguished from the
sequential case, unless all the robots currently holding the same stick time out, the pulling process
need not to be restarted from scratch. We call this type of collaboration parallel collaboration.

3.3 Learning Algorithm

We proposed and tested in (Li et al., 2002) an adaptive line-search algorithm and found that the
algorithm could achieve near-optimal performance in the original stick-pulling experiment under
different conditions. In contrast to a gradient descent method, this algorithm neither requires the
derivative to be calculated nor assumes continuity in the search space. In this paper, we use the
same algorithm for both the original and the generalized stick-pulling experiments.

We use both types of reinforcement signals with the learning algorithm. The local reinforcement
signal rewards an agent when it makes a successful collaboration, i.e., when it completely pulls out a
stick or passes the stick to another robot. The global reinforcement signal is the swarm performance.
The two types of reinforcement signals “align” well in the original experiment as well as its parallel
extension since a successful collaboration means exactly a stick pull-out and vice versa. However,
in sequential cases, a successful collaboration only contributes to but may not finally result in a
stick pull-out, and without a supervisor or explicit communication, a robot will never know its true
contribution unless it does the final grip. Thus the local reinforcement signal in sequential cases is
not aligned with the global one.

4 Results

All the experiments we conducted started from a homogeneous system, i.e., a same initial GTP for
all agents. During the experiments, agents could iteratively adapt their GTPs using either the local
or the global reinforcement signal. The experiments lasted long enough for the learning to stabilize.
Swarm performance and diversity were recorded along the experiments using a time window so that
specialization could be measured via formula (1). We simulated 50 runs for each initial GTP and
plotted the mean diversity and specialization over the runs. The error bars in all diversity and
specialization figures represent one standard deviation from the mean values.

In (Li, 2002), we suggested to use a difference measure of logarithmic form since both the
performance and the logarithm are less sensitive to GTP changes when GTP is large. That is,
for two agents with GTPs g1 and g2 respectively, the difference between them is |log g1 − log g2|.
This difference measure is used in all of our experiments.

4.1 Results of the Original Stick-Pulling Experiment

We started with the original stick-pulling experiment using the same settings as in (Ijspeert et al.,
2001; Li et al., 2002), i.e., 2 to 6 robots and 4 sticks in an arena of 40 cm in radius. The learned
performance under the local reinforcement signal contrasted with the performance of a homogeneous
team without learning is shown in the plot on the left of Figure 2.

The homogeneous team with a fixed GTP exhibited quite different behaviors depending on the
robot/stick ratio. When there were more robots than sticks, the stick-pulling rate increased mono-
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Figure 2: Results of the original stick-pulling experiment. Left: The dashed curves represent the
performance of homogeneous teams with a fixed GTP; the solid curves show that of heterogeneous
teams after learning under local reinforcement signal. Middle: The diversity under different rein-
forcement signals. Right: The specialization under different reinforcement signals.

tonically with the GTP until reaching a plateau corresponding to the optimal rate for homogeneous
teams. In other words, since there were always robots “free” to help, waiting very long was a good
strategy for robots holding sticks. On the other side, when the number of robots was equal to
or smaller than that of sticks, waiting in vain for a very long time may generate deadlock situa-
tions where every robot holds a different stick and waits for help. Previous research showed that
specialization was desired particularly in this situation (Ijspeert et al., 2001; Li et al., 2002).

The stick-pulling rate of the learned system instead consistently achieved the same level inde-
pendent of the initial GTP and almost always outperformed the rate obtained by the homogeneous
team without learning. We also tested learning with the global reinforcement signal. Probably due
to high alignment between the local and the global signals under the current task constraints, we
did not observe significant difference in the learned performance under these two types of signals.

The plot on the right of Figure 2 shows that specialization became much smaller for 5 and 6
robots than for 2–4 robots. This validates the deadlock phenomenon we just discussed, i.e., diversity
is good for the performance when there are equal or less number of robots than sticks, and becomes
less relevant with the performance when there are more robots than sticks. The diversity measure
(Figure 2, middle) gave flatter curves and by itself cannot show this phenomenon clearly.

Since the local reinforcement signal is noisier than the global one, we expect that under the
global reinforcement signal truly specialized robots generate a larger portion of the diversity. This
is validated in Figure 2 since the diversity under the global reinforcement signal dropped faster than
that under the local reinforcement signal when the specialization was less relevant.

4.2 Results of the Generalized Stick-Pulling Experiments

In order to accommodate more robots required by the generalized experiments, we used a large
arena of 80 cm in radius, 16 sticks, and 6 to 24 robots. We simulated the generalized experiments
with k from 3 to 5. Probably due to the same “alignment” reason in the original experiment, no
significant difference in performance was spotted between the local and the global reinforcement
signals in parallel cases. However, in sequential cases, the local reinforcement signal gained a small
performance advantage over the global one for almost all experimental settings.
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Figure 3: Diversity and specialization in the generalized experiments with k = 4.

Before looking at the specialization results (Figure 3), we had expected that the specialization
in parallel cases would be higher than that in sequential cases.2 However, that happened only with
large number of robots (say, 18) and the global reinforcement signal. An investigation of the learned
GTPs shows that when the number of robots is small in parallel cases, all robots have similar GTPs
(∼ 300 s) and the diversity is low. This gives us hints about the seemingly weird phenomenon.

We define the deadlock threshold as the maximal number of robots that could still incur deadlock.
When there are t sticks in the arena, the threshold is t in sequential cases and (k − 1)t in parallel
cases. Our experience with the original experiment made us believe that specialization is high any
time the number of robots is less than the deadlock threshold, which is not always true. Just as
in a company having much more jobs than employees, when the deadlock threshold is much higher
than the number of robots, each robot tends to have multiple roles, as every employee has to take
multiple jobs. Since a robot has only one GTP value, trying to specialize into too many directions
just makes all GTPs similar and results in a low diversity, especially when k is large in parallel cases.

With the global reinforcement signal, when the number of robots is larger than the deadlock
threshold, the decreasing of specialization was again observed.3 What was initially unexpected is
that specialization achieved its maximum when the number of robots was measurably lower than the
threshold. However, seeing that the deadlock threshold is a pessimistic estimation since the agents
cannot have infinitely large GTPs, the “real” threshold should be smaller.

5 Conclusions

This paper presented our initial effort to measure specialization in collaborative swarm systems.
Specialization is a mixed concept of both diversity and adaptation. We define specialization as
the part of diversity that is induced by the need of performance improvement. Our experiments
with the original and generalized stick-pulling experiments showed that specialization was more

2Our arguments were: (a) In sequential cases, the requirement for robots doing grips before gripk is similar—their
GTPs are large enough for the next robot to come and take over. In parallel cases, k different GTP values may be
instead required—robots doing grip1 need the largest GTP and robots doing gripk need the smallest GTP. (b) With
the same number of sticks, the parallel collaboration essentially requires more robots working simultaneously. We
know from the original experiment that specialists may arise if there are insufficient robots compared with sticks.

3For parallel cases, since the threshold is much higher, we verified this with 2 sticks, 4 to 9 robots, and k = 4.
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consistent and meaningful than diversity when properties related to performance and learning were
under study. Our results validated some of our intuitions about specialization in these collaborative
experiments but also revealed some properties that we at first did not see.

Our specialization measure depends heavily on the underlying dynamic process. Different learn-
ing algorithms might result in different specialization values even when the final learned systems are
the same. Future work will be making the specialization measure more independent of the choice of
the learning algorithm, or more generally speaking, of the dynamic process in which diversity and
swarm performance interact.
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