45 research outputs found

    A Comparative Survey of VANET Clustering Techniques

    Full text link
    © 2016 Crown. A vehicular ad hoc network (VANET) is a mobile ad hoc network in which network nodes are vehicles - most commonly road vehicles. VANETs present a unique range of challenges and opportunities for routing protocols due to the semi-organized nature of vehicular movements subject to the constraints of road geometry and rules, and the obstacles which limit physical connectivity in urban environments. In particular, the problems of routing protocol reliability and scalability across large urban VANETs are currently the subject of intense research. Clustering can be used to improve routing scalability and reliability in VANETs, as it results in the distributed formation of hierarchical network structures by grouping vehicles together based on correlated spatial distribution and relative velocity. In addition to the benefits to routing, these groups can serve as the foundation for accident or congestion detection, information dissemination and entertainment applications. This paper explores the design choices made in the development of clustering algorithms targeted at VANETs. It presents a taxonomy of the techniques applied to solve the problems of cluster head election, cluster affiliation, and cluster management, and identifies new directions and recent trends in the design of these algorithms. Additionally, methodologies for validating clustering performance are reviewed, and a key shortcoming - the lack of realistic vehicular channel modeling - is identified. The importance of a rigorous and standardized performance evaluation regime utilizing realistic vehicular channel models is demonstrated

    Spectrum and transmission range aware clustering for cognitive radio ad hoc networks

    Get PDF
    Cognitive radio network (CRN) is a promising technology to overcome the problem of spectrum shortage by enabling the unlicensed users to access the underutilization spectrum bands in an opportunistic manner. On the other hand, the hardness of establishing a fixed infrastructure in specific situations such as disaster recovery, and battlefield communication imposes the network to have an ad hoc structure. Thus, the emerging of Cognitive Radio Ad Hoc Network (CRAHN) has accordingly become imperative. However, the practical implementation of CRAHN faced many challenges such as control channel establishment and the scalability problems. Clustering that divides the network into virtual groups is a reliable solution to handle these issues. However, previous clustering methods for CRAHNs seem to be impractical due to issues regarding the high number of constructed clusters and unfair load distribution among the clusters. Additionally, the homogeneous channel model was considered in the previous work despite channel heterogeneity is the CRN features. This thesis addressed these issues by proposing two clustering schemes, where the heterogeneous channel is considered in the clustering process. First, a distributed clustering algorithm called Spectrum and Transmission Range Aware Clustering (STRAC) which exploits the heterogeneous channel concept is proposed. Here, a novel cluster head selection function is formulated. An analytical model is derived to validate the STRAC outcomes. Second, in order to improve the bandwidth utilization, a Load Balanced Spectrum and Transmission Range Aware Clustering (LB-STRAC) is proposed. This algorithm jointly considers the channel heterogeneity and load balancing concepts. Simulation results show that on average, STRAC reduces the number of constructed clusters up to 51% compared to conventional clustering technique, Spectrum Opportunity based Clustering (SOC). In addition, STRAC significantly reduces the one-member cluster ratio and re-affiliation ratio in comparison to non-heterogeneity channel consideration schemes. LB-STRAC further improved the clustering performance by outperforming STRAC in terms of uniformity and equality of the traffic load distribution among all clusters with fair spectrum allocation. Moreover, LB-STRAC has been shown to be very effective in improving the bandwidth utilization. For equal traffic load scenario, LB-STRAC on average improves the bandwidth utilization by 24.3% compared to STRAC. Additionally, for varied traffic load scenario, LB-STRAC improves the bandwidth utilization by 31.9% and 25.4% on average compared with STRAC for non-uniform slot allocation and for uniform slot allocation respectively. Thus, LB-STRAC is highly recommended for multi-source scenarios such as continuous monitoring applications or situation awareness applications

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    An efficient cluster-based service model for vehicular ad-hoc networks on motorways

    Get PDF
    Vehicular Ad-Hoc Networks (VANET) can, but not limited to provide users with useful traffic and environmental information services to improve travelling efficiency and road safety. The communications systems used in VANET include vehicle-to-vehicle communications (V2V) and vehicle-to-infrastructure communications (V2I). The transmission delay and the energy consumption cost for maintaining good-quality communications vary depending on the transmission distance and transmission power, especially on motorways where vehicles are moving at higher speeds. In addition, in modern transportation systems, electric vehicles are becoming more and more popular, which require a more efficient battery management, this also call for an efficient way of vehicular transmission. In this project, a cluster-based two-way data service model to provide real-time data services for vehicles on motorways is designed. The design promotes efficient cooperation between V2V and V2I, or namely V2X, with the objective of improving both service and energy performance for vehicular networks with traffic in the same direction. Clustering is an effective way of applying V2X in VANET systems, where the cluster head will take the main responsibility of exchanging data with Road Side Units (RSU) and other cluster members. The model includes local service data collection, data aggregation, and service data downloading. We use SUMO and OMNET++ to simulate the traffic scenarios and the network communications. Two different models (V2X and V2I) are compared to evaluate the performance of the proposed model under different flow speeds. From the results, we conclude that the cluster-based service model outperforms the non-clustered model in terms of service successful ratio, network throughput and energy consumption

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore