5 research outputs found

    A Low Cost Migration Path Towards Next Generation Fiber-To-The-Home Networks

    Get PDF
    Abstract: A highly-scalable access architecture achieving high-user-density and enabling resiliency, centralized light-generation control, remote amplification and colorless ONU with Reflective Semiconductor Optical Amplifier (RSOA) is presented as the bridge between the already deployed Fiber-to-theHome infrastructures and the advanced optical access networks. A technoeconomical comparison of these optical access networks is done, depicting the proposed solution -SARDANA-as the most cost effective migration path towards the Next Generation Passive Optical Networks

    Modeling equipment hierarchy and costs for ICT solutions

    Get PDF
    In the early 2000s, a large number of companies thrived mainly due to the fast-paced evolution of network and Internet technologies. A similar trend is now emerging with the rise of the Internet of Things (IoT), using which almost every thing can be part of the Internet. Both groups of companies have important ICT networks as their core assets. In order to validate the feasibility of the business models of such companies, the relevant costs and revenues should be modeled. This publication focuses on the relevant costs, which can be divided into two categories: process costs and equipment costs, the latter being the focus here. For equipment costs, no formal standard exists. As a result, most studies make use of use case-specific ad hoc models (typically, a combination of visualization and spreadsheet modeling), which tend to be error-prone as well as hard to understand and reuse. To solve these issues, we developed the Equipment Coupling Modeling Notation (ECMN), which allows for both visualization and calculation while focusing on simplicity, flexibility, and reusability. ECMN is a flowchart-like notation based on a small number of building blocks, which allows for hierarchical modeling by means of nesting models (using submodels). In this study, ECMN was applied to an IoT use case to show its strengths, based on which a comparison was made with various ad hoc models using a set of requirements

    A Low Cost Migration Path Towards Next Generation Fiber-To-The-Home Networks

    No full text

    10 Gigabit-capable Passive Optical Network Transmission Convergence layer design

    Get PDF
    Uusien laajakaistaisten tietoliikennepalvelujen ja kasvavan tiedonsiirtokapasiteetin tarpeen myötä kiinteiden liityntäverkkojen infrastruktuuri on muuttumassa sähköisestä optiseksi. Euroopan komission rahoittamassa Scalable Advanced Ring-based passive Dense Access Network Architecture (SARDANA)-tutkimusprojektissa tutkitaan seuraavan sukupolven passiivisten optisten liityntäverkojen teknologioita. Projektin päätavoitteena on pienentää passiivisiin optisiin liityntäverkkoihin liittyviä kustannuksia. Tämä diplomityö käsittelee SARDANA-testiverkon standardoimattoman 10 Gigabit-capable Passive Optical Network (XGPON) Transmission Convergence (TC)-kerroksen suunnittelua ja ensimmäistä toteutusta optisessa verkkopäätteessä (ONU:ssa). TC-kerros toteuttaa Medium Access Control (MAC)-protokollan. SARDANA XGPON TC (SXGTC)-kerros perustuu standardoituun ITU-T G.984.3 Gigabit-capable Passive Optical Network (GPON) TC (GTC)-kerroksen [ITU08] tarjoamaan ratkaisuun mutta eroaa tästä yksityiskohdiltaan. Kaikki SXGTC-kerroksen oleelliset yksityiskohdat peilataan GTC-kerrokseen. Suunniteltu SXGTC-protokolla tukee maksimissaan 9.95328 Gbps:n symmetrisiä tiedonsiirtonopeuksia. SXGTC-protokolla on optimoitu käsittelemään dataa 8 tavun sanoissa. Ensimmäinen ONU SXGTC-kerroksen toteutus ohjelmoitavassa Field Programmable Gate Array (FPGA)-piirissä esitellään funktionaalisten lohkojen avulla. Tämän implementaation tiedonsiirtonopeus alasuunnassa on 9.95328 Gbps 98 %:n kaistatehokkuudella ja yläsuunnassa 2.48832 Gbps 94.5 %:n kaistatehokkuudella SARDANA-testiverkkokonfiguraation tapauksessa.With the emergence of new broadband telecommunication services and constantly increasing bandwidth demand, fixed access network infrastructure is evolving from electrical to optical. The European Commission funded research project Scalable Advanced Ring-based passive Dense Access Network Architecture (SARDANA) researches the next-generation passive optical access network technologies. The main goal of the project is to reduce expenses that are related to passive optical access networks. This master's thesis discusses the design of the non-standardized 10 Gigabit-capable Passive Optical Network (XGPON) Transmission Convergence (TC) layer and its first implementation version for Optical Network Unit (ONU) for the SARDANA test network. The SARDANA XGPON TC (SXGTC) layer implements the Medium Access Control (MAC) protocol. The SXGTC layer is based on the standardized solution offered by the ITU-T G.984.3 Gigabit-capable Passive Optical Network (GPON) TC (GTC) layer recommendation [ITU08] but differs from it in many details. All the SXGTC layer features are compared to those of the GTC layer. As a result, the SXGTC protocol is able to support operation on up to 9.95328 Gbps symmetrical transmission rates. The SXGTC layer is optimized for the 8-byte-word-based data processing. The first ONU SXGTC layer Field Programmable Gate Array (FPGA) implementation is presented in terms of functional blocks. The implementation supports operation on 9.95328 Gbps in the downstream offering 98 % bandwidth efficiency and on 2.48832 Gbps in the upstream offering 94.5 % bandwidth efficiency for the SARDANA test network configuration
    corecore