6,326 research outputs found

    Design of a low-voltage CMOS RF receiver for energy harvesting sensor node

    Get PDF
    In this thesis a CMOS low-power and low-voltage RF receiver front-end is presented. The main objective is to design this RF receiver so that it can be powered by a piezoelectric energy harvesting power source, included in a Wireless Sensor Node application. For this type of applications the major requirements are: the low-power and low-voltage operation, the reduced area and cost and the simplicity of the architecture. The system key blocks are the LNA and the mixer, which are studied and optimized with greater detail, achieving a good linearity, a wideband operation and a reduced introduction of noise. A wideband balun LNA with noise and distortion cancelling is designed to work at a 0.6 V supply voltage, in conjunction with a double-balanced passive mixer and subsequent TIA block. The passive mixer operates in current mode, allowing a minimal introduction of voltage noise and a good linearity. The receiver analog front-end has a total voltage conversion gain of 31.5 dB, a 0.1 - 4.3 GHz bandwidth, an IIP3 value of -1.35 dBm, and a noise figure lower than 9 dB. The total power consumption is 1.9 mW and the die area is 305x134.5 m2, using a standard 130 nm CMOS technology

    Microwave CMOS VCOs and Front-Ends - using integrated passives on-chip and on-carrier

    Get PDF
    The increasing demand for high data rates in wireless communication systems is increasing the requirements on the transceiver front-ends, as they are pushed to utilize more and wider bands at higher frequencies. The work in this thesis is focused on receiver front-ends composed of Low Noise Amplifiers (LNAs), Mixers, and Voltage Controlled Oscillators (VCOs) operating at microwave frequencies. Traditionally, microwave electronics has used exclusive and more expensive semiconductor technologies (III-V materials). However, the rapid development of consumer electronics (e.g. video game consoles) the last decade has pushed the silicon CMOS IC technology towards even smaller feature sizes. This has resulted in high speed transistors (high fT and fmax) with low noise figures. However, as the breakdown voltages have decreased, a lower supply voltage must be used, which has had a negative impact on linearity and dynamic range. Nonetheless, todays downscaled CMOS technology is a feasible alternative for many microwave and even millimeter wave applications. The low quality factor (Q) of passive components on-chip usually limits the high frequency performance. For inductors realized in a standard CMOS process the substrate coupling results in a degraded Q. The quality factor can, however, be improved by moving the passive components off-chip and integrating them on a low loss carrier. This thesis therefore features microwave front-end and VCO designs in CMOS, where some designs have been flip-chip mounted on carriers featuring high Q inductors and low loss baluns. The thesis starts with an introduction to wireless communication, receiver architectures, front-end receiver blocks, and low loss carrier technology, followed by the included papers. The six included papers show the capability of CMOS and carrier technology at microwave frequencies: Papers II, III, and VI demonstrate fully integrated CMOS circuit designs. An LC-VCO using an accumulation mode varactor is presented in Paper II, a QVCO using 4-bit switched tuning is shown in Paper III, and a quadrature receiver front-end (including QVCO) is demonstrated in paper VI. Papers I and IV demonstrate receiver front-ends using low loss baluns on carrier for the LO and RF signals. Paper IV also includes a front-end using single-ended RF input which is converted to differential form in a novel merged LNA and balun. A VCO demonstrating the benefits of a high Q inductor on carrier is presented in Paper V

    Design of a CMOS RF Front End Receiver in 0.18μm Technology

    Get PDF
    An RF front end receiver system refers to the analog down conversion stages of the wireless communication system. The Digital base-band signals cannot be transmitted directly through wireless channels due to the properties of electromagnetic waves. The baseband signals need to be converted to analog through a digital-to-analog converter (DAC), up converted to higher frequency using an up conversion mixer and then transmitted through the channel. The received signals are down converted to base band frequency and then converted to digital again using the analog to digital converter (ADC). The processes which the analog signal undergoes at the RF front end include amplification, mixing and filtering. The RF Front End receiver developed in this thesis makes use of a differential low noise amplifier (LNA) with center frequency at 1.75GHz. The incoming RF signal undergoes amplification by the LNA and is down converted by a Gilbert double balanced mixer to a first Intermediate frequency (IF) of 250 MHz A second Gilbert Double Balanced Mixer down converts to a low second IF of 50 MHz The local oscillator signal for the mixer is generated using a voltage controlled ring oscillator (VCO). The entire front end of the receiver was created in Cadence virtuoso schematic editor using CMOS 0.18μm technology. The total power consumed by the RF Front End Receiver is 113.36 mW

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    A Wideband Inductorless CMOS Front-End for Software Defined

    Get PDF
    The number of wireless communication links is witnessing tremendous growth and new standards are being introduced at high pace. These standards heavily rely on digital signal processing, making CMOS the first technology of choice. However, RF CMOS circuit development is costly and time consuming due to mask costs and design iterations. This pleads for a Software Defined Radio approach, in which one piece of flexible radio hardware is re-used for different applications and standards, downloadable and under software control. To the best of our knowledge, little work has been done in this field based on CMOS technology. Recently, a bipolar downconverter front-end has been proposed [1]. In CMOS, only wideband low-noise amplifiers have been proposed, and some CMOS tuner ICs for satellite reception (which have less stringent noise requirements because they are preceded by an outdoor low-noise converter). This paper presents a wideband RF downconverter frontend in 0.18 um CMOS (also published in [2]), designed in the context of a research project exploring the feasibility of software defined radio, using a combined Bluetooth/WLAN receiver as a vehicle. Usually, RF receivers are optimised for low power consumption. In contrast, we have taken the approach to optimise for flexibility. The paper discusses the main system and circuit design choices, and assesses the achievable performance via measurements on a front-end implemented in 0.18um CMOS. The flexible design achieves a 0.2-2.2 GHz -3 dB bandwidth, a gain of 25 dB with 6 dB noise figure and +1 dBm IIP3

    A wideband high-linearity RF receiver front-end in CMOS

    Get PDF
    This paper presents a wideband high-linearity RF receiver-front-end, implemented in standard 0.18 /spl mu/m CMOS technology. The design employs a noise-canceling LNA in combination with two passive mixers, followed by lowpass-filtering and amplification at IF. The achieved bandwidth is >2 GHz, with a noise figure of 6.5 dB, +1 dBm IIP/sub 3/, +34.5 dBm IIP/sub 2/ and <50 kHz 1/f-noise corner frequency

    A 14-mW PLL-less receiver in 0.18-μm CMOS for Chinese electronic toll collection standard

    Get PDF
    This is the accepted manuscript version of the following article: Xiaofeng He, et al., “A 14-mW PLL-less receiver in 0.18-μm CMOS for Chinese electronic toll collection standard”, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61(10): 763-767, August 2014. The final published version is available at: http://ieeexplore.ieee.org/document/6871304/ © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The design of a 14-mW receiver without phase-locked loop for the Chinese electronic toll collection (ETC) system in a standard 0.18-μm CMOS process is presented in this brief. Since the previously published work was mainly based on vehicle-powered systems, low power consumption was not the primary goal of such a system. In contrast, the presented system is designed for a battery-powered system. Utilizing the presented receiver architecture, the entire receiver only consumes 7.8 mA, at the supply voltage of 1.8 V, which indicates a power saving of at least 38% compared with other state-of-the-art designs for the same application. To verify the performance, the bit error rate is measured to be better than 10-6, which well satisfies the Chinese ETC standard. Moreover, the sensitivity of the designed receiver can be readjusted to -50 dBm, which is required by the standard.Peer reviewe

    Digitally-Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference

    Get PDF
    A software-defined radio (SDR) receiver with improved robustness to out-of-band interference (OBI) is presented. Two main challenges are identified for an OBI-robust SDR receiver: out-of-band nonlinearity and harmonic mixing. Voltage gain at RF is avoided, and instead realized at baseband in combination with low-pass filtering to mitigate blockers and improve out-of-band IIP3. Two alternative “iterative” harmonic-rejection (HR) techniques are presented to achieve high HR robust to mismatch: a) an analog two-stage polyphase HR concept, which enhances the HR to more than 60 dB; b) a digital adaptive interference cancelling (AIC) technique, which can suppress one dominating harmonic by at least 80 dB. An accurate multiphase clock generator is presented for a mismatch-robust HR. A proof-of-concept receiver is implemented in 65 nm CMOS. Measurements show 34 dB gain, 4 dB NF, and 3.5 dBm in-band IIP3 while the out-of-band IIP3 is + 16 dBm without fine tuning. The measured RF bandwidth is up to 6 GHz and the 8-phase LO works up to 0.9 GHz (master clock up to 7.2 GHz). At 0.8 GHz LO, the analog two-stage polyphase HR achieves a second to sixth order HR > dB over 40 chips, while the digital AIC technique achieves HR > 80 dB for the dominating harmonic. The total power consumption is 50 mA from a 1.2 V supply
    corecore