6 research outputs found

    A MR compatible mechatronic system to facilitate magic angle experiments in vivo

    No full text
    When imaging tendons and cartilage in a MRI scanner, an increase in signal intensity is observed when they are oriented at 55 degrees with respect to Bo (the “magic angle”). There is a clear clinical importance for considering this effect as part of the diagnosis of orthopaedic and other injury. Experimental studies of this phenomenon have been made harder by practical difficulties of tissue positioning and orientation in the confined environment of cylindrical scanners. An MRI compatible mechatronic system has been developed to position a variety of limbs inside the field of view of the scanner, to be used as a diagnostic and research tool. It is actuated with a novel pneumatic motor comprised of a heavily geared down air turbine, and is controlled in a closed loop using standard optical encoders. MR compatibility is demonstrated as well as the results of preliminary trials used to image the Achilles tendon of human volunteers at different orientations. A 4 to 13 fold increase in signal at the tendon is observed at the magic angle

    A MR compatible mechatronic system to facilitate magic angle experiments in vivo

    No full text
    When imaging tendons and cartilage in a MRI scanner, an increase in signal intensity is observed when they are oriented at 55 degrees with respect to Bo (the “magic angle”). There is a clear clinical importance for considering this effect as part of the diagnosis of orthopaedic and other injury. Experimental studies of this phenomenon have been made harder by practical difficulties of tissue positioning and orientation in the confined environment of cylindrical scanners. An MRI compatible mechatronic system has been developed to position a variety of limbs inside the field of view of the scanner, to be used as a diagnostic and research tool. It is actuated with a novel pneumatic motor comprised of a heavily geared down air turbine, and is controlled in a closed loop using standard optical encoders. MR compatibility is demonstrated as well as the results of preliminary trials used to image the Achilles tendon of human volunteers at different orientations. A 4 to 13 fold increase in signal at the tendon is observed at the magic angle

    Development of a Compact Piezoworm Actuator For Mr Guided Medical Procedures

    Get PDF
    In this research, a novel piezoelectric actuator was developed to operate safely inside the magnetic resonance imaging (MRI) machine. The actuator based on novel design that generates linear and rotary motion simultaneously for higher needle insertion accuracy. One of the research main objectives is to aid in the selection of suitable materials for actuators used in this challenging environment. Usually only nonmagnetic materials are used in this extremely high magnetic environment. These materials are classified as MRI compatible materials and are selected to avoid hazardous conditions and image quality degradation. But unfortunately many inert materials to the magnetic field do not possess desirable mechanical properties in terms of hardness, stiffness and strength and much of the available data for MRI compatible materials are scattered throughout the literature and often too device specific . Furthermore, the fact that significant heating is experienced by some of these devices due to the scanner’s variable magnetic fields makes it difficult to draw general conclusions to support the choice of suitable material and typically these choices are based on a trial-and-error with extensive time required for prototype development and MRI testing of such devices. This research provides a quantitative comparison of several engineering materials in the MRI environment and comparison to theoretical behavior which should aid designers/engineers to estimate the MRI compatible material performance before the expensive step of construction and testing. This work focuses specifically on the effects in the MRI due to the material susceptibility, namely forces, torques, image artifacts and induced heating

    Développement et application préclinique du robot de curiethérapie PROSPER

    Get PDF
    Introduction : Rapporter le développement et les expérimentations d'un nouveau système robotisé destiné à la curiethérapie prostatique possédant un système de suivi de la prostate et une possibilité de fusion écho-IRM. Matériel et méthodes : Un robot d'implantation d'aiguilles transpérinéales guidé par échographie transrectale avec suivi peropératoire des mouvements et de la déformation de la prostate a été crée. Les expériences ont été conduites sur 90 cibles réalisées dans 9 fantômes conçus pour être mobiles et déformables. Les expériences ont été ensuite conduites chez 2 cadavres. Le robot a cherché à déposer des billes de verre simulant des grains de curiethérapie aussi près que possible des cibles dans des fantômes évaluables par différentes modalités d'imagerie dont le scanner et dans des prostates de cadavre. Les résultats étaient mesurés en segmentant les cibles et les billes de verre sur des volumes tomodensitométriques des fantômes et des cadavres. Résultats : Le robot était capable d'atteindre les cibles choisies dans les fantômes avec une précision médiane de 2.73 mm, avec un déplacement médian de la prostate de 5.46 mm. La précision était meilleure à la base qu'à l'apex (2.28 mm vs 3.83 mm, p<0.01) et n'était pas significativement différente pour les implantations horizontales et obliques (2.7 vs 2.82 mm, p=0.18). Les tests sur cadavre ont montré la faisabilité et l'ergonomie du robot en salle d'opération mais des expérimentations plus poussées sont nécessaires. Conclusion : Ce robot destiné à la curiethérapie prostatique est le premier système utilisant le suivi de la prostate intra-opératoire pour guider des aiguilles dans la prostate. Les expériences préliminaires montrent sa capacité à atteindre des cibles malgré les mouvements de la prostate. Les applications pourraient être élargies à la thérapie focale et aux biopsies guidées compte-tenu de sa possibilité à fusionner l'imagerie IRM et l'échographie.Purpose: To report on the development and the initial experience with a new 3D ultrasound robotic system for prostate brachytherapy assistance and focal therapy. MRI-TRUS fusion as well as its ability to track prostate motion intra-operatively allows it to manage motions and guide needles to MRI enhanced tumor foci. Materials and methods: A robotic system for TRUS-guided needle implantation combined with intraoperative prostate tracking was created. Experiments were conducted on 90 targets embedded in 9 mobile and deformable synthetic prostate phantoms. A preliminary feasibility study on 2 cadavers was also carried out. The experiments involved trying to insert glass beads as close as possible to targets in multimodal imaging phantoms and in cadaver prostates. The results were measured by segmenting the inserted beads in CT scan volumes of the phantoms and of the cadaver's radical prostatectomy specimens. Results: The robot was able to reach the chosen targets in phantoms with a median accuracy of 2.73 mm, with a median prostate motion of 5.46 mm. Accuracy was better in apex than in base (2.28 vs 3.83 mm, p<0.001) and was similar for horizontal and angled needle inclinations (2.7 vs 2.82 mm, p=0.18). Cadaver tests showed the feasibility of the robot's ergonomics in the operating room but further in vivo assessments are needed. Conclusion: This robot for prostate focal therapy and brachytherapy is the first system using intraoperative prostate motion tracking to guide needles into the prostate. The preliminary experiments described show its ability to reach targets in spite of the motion of the prostate.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Enabling technologies for MRI guided interventional procedures

    Get PDF
    This dissertation addresses topics related to developing interventional assistant devices for Magnetic Resonance Imaging (MRI). MRI can provide high-quality 3D visualization of target anatomy and surrounding tissue, but the benefits can not be readily harnessed for interventional procedures due to difficulties associated with the use of high-field (1.5T or greater) MRI. Discussed are potential solutions to the inability to use conventional mecha- tronics and the confined physical space in the scanner bore. This work describes the development of two apparently dissimilar systems that repre- sent different approaches to the same surgical problem - coupling information and action to perform percutaneous (through the skin) needle placement with MR imaging. The first system addressed takes MR images and projects them along with a surgical plan directly on the interventional site, thus providing in-situ imaging. With anatomical images and a corresponding plan visible in the appropriate pose, the clinician can use this information to perform the surgical action. My primary research effort has focused on a robotic assistant system that overcomes the difficulties inherent to MR-guided procedures, and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot is a servo pneumatically operated automatic needle guide, and effectively guides needles under real- time MR imaging. This thesis describes development of the robotic system including requirements, workspace analysis, mechanism design and optimization, and evaluation of MR compatibility. Further, a generally applicable MR-compatible robot controller is de- veloped, the pneumatic control system is implemented and evaluated, and the system is deployed in pre-clinical trials. The dissertation concludes with future work and lessons learned from this endeavor
    corecore