12,255 research outputs found

    Development of a Device for Remote Monitoring of Heart Rate and Body Temperature

    Full text link
    We present a new integrated, portable device to provide a convenient solution for remote monitoring heart rate at the fingertip and body temperature using Ethernet technology and widely spreading internet. Now a days, heart related disease is rising. Most of the times in these cases, patients may not realize their actual conditions and even it is a common fact that there are no doctors by their side, especially in rural areas, but now a days most of the diseases are curable if detected in time. We have tried to make a system which may give information about one's physical condition and help him or her to detect these deadly but curable diseases. The system gives information of heart rate and body temperature simultaneously acquired on the portable side in real time and transmits results to web. In this system, the condition of heart and body temperature can be monitored from remote places. Eventually, this device provides a low cost, easily accessible human health monitor solution bridging the gaps between patients and doctors

    Hybrid GMR Sensor Detecting 950 pT/sqrt(Hz) at 1 Hz and Room Temperature.

    Get PDF
    Advances in the magnetic sensing technology have been driven by the increasing demand for the capability of measuring ultrasensitive magnetic fields. Among other emerging applications, the detection of magnetic fields in the picotesla range is crucial for biomedical applications. In this work Picosense reports a millimeter-scale, low-power hybrid magnetoresistive-piezoelectric magnetometer with subnanotesla sensitivity at low frequency. Through an innovative noise-cancelation mechanism, the 1/f noise in the MR sensors is surpassed by the mechanical modulation of the external magnetic fields in the high frequency regime. A modulation efficiency of 13% was obtained enabling a final device's sensitivity of ~950 pT/Hz1/2 at 1 Hz. This hybrid device proved to be capable of measuring biomagnetic signals generated in the heart in an unshielded environment. This result paves the way for the development of a portable, contactless, low-cost and low-power magnetocardiography device

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program

    Development of an Oxygen Saturation Monitoring System by Embedded Electronics

    Get PDF
    Measuring Oxygenation of blood (SaO2) plays a vital role in patient’s health monitoring. This is often measured by pulse oximeter, which is standard measure during anesthesia, asthma, operative and post-operative recoveries. Despite all, monitoring Oxygen level is necessary for infants with respiratory problems, old people, and pregnant women and in other critical situations. This paper discusses the process of calculating the level of oxygen in blood and heart-rate detection using a non-invasive photo plethysmography also called as pulsoximeter using the MSP430FG437 microcontroller (MCU). The probe uses infrared lights to measure and should be in physical contact with any peripheral points in our body. The percentage of oxygen in the body is worked by measuring the intensity from each frequency of light after it transmits through the body and then calculating the ratio between these two intensities

    Measuring dynamic signals with direct sensor-to-microcontroller interfaces applied to a magnetoresistive sensor

    Get PDF
    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.Postprint (published version

    A Framework for Evaluating Security in the Presence of Signal Injection Attacks

    Full text link
    Sensors are embedded in security-critical applications from medical devices to nuclear power plants, but their outputs can be spoofed through electromagnetic and other types of signals transmitted by attackers at a distance. To address the lack of a unifying framework for evaluating the effects of such transmissions, we introduce a system and threat model for signal injection attacks. We further define the concepts of existential, selective, and universal security, which address attacker goals from mere disruptions of the sensor readings to precise waveform injections. Moreover, we introduce an algorithm which allows circuit designers to concretely calculate the security level of real systems. Finally, we apply our definitions and algorithm in practice using measurements of injections against a smartphone microphone, and analyze the demodulation characteristics of commercial Analog-to-Digital Converters (ADCs). Overall, our work highlights the importance of evaluating the susceptibility of systems against signal injection attacks, and introduces both the terminology and the methodology to do so.Comment: This article is the extended technical report version of the paper presented at ESORICS 2019, 24th European Symposium on Research in Computer Security (ESORICS), Luxembourg, Luxembourg, September 201

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed
    • …
    corecore