7 research outputs found

    Low Altitude Air-to-Ground Channel Characterization in LTE Network

    Get PDF
    Low altitude unmanned aerial vehicle (UAV)-aided applications are promising in the future generation communication systems. In this paper, a recently conducted measurement campaign for characterizing the low-altitude air-to-ground (A2G) channel in a typical Long Term Evolution (LTE) network is introduced. Five horizontal flights at the heights of 15, 30, 50, 75, and 100 m are applied, respectively. The realtime LTE downlink signal is recorded by using the Universal Software Radio Peripheral (USRP)-based channel sounder onboard the UAV. Channel impulse responses (CIRs) are extracted from the cell specific signals in the recorded downlink data. To shed lights on the physical propagation mechanisms, propagation graph simulation is exploited. Moreover, path loss at different heights are investigated and compared based on the empirical data. The simulated and empirical results provide valuable understanding of the low altitude A2G channels

    A 3D Wideband Geometry-Based Stochastic Model for UAV Air-to-Ground Channels

    Get PDF

    An Empirical Air-to-Ground Channel Model Based on Passive Measurements in LTE

    Get PDF
    In this paper, a recently conducted measurement campaign for unmanned-aerial-vehicle (UAV) channels is introduced. The downlink signals of an in-service long-time-evolution (LTE) network which is deployed in a suburban scenario were acquired. Five horizontal and five vertical flight routes were considered. The channel impulse responses (CIRs) are extracted from the received data by exploiting the cell specific signals (CRSs). Based on the CIRs, the parameters of multipath components (MPCs) are estimated by using a high-resolution algorithm derived according to the space-alternating generalized expectation-maximization (SAGE) principle. Based on the SAGE results, channel characteristics including the path loss, shadow fading, fast fading, delay spread and Doppler frequency spread are thoroughly investigated for different heights and horizontal distances, which constitute a stochastic model.Comment: 15 pages, submitted version to IEEE Transactions on Vehicular Technology. Current status: Early acces

    A three dimensional MIMO channel model for unmanned Aerial vehicle in urban environments

    Get PDF
    Increasing the availability of Unmanned Aerial Vehicles (UAV's) platforms leads to a variety of applications for aerial exploration, surveillance, and transport. Many of these applications rely on the communication between the UAV and the ground receiver which is subjected to high mobility that may lead to restrictions on link connectivity and throughput. In order to design high throughput and efficient communication schemes for these scenarios, a deep understanding of the communication channel behavior is required, especially taking into account measurement data from flight experiments. Channel propagation in urban environments involves diffraction effects which modify the Line-of-Sight (LoS) contribution of the total received signal, especially when the receiver is located on the ground. This process leads to scenarios where Multiple-Input Multiple-Output (MIMO) signal processing can take advantage from this situation. In this context, the goal of this paper is to study the diffraction effects of the LoS component through spatial correlation metrics of the signal. To accomplish this, we propose the use of a geometric stochastic technique to model the channel behavior which lies between High Altitude Platforms (HAP) and terrestrial link communications.Fil: Mendoza, Horacio Aurelio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    Air-to-Ground Channel Characterization for Low-Height UAVs in Realistic Network Deployments

    Get PDF
    Due to the decrease in cost, size and weight, \acp{UAV} are becoming more and more popular for general-purpose civil and commercial applications. Provision of communication services to \acp{UAV} both for user data and control messaging by using off-the-shelf terrestrial cellular deployments introduces several technical challenges. In this paper, an approach to the air-to-ground channel characterization for low-height \acp{UAV} based on an extensive measurement campaign is proposed, giving special attention to the comparison of the results when a typical directional antenna for network deployments is used and when a quasi-omnidirectional one is considered. Channel characteristics like path loss, shadow fading, root mean square delay and Doppler frequency spreads and the K-factor are statistically characterized for different suburban scenarios.Comment: 15 pages, accepted in IEEE Transactions on Antennas and Propagatio

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Unmanned aerial vehicles (UAVs) for wireless communication and networks : potentials and design challenges

    Get PDF
    Unmanned aerial vehicles (UAVs) are mostly considered by the military for surveillance and reconnaissance operations, and by hobbyists for aerial photography. However, in recent years, the UAV operations have been extended for civilian and commercial purposes due to their agile and cost-effective deployment. UAVs appear to be more prolific platforms to enable wireless communication due to their better line-of-sight (LOS) channel conditions as compared with the fixed base stations (BSs) in terrestrial communication which suffer from severe path loss, shadowing, and multipath fading in more challenging propagation environments. In UAV-enabled wireless communications, the UAV can either act as a complementary aerial BS to provide on-demand communication or as an aerial user equipment (UE) which is operated by the existing cellular network. Several challenges exist in the design of UAV communications which include but not limited to channel modeling, optimal deployment, interference generation, performance analysis, limited on-board battery lifetime, trajectory optimization, and unavailability of regulations and standards which are specific for UAV communication and networking. This thesis particularly investigates some important design challenges for safe and reliable functionalities of UAV for wireless communication and networking. UAV communication has its own distinctive channel characteristics compared to the widely used cellular or satellite systems. However, several challenges exist in UAV channel modeling. For example, the propagation characteristics of UAV channels are under explored for spatial and temporal variations in non-stationary channels. Therefore, first and foremost, this thesis provides an extensive review of the measurement methods proposed for UAV channel modeling and discusses channel modeling efforts for air-to-ground and air-to-air channels. Furthermore, knowledge-gaps are identified to realize accurate UAV channel models. The efficient deployment strategy is imperative to compensate the adverse impact of interference on the coverage area performance of multiple UAVs. As a result, this thesis proposes an optimal deployment strategy for multiple UAVs in presence of downlink co-channel interference in the worst-case scenario. In particular, this work presents coordinated multi-UAV strategy in two schemes. In the first scheme, symmetric placement of UAVs is assumed at a common optimal altitude and transmit power. In the second scheme, asymmetric deployment of UAVs with different altitudes and transmit powers is assumed. The impact of various system parameters, such as signal-to interference-plus-noise ratio (SINR) threshold, separation distance between UAVs, and the number of UAVs and their formations are carefully studied to achieve the maximum coverage area inside and to reduce the unnecessary coverage expansion outside the target area. Fundamental analysis is required to obtain the optimal trade-off between the design parameters and performance metrics of any communication systems. This thesis particularly considers two emerging scenarios for evaluating performance of UAV communication systems. In the first scenario, the uplink UAV communication system is considered where the ground user follows the random waypoint (RWP) model for user mobility, the small-scale channel fading follows the Nakagami-m model, and the uplink interference is modeled by Gamma approximation. Specifically, the closed-form expressions for the probability density function (PDF), the cumulative distribution function (CDF), the outage probability, and the average bit error rate (BER) of the considered UAV system are derived as performance metrics. In the second scenario, the downlink hybrid caching system is considered where UAVs and ground small-cell BSs (SBSs) are distributed according to two independent homogeneous Poisson point processes (PPPs), and downlink interference is modeled by the Laplace transforms. Specifically, the analytical expressions of the successful content delivery probability and energy efficiency of the considered network are derived as performance metrics. In both scenarios, results are presented to demonstrate the interplay between the communication performance and the design parameters
    corecore