395 research outputs found

    Interworking Architectures in Heterogeneous Wireless Networks: An Algorithmic Overview

    Get PDF
    The scarce availability of spectrum and the proliferation of smartphones, social networking applications, online gaming etc., mobile network operators (MNOs) are faced with an exponential growth in packet switched data requirements on their networks. Haven invested in legacy systems (such as HSPA, WCDMA, WiMAX, Cdma2000, LTE, etc.) that have hitherto withstood the current and imminent data usage demand, future and projected usage surpass the capabilities of the evolution of these individual technologies. Hence, a more critical, cost-effective and flexible approach to provide ubiquitous coverage for the user using available spectrum is of high demand. Heterogeneous Networks make use of these legacy systems by allowing users to connect to the best network available and most importantly seamlessly handover active sessions amidst them. This paper presents a survey of interworking architectures between IMT 2000 candidate networks that employ the use of IEFT protocols such as MIP, mSCTP, HIP, MOBIKE, IKEV2 and SIP etc. to bring about this much needed capacity

    Analysis of the effect of mobile terminal speed on WLAN/3G vertical handovers

    Get PDF
    Proceedings of IEEE Global Telecommunications Conference, GLOBECOM '06, San Francisco, California, 27 november - 1 december, 2006.WLAN hot-spots are becoming widely spread. This, combined with the availability of new multi-mode terminals integrating heterogeneous technologies, opens new business opportunities for mobile operators. Scenarios in which 3G coverage is complemented by WLAN deployments are becoming available. Thus, true all-IP based networks are ready to offer a new variety of services across heterogeneous access. However, to achieve this, some aspects still need to be analyzed. In particular, the effect of the terminal speed on the detection and selection process of the preferred access network is not yet well understood. In fact, efficiency of vertical handovers depends on the appropriate configuration of mobile devices. In this paper we present a simulation study of handover performance between 3G and WLAN access networks showing the impact of mobile users’ speed. The mobile devices are based on the IEEE 802.21 cross layer architecture and use WLAN signal level thresholds as handover criteria. A novel algorithm to dynamically adjust terminals’ configuration is presented.Publicad

    An Overview of Vertical Handoff Decision Algorithms in NGWNs and a new Scheme for Providing Optimized Performance in Heterogeneous Wireless Networks

    Get PDF
    Because the increasingly development and use of wireless networks and mobile technologies, was implemented the idea that users of mobile terminals must have access in different wireless networks simultaneously. Therefore one of the main interest points of Next Generation Wireless Networks (NGWNs), refers to the ability to support wireless network access equipment to ensure a high rate of services between different wireless networks. To solve these problems it was necessary to have decision algorithms to decide for each user of mobile terminal, which is the best network at some point, for a service or a specific application that the user needs. Therefore to make these things, different algorithms use the vertical handoff technique. Below are presented a series of algorithms based on vertical handoff technique with a classification of the different existing vertical handoff decision strategies, which tries to solve these issues of wireless network selection at a given time for a specific application of an user. Based on our synthesis on vertical handoff decision strategies given below, we build our strategy based on solutions presented below, taking the most interesting aspect of each one.Vertical Handoff, Genetic Algorithms, Fuzzy Logic, Neural Networks, AHP

    Motorized cart

    Get PDF
    Motorized cart is known as an effective tool and timeless that help people carry heavy loads. For farmers, it has an especially vital tool for moving goods. Oil palm farmers typically uses the wheelbarrow to move the oil palm fruit (Figure 10.1). However, there is a lack of equipment that should be further enhanced in capabilities. Motorized carts that seek to add automation to wheelbarrow as it is to help people save manpower while using it. At present, oil palm plantation industry is among the largest in Malaysia. However, in an effort to increase the prestige of the industry to a higher level there are challenges to be faced. Shortage of workers willing to work the farm for harvesting oil palm has given pain to manage oil palm plantations. Many have complained about the difficulty of hiring foreign workers and a high cost. Although there are tools that can be used to collect or transfer the proceeds of oil palm fruits such as carts available. However, these tools still have the disadvantage that requires high manpower to operate. Moreover, it is not suitable for all land surfaces and limited cargo space. Workload and manpower dependence has an impact on farmers' income

    Media independent handovers : network selection for mobile IP nodes in heterogeneous wireless networks

    Get PDF
    Includes abstract.Includes bibliographical references (p. 79-82).In Next Generation Networks (NGN), also known as 4G, Beyond 3G, Converged, Integrated and Interworked Network, user node mobility in wireless and wired environments will seamlessly cross disparate network boundaries. The effort to offer ubiquitous computing, providing access to services anywhere and anytime, strongly encourages the ability to roam across the different existing and future networks. Literature shows investigation of concepts such as Always Best Connected (ABC) when heterogeneous networks co-exist , which will work or compete with other schemes like Home Network Default (HND), Compatibility and Network Operator Agreements (CNOA) to guide network selection or access . With the variety of available networks, the mobile node may be faced with having to decide which network to connect to. We concentrate on the network selection aspects of these envisaged mobile, overlay and integrated environment in heterogeneous networks. The standard developments by the IEEE802.21 Working group and the IETF Networking group form the base of our approach that seeks to see mobility across heterogeneous networks a reality. We propose an IEEE802.21 Media Independent Handover Function (MIHF) based network discovery and network selection, leading to a handover. The selection may be further assisted by an MIHF capable Broker Node that is Third party to the Network Providers to provide a central yet distributed database of the available networks as encountered by the Mobile Node, to cater for Nodes with no prior knowledge of networks and software repository. A Mobile Node (MN) in our solution uses 802.21 communication messages to obtain information about foreign networks encountered before selecting the networks to connect to. Our evaluation through simulations, shows that network selection in heterogeneous wireless networks environment for the appropriately equipped devices is greatly enhanced by the use of the Media Independent Handover Protocol. In scenarios where the mobile node has no prior knowledge of the encountered different network architectures, the use of a Broker node can, for an optimal number of available networks also greatly enhance the mobile node’s network selection by reducing the delay associated and the packet losses incurred

    Employing Unmanned Aerial Vehicles for Improving Handoff using Cooperative Game Theory

    Get PDF
    Heterogeneous wireless networks that are used for seamless mobility are expected to face prominent problems in future 5G cellular networks. Due to their proper flexibility and adaptable preparation, remote-controlled Unmanned Aerial Vehicles (UAVs) could assist heterogeneous wireless communication. However, the key challenges of current UAV-assisted communications consist in having appropriate accessibility over wireless networks via mobile devices with an acceptable Quality of Service (QoS) grounded on the users' preferences. To this end, we propose a novel method based on cooperative game theory to select the best UAV during handover process and optimize handover among UAVs by decreasing the (i) end-to-end delay, (ii) handover latency and (iii) signaling overheads. Moreover, the standard design of Software Defined Network (SDN) with Media Independent Handover (MIH) is used as forwarding switches in order to obtain seamless mobility. Numerical results derived from the real data are provided to illustrate the effectiveness of the proposed approach in terms of number of handovers, cost and delay

    Handover Architectures for Heterogeneous Networks Using the Media Independent Information Handover (MIH)

    Get PDF
    In heterogeneous networks, network selection by nature is a multi-dimensional problem. Many parameters need to be considered for handover decision making. Apart from handover accuracy and efficiency, an important consideration is the scalability and signaling overhead of such handover algorithms. In this article we propose to break down a Simple Additive Weighting (SAW) based heterogeneous handover algorithm in two parts. The execution of the first part is carried out in an independent and proactive manner prior to the actual handover, assuming three different handover architectures. The handover architectures are differentiated based upon the level of the distribution of the handover algorithm among multiple network components. The Media Independent Handover (MIH) and its different services are used to retrieve and share information among MIH enabled nodes and for conformity among heterogeneous network standards. The proposed algorithm is evaluated with respect to handover accuracy, handover delay efficiency and signaling overhead. The evaluation is carried out for all three handover architectures using simulations. Only handovers between Wi-Fi (IEEE 802.11) and WiMAX (IEEE 802.16) networks are considered. But the handover framework is general and can be extended to consider other wireless and mobile communication networks

    Reputation-based network selection solution for improved video delivery quality in heterogeneous wireless network environments

    Get PDF
    The continuous innovations and advances in both high-end mobile devices and wireless communication technologies have increased the users demand and expectations for anywhere, anytime, any device high quality multimedia applications provisioning. Moreover, the heterogeneity of the wireless network environment offers the possibility to the mobile user to select between several available radio access network technologies. However, selecting the network that enables the best user perceived video quality is not trivial given that in general the network characteristics vary widely not only in time but also depending on the user location within each network. In this context, this paper proposes a user location-aware reputation-based network selection solution which aims at improving the video delivery in a heterogeneous wireless network environment by selecting the best value network. Network performance is regularly monitored and evaluated by the currently connected users in different areas of each individual network. Based on the existing network performance-related information and mobile user location and speed, the network that offers the best support for video delivery along the userñ€ℱs path is selected as the target network and the handover is triggered. The simulation results show that the proposed solution improves the video delivery quality in comparison with the case when a classic network selection mechanism was employed
    • 

    corecore