288 research outputs found

    An Overview on Defected Ground Structure in Aspect of Microstrip Patch Antenna

    Get PDF
    Micro strip patch antenna has gained a lot of attention now a day, only because of their attractive features like small size, low profile, low manufacturing cost and easy to integrate with other microwave circuits, but it has also some disadvantages like narrow bandwidth, low gain and low efficiency. Several techniques have been evolved to improve the various characteristics of antenna; they are photonic band gap (PBG), electromagnetic band gap structures (EBG), defected ground structure (DGS). Among three methods DGS is very versatile, it is being used in various microwave devices in microwave amplifiers, microwave oscillators, microwave filter design and in microwave coupling to reduce coupling etc. now a day it is being also used in the field of antenna design as to enhance bandwidth, improve gain, size reduction, harmonic suppression, reduce cross polarization etc. The equivalent of DGS is a simple LC resonator circuit. Inductance and capacitance value of ground varies with respect to the size and location of cut. As DGS is applied to the ground inductance and capacitance value increases because of that resonating frequency gets decreases. So by varying the size and location of cut in ground we can get a desired resonating frequency. In this paper, effect of various DGS in enhancement of antenna parameter is studied

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 1: DGSs and Parasitic Structures

    Get PDF
    This two-part article presents a review of different techniques of mutual coupling (MC) reduction. MC is a major issue when an array of antennas is densely packed. When the separation between the antennas i

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications

    Get PDF
    A compact band-notched UWB (Ultra-Wide Band) antenna with integrated Bluetooth is developed for personal wireless communication and UWB applications. The antenna operates at the UWB frequency band (3.1-10.6 GHz) as well as Bluetooth (2.4-2.484 GHz), with band-notch characteristics at the Wireless Local Area Network (WLAN) frequency band (5-6 GHz). A new technique of integrating Bluetooth within a UWB band-notched antenna is developed and analyzed. The UWB frequency band is realized by utilizing a conventional cylindrical radiating patch and a modified partial ground plane. The Bluetooth band is integrated using a miniaturized resonator with the addition of capacitors. Further, to mitigate the interference of the WLAN frequency band within the UWB spectrum, a conventional slot resonator is integrated within the radiator to achieve the task. The antenna is designed and fabricated, and its response in each case is provided. Moreover, the antenna exhibits a good radiation pattern with a stable gain in the passband. The present antenna is also compared to state-of-the-art structures proposed in the literature. The miniaturized dimensions (30 x 31 mm 2 ) of the antenna make it an excellent candidate for UWB and personal wireless communication applications.The publication of this article was funded by the Qatar National Library. Mirjavadi also appreciates the help from the Fidar Project Qaem Company (FPQ)

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 2: Metamaterials and Many More

    Get PDF
    This twoā€part article presents a review of different techniques of mutual coupling (MC) reduction. MC reduction is a primary concern while designing a compact multipleā€inputā€multipleā€output (MIMO) antenna where the separation between the antennas is less than Ī»0/2, that is, half of the freeā€space wavelength. The negative permittivity and permeability of artificially created materials/structures (Metamaterials) significantly help reduce MC among narrowā€band compact MIMO antenna design elements. In this part two of the review paper, we will discuss techniques: Metamaterials; Splitā€Ringā€Resonator; Complementaryā€Splitā€Ringā€Resonator; Frequency Selective Surface, Metasurface, Electromagnetic Band Gap structure, Decoupling and Matching network, Neutralization line, Cloaking Structures, Shorting vias and pins and few more

    A planar UWB semicircular-shaped monopole antenna with quadruple band notch for WiMAX, ARN, WLAN, and X-Band

    Get PDF
    This paper proposed quadruple notched frequency bands ultra-wideband (UWB) antenna. The antenna is a semicircular-shaped monopole type of a compact size 36x24 mm, covering frequency range of 3.02-14 GHz. Four rejected narrow bands including WiMAX (3.3-3.7GHz), ARN (4.2-4.5 GHz), WLAN (5.15-5.825GHz), X-Band (7.25-7.75) have been achieved using inserting slots techniques in the patch, feed line, and ground plane. The slots dimensions have been optimized for the required reject bands. The antenna design and analysis have been investigated by simulation study using CST-EM software package. The antenna characteristics including impedance bandwidth, surface current, gain, radiation efficiency, radiation pattern have been discussed

    Realizing uwb antenna array with dual and wide rejection bands using metamaterial and electromagnetic bandgaps techniques

    Get PDF
    This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25-10.1 GHz. To improve the array's impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2-12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm x 20 mm x 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15-5.825 GHz) and X-band satellite downlink communication band (7.10-7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals
    • ā€¦
    corecore