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With the emergence of new broadband telecommunication services and constantly 

increasing bandwidth demand, fixed access network infrastructure is evolving from 

electrical to optical. The European Commission funded research project Scalable 

Advanced Ring-based passive Dense Access Network Architecture (SARDANA) 

researches the next-generation passive optical access network technologies. The 

main goal of the project is to reduce expenses that are related to passive optical 

access networks. 

 

This master’s thesis discusses the design of the non-standardized 10 Gigabit-capable 

Passive Optical Network (XGPON) Transmission Convergence (TC) layer and its 

first implementation version for Optical Network Unit (ONU) for the SARDANA 

test network. The SARDANA XGPON TC (SXGTC) layer implements the Medium 

Access Control (MAC) protocol. The SXGTC layer is based on the standardized 

solution offered by the ITU-T G.984.3 Gigabit-capable Passive Optical Network 

(GPON) TC (GTC) layer recommendation [ITU08] but differs from it in many 

details. All the SXGTC layer features are compared to those of the GTC layer.  

 

As a result, the SXGTC protocol is able to support operation on up to 9.95328 Gbps 

symmetrical transmission rates. The SXGTC layer is optimized for the 8-byte-word-

based data processing. The first ONU SXGTC layer Field Programmable Gate Array 

(FPGA) implementation is presented in terms of functional blocks. The 

implementation supports operation on 9.95328 Gbps in the downstream offering  
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sähköisestä optiseksi. Euroopan komission rahoittamassa Scalable Advanced Ring-

based passive Dense Access Network Architecture (SARDANA)-

tutkimusprojektissa tutkitaan seuraavan sukupolven passiivisten optisten 

liityntäverkojen teknologioita. Projektin päätavoitteena on pienentää passiivisiin 

optisiin liityntäverkkoihin liittyviä kustannuksia. 

 

Tämä diplomityö käsittelee SARDANA-testiverkon standardoimattoman 10 Gigabit-

capable Passive Optical Network (XGPON) Transmission Convergence (TC)-

kerroksen suunnittelua ja ensimmäistä toteutusta optisessa verkkopäätteessä 
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sanoissa. Ensimmäinen ONU SXGTC-kerroksen toteutus ohjelmoitavassa Field 

Programmable Gate Array (FPGA)-piirissä esitellään funktionaalisten lohkojen 

avulla. Tämän implementaation tiedonsiirtonopeus alasuunnassa on 9.95328 Gbps 

98 %:n kaistatehokkuudella ja yläsuunnassa 2.48832 Gbps 94.5 %:n 

kaistatehokkuudella SARDANA-testiverkkokonfiguraation tapauksessa. 
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1 Introduction 
 

Users of telecommunication access networks are today showing interest for the latest high-

bandwidth demanding Internet applications and services such as on-line gaming, video 

telephony, video-on-demand, high-definition television and peer-to-peer applications. 

Furthermore, many households have multiple personal computers connected to Internet - all 

requiring a piece of bandwidth. The fast development of broadband telecommunication 

services is not only pushing the traditional copper-based access networks to the limits but 

requires an upgrade of access infrastructure. Fiber-To-The-Home/Building (FTTH/B) 

point-to-multipoint (P2MP) optical access networking is one of the most promising 

technological concepts that could meet this challenge, as it is evident that Digital 

Subscriber Line (DSL) technology is close to the end of its life cycle. [CPG
+
06] 

 

Deployment of FTTH/B access networks has already started in many countries. According 

to the latest worldwide results of FTTH Council Europe [FTTH09a], South Korea was in 

February 2009 a promised land of FTTH/B with the world’s highest household penetration 

rate of nearly 45 %. Hong Kong and Japan were following close behind. It seems that 

FTTH/B is slowly beginning to conquer also United States of America and Europe. In 

Europe the progress is mostly driven by small economies with Sweden being in the 

vanguard. The larger European economies such as France are also planning on investing in 

FTTH/B. For instance, in Paris 4 million households will be connected with FTTH/B 

access network by 2012 [Leb09]. As of September 2009, the European top 10 countries are 

currently having less than 11 % household penetration rates [FTTH09b].  

 

Until recently, the uncertainty in the revenue due to a relatively long payback time was 

significantly slowing down FTTH/B deployment progress [HYS06]. The cost of the 

equipment has only lately begun to decrease with standardization and the extensive 

deployments especially in eastern Asia [CPG
+
06]. The near future forecast of [Fin09] 

predicts further growth in FTTH/B households worldwide. 

 

The European Commission funded, multinational next-generation optical access network 

project referred to as Scalable Advanced Ring-based passive Dense Access Network 

Architecture (SARDANA) is a European attempt to reduce FTTH/B related costs. The 

SARDANA project started in January 2008 and will continue for three years until the end 

of 2010. The cost reduction in SARDANA is addressed through the introduction of the 

latest technological advances that enhance performance of the FTTH/B access networks 

and minimize infrastructure requirements. [SARDa] 

 

One of the technological performance upgrade objectives imposed by the SARDANA 

consortium in the beginning of 2008 was an implementation of a Medium Access Control 

(MAC) protocol that could support higher transmission rates than standardized P2MP 

FTTH/B solutions [SARDa]. At that moment, Gigabit-capable Passive Optical Network 
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(GPON) was the most advanced P2MP FTTH/B system in terms of offered bandwidth per 

subscriber being an outstanding reference for the next-generation FTTH/B MAC protocol 

design. Consequently, the SARDANA MAC protocol is based on the Telecommunication 

Standardization Sector of International Telecommunication Union (ITU-T) G.984.3 GPON 

Transmission Convergence (GTC) layer recommendation [ITU08] that specifies GPON 

MAC protocol for up to 2.48832 Gbps symmetrical transmission rates [Soi08].  

 

The topic of this thesis is the design and implementation of the SARDANA MAC protocol. 

Following the original ITU-T notations, SARDANA optical access network system is 

referred in this text to as SARDANA 10 GPON (SXGPON) and its MAC protocol 

implementing layer as SARDANA 10 GTC (SXGTC) layer, respectively.  

 

The goal of this thesis is to design the SXGTC protocol and its first Field Programmable 

Gate Array (FPGA) implementation version for Optical Network Units (ONUs) to be used 

in the SARDANA test and demonstration network. The transmission rate targets for the 

SXGTC protocol are [Soi08]: 

 

 10 Gbps in the downstream (DS), 

 2.5 Gbps, 5 Gbps and 10 Gbps in the upstream (US).  

 

The transmission rate targets for the first ONU SXGTC layer FPGA implementation are 

[Soi08]: 

 

 10 Gbps in the DS, 

 2.5 Gbps in the US.  

 

The development process of the SXGTC layer was severely constrained by time and human 

resources. Following these constraints, this thesis aims to design and optimize the SXGTC 

layer in such a way that it would allow a straightforward implementation of the SXGTC 

layer in an FPGA. On the other hand, this thesis targets to include all relevant original GTC 

protocol functionalities required by the SARDANA test and demonstration network. 

 

This thesis researches how to modify the GTC protocol to support the transmission rates 

specified for SXGPON, how to optimize the GTC protocol with respect to functional 

requirements, performance, FPGA related technological constraints, and workload to obtain 

a balanced SXGTC protocol solution, how to analyze the resulting SXGTC protocol 

bandwidth efficiency and throughput, how to implement the ONU SXGTC protocol in an 

FPGA with required performance and functionalities, and how to test the ONU SXGTC 

protocol FPGA implementation for correct operation without in-hardware verification. The 

in-hardware testing is not yet possible to perform because some hardware and software 

components of the SARDANA network are still developed. The emphasis of this research 

is put on reducing the design time and achievement of the required functionality. 
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The structure of this thesis follows the logical path of the SXGTC layer design and 

implementation process. The topics consequently mirror the required knowledge of modern 

and future technologies as well as the constraint-based design approach. The following 

chapters focus on presenting the SXGTC layer design process from the ONU perspective 

because the implementation of the ONU SXGTC layer was assigned to the writer. 

 

Chapter 2 concentrates on the basic concepts and technological principles related to optical 

access network systems. Furthermore, it gives an insight on the current and the next-

generation standards and a perspective on the long-term evolution of the optical access 

network technologies. Chapter 3 focuses on the SARDANA project, network architecture 

and network elements portraying the operational environment for the SXGPON system.  

 

Chapter 4 provides an introduction to the FPGA-based digital system design and discusses 

the FPGA design methodology that was adopted and used in this thesis for the ONU 

SXGTC layer FPGA design, implementation and testing. Chapter 5 presents a logical 

model of the SXGTC layer. Chapter 6 describes the design of the SXGTC layer details and 

a number of optimizations carried out in order to fulfil the goals of this thesis. Chapter 7 

analyses the SXGPON system overhead against a reference GPON system overhead 

presented in the literature, and evaluates the expected throughput of the SXPON system. 

Chapter 8 offers a high-level view on the ONU SXGTC layer implementation. Chapter 9 

presents the SXGTC layer design and implementation results, and discusses future 

considerations. 
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2 Passive Optical Access Networks 
 

This chapter serves as an introduction to passive optical access networking. Sections 2.1-

2.4 present some basic technological concepts and principles used in passive optical access 

networks. Section 2.5 glances through the current and the future passive optical access 

network system standards and discusses the commercialization of these systems. Section 

2.6 portrays a view on long-term evolution of passive optical access networks. Section 2.7 

summarizes in short the key points of chapter 2. 

 

2.1 Access network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. High-level architecture of an access network.  

Adopted and modified from [RS02, p. 594, Fig. 11.1]. 

 

An access network is a network that connects a service provider with its home or business 

subscribers. The architecture of an access network (Figure 1) is composed of three major 

components [RS02, p. 593]:  

 

 The first component is a hub, which is usually referred to as Central Office (CO). 

 The second component is referred to as Remote Node (RN). 

 The third component is referred to as Network Interface Unit (NIU).  

CO 

RN 

RN 

RN 

NIU 

NIU 

NIU 

NIU 

NIU 

NIU 

NIU 

Feeder network Distribution network 
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The CO notation will be used throughout this document. The CO is located at the service 

provider end and can be thought of as being either a source of data fed into the access 

network towards the user end or a part of a larger network. The CO is connected to a 

number of RNs deployed in the field that in turn are connected to a number of NIUs. A 

NIU may serve one or more subscribers and is usually found very close to or in the 

subscriber’s location. Furthermore, an access network can be seen to consist of two 

different networks (Figure 1) [RS02, p. 593]: 

 

 Distribution network is the network that connects the RNs with the NIUs. 

 Feeder network is the network that connects the CO with the RNs.  

 

2.2 Fiber-To-The-x (FTTx) 

 

Today mainly two different access network architectures utilizing optical fiber are 

commercially deployed in the field. These are Hybrid Fiber Coax (HFC) and Fiber-To-The-

x (FTTx). Both architectures comply with the general high-level access network 

architecture presented in the Figure 1. The structure of HFC is such that the feeder network 

takes advantage of the optical fiber as transmission medium and the distribution network 

employs coaxial cable infrastructure that has already existed in many places for many 

years. The concept of HFC is however out of scope of this thesis and will not be discussed 

any further. [RS02, p. 595, 598] 

 

In FTTx, optical fiber is used in both feeder and distribution networks. The x letter in the 

FTTx usually stands for Cabinet (Cab), Curb (C), Building (B), Home (H) or Premises (P) 

depending on how close the optical fiber is drawn with respect to the subscriber’s location.  

The rest of the transmission path between the x and the subscriber is electrical. The 

architectures are listed in the descending order with FTTCab having the longest and FTTH 

and FTTP the shortest electrical connections. These typical FTTx concepts according to 

[RS02, p. 599-600] are shown in Figure 2. 

 

 In the first FTTCab architecture the fiber is terminated in a cabinet within 1 km 

radius from the subscriber. Usually some form of DSL technology over copper 

cable is used between the cabinet and the subscriber [FTTH09c]. 

 

 The second architecture is referred to as FTTC or FTTB. Here the optical fiber is 

typically terminated within the distance of about 100 m from the subscriber. The 

copper-based connection to subscriber is then organized using DSL or Ethernet 

[FTTH09c]. 

 

 In the last case that is referred to as FTTH or FTTP, the optical fiber goes straight to 

each subscriber’s home. 
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On the subscriber end of the Optical Distribution Network (ODN), optical fiber is 

terminated with a node that is usually referred to as either:  

 

 Optical Network Unit (ONU) or  

 Optical Network Termination (ONT) [Lam07].  

 

The ONU notation seems to be more widespread in the literature used for this thesis and 

hence will be also used in this text. The purpose of the ONU is to serve as an interface 

between optical and electrical medium. On the CO end, the feeder network is terminated 

with 

 

 Optical Line Terminal (OLT).  

 

The purpose of the OLT [Lam07, p. 19-20, 152-153] is to multiplex transmissions of all 

ONUs belonging to the same access network and provide an interface from the access 

network to either a large network or some service.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Different types of FTTx architectures.  

Adopted and modified from [RS02, p. 600, Fig. 11.5]. 
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2.3 Passive Optical Network (PON) 

 

The FTTx architectures can be based either on an active RN or a passive RN. A network 

with an active RNs is referred to as Active Optical Network (AON). An active RN is an 

electronic device that requires constant power supply and backup power. This device can be 

an optical power amplifier or electronically more sophisticated switch. Furthermore, an 

active RN requires a cabinet for its placement. These features raise the total cost of the 

FTTx deployment and operation. [Zak04][KP02]  

 

A passive RN-based FTTx access network is referred to as Passive Optical Network 

(PON). The passive component used, is usually an optical star coupler or a static 

wavelength router. This coupler or router combines the transmissions of different ONUs to 

the OLT in the upstream (US) and divides the transmission from the OLT to the ONUs in 

the downstream (DS). [RS02, p. 601]  

 

Cost is identified as the major obstacle for worldwide FTTx deployments [CPG
+
06]. The 

FTTx access networks must hence be cheap and simple to build, operate and service. The 

motivation for using the passive architectures comes from the fact that they do not utilize 

any switching and need to be powered only in the end points that noticeably lowers the 

price of their operation compared to the AONs. Other advantages of using PONs are their 

reliability, easy maintenance and possibility for upgrade without infrastructure 

modifications. [RS02, p. 601] 

 

There is a variety of proposed PON architectures and their modifications introduced in the 

literature. PON is generally referred in the literature to be a P2MP system due to the 

existence of the RN in the network [FTTH09c]. However, some literature sources such as 

[RS02, p. 601-602] argue that point-to-point (P2P) optical access network can be also 

considered a PON. This is due to the fact that P2P connection is completely passive 

between the OLT and the ONU. While the latter argument might sound closer to the precise 

PON term, this thesis will adopt the more widespread P2MP definition for PONs. 

Furthermore, this thesis will focus only on passive P2MP optical access systems.  

 

2.4 Passive Optical Network architectures 

2.4.1 Time Division Multiplexed Passive Optical Network (TDM-PON) 

 

Time Division Multiplexed Passive Optical Network (TDM-PON) in Figure 3, originally 

referred to as Telephony on PON (TPON) [SBF
+
87], is the most common commercial PON 

architecture. Bidirectional transmission is based on Wavelength Division Duplex (WDD). 

In the DS direction the OLT broadcasts the traffic through an optical power splitter to all 

the ONUs in the access network. Correspondingly, all broadcasted information is received 

at every ONU. The data streams for different ONUs can be virtually differentiated using 
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ONU address labels that are embedded in the transmission. At the ONU, only the relevant 

data with correct address labels is processed and all other data is discarded. There is an 

apparent security issue as the data intended for one ONU also reaches all the other ONUs in 

the PON. To avoid information security problems, commercial TDM-PONs use encryption. 

[RS02, p. 603] [Lam07, p. 21-22] 

 

The US ONU transmissions are coupled through the same optical power splitter. Time 

Division Multiplexing (TDM) is employed in order to avoid the collisions between 

transmissions of different ONUs in the feeder network. The TDM-based method for 

accessing the transmission medium is referred to as Time Division Multiple Access 

(TDMA). A MAC protocol is required in order for TDMA to be supported. Variable length 

transmission time slots can be assigned for each ONU depending on the required Quality of 

Service (QoS). This mechanism is commonly known as Dynamic Bandwidth Allocation 

(DBA). [RS02, p. 603-604]  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. An example of a one-stage splitting TDM-PON architecture. 

Adopted and modified from [Lam07, p. 29, Fig. 2.9a]. 

 

Comparatively mature low-cost optical transmitters and receivers can be successfully used 

in both the OLT and the ONU. The ONU electronics must run with the aggregate bit rate of 

the system raising the complexity and the cost of the ONU. Due to the P2MP architecture, 

the cost of the TDM-PON OLT can be shared among the subscribers. [RS02, p. 604] 

 

There are three basic alternatives to organize P2MP connection using power splitters 

[Lam07, p. 29-30]:  

 

 The first alternative is a one-stage splitting architecture shown in Figure 3. 

 The second possibility is to use cascaded splitters in the field like in  

 Figure 4.  

 In the third approach depicted in Figure 5, the feeder network is actually an optical 

bus connected to the ONUs at different locations along the network.  
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Figure 4. An example of a multistage splitting TDM-PON architecture. 

Adopted and modified from [Lam07, p. 29, Fig. 2.9b]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. An example of an optical bus TDM-PON architecture. 

Adopted and modified from [Lam07, p. 29, Fig. 2.9c]. 

 

The splitting architecture used in practice strongly depends on the demographic locations of 

the subscribers. In the one-stage architecture the splitter can be in principle put at the OLT 

location. This simplifies network maintenance and minimizes splicing and connector losses 

but on the other hand increases fiber mileage. A high splitting ratio allows to reduce fiber 

mileage in the field and share the cost of the OLT among more ONUs but on the other hand 

it has an immediate impact on the system power budget and transmission loss. Therefore, it 

is vital for a system with high splitting ratio to have high-power transmitters, high-

sensitivity receivers and low-loss optical components in order to cope with the losses. 

Furthermore, a high splitting ratio decreases the amount of available bandwidth per 

subscriber because all ONUs share the channel. This limits the maximum number of 

subscribers in the PON. Most of the commercial TDM-PONs have 1:16 or 1:32 splitting 

ratios. [Lam07, p. 29-30]  
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2.4.2 Wavelength Division Multiplexed Passive Optical Network (WDM-PON) 

 

The term Wavelength Division Multiplexed Passive Optical Network (WDM-PON) is used 

somewhat loosely to describe a PON that employs Wavelength Division Multiplexing 

(WDM). A common feature of WDM-PONs is that separate wavelengths are used for each 

ONU in the DS. In the US, traffic multiplexing can be achieved either by WDD or Time 

Division Duplex (TDD). Hence a variety of different WDM-PON architectures are 

possible. Some of the cornerstone WDM-PON architectures are reviewed in [BPC
+
05]. 

[BPC
+
05]  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. An example of a WDM-PON architecture. 

Adopted and modified from [BPC
+
05, p. 740, Fig. 1]. 

 

The usage of a separate wavelength in the DS provides superb information security since 

each ONU receives only the information that is intended for it. Different wavelengths can 

be assigned different bit rates according to the required QoS, and the ONU electronics can 

run at the data receive rate. The WDM-PON OLT is quite costly because it needs to have 

an array of transceivers to be able to operate on different wavelengths. The cost of the 

WDM-PON OLT can be shared among the subscribers just like in the TDM-PON case. The 

WDM-PON ONU also needs to support operation on different wavelengths and hence 

requires a tunable transceiver that is a relatively expensive component. [RS02, p. 605-606] 

[BPC
+
05] 

 

An Arrayed Wave Guide (AWG) router that is a wavelength routing passive optical device 

is usually used as a RN (Figure 6). This router separates different wavelengths to the 

different ONUs in the DS and removes the splitting loss problem that would arise if a basic 

optical power splitter was used instead. In the US direction, AWG router simply passes 

through all transmitted wavelengths within the transmission band. [BPC
+
05] 
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2.4.3 TDM-PON vs. WDM-PON 

 

Bandwidth demands are constantly growing with new evolving services and increase in the 

number of users requiring enhanced access network performance. The performance of 

TDM-PON systems is limited by mainly two factors [Lam07, p. 30] [RS02, p. 604]: 

 

 The ONUs must run at the aggregate bit rate of the whole PON making the 

hardware design more difficult with higher transmission rates. 

 The splitting ratio introduced by the passive splitter that limits: 

o the maximum number of ONUs in a PON, 

o the maximum reach of a PON decreasing scalability, 

o the bandwidth per ONU-ratio because the channel is divided among the 

ONUs. 

 

These TDM-PON problems can be shunned with the WDM-PON that in contrast to the 

TDM-PON features [RS02, p. 603-609]: 

 

 Each ONU operates on an individual bit rate relaxing the hardware requirements. 

 The usage of the AWG router removes the splitting loss problem increasing the 

reach and scalability of the WDM-PON architecture. 

 Each ONU can be assigned an individual wavelength to provide a high bandwidth 

per ONU-ratio. 

 

The WDM-PON however has one main drawback [Lam07, p. 21]: 

 

 The WDM-PON architectures are generally significantly more expensive than the 

TDM-PON architectures because of the more costly optical components. Some 

technological challenges related to the practical WDM-PON systems are discussed 

in [Chu06]. 

 

2.5 Passive Optical Network standards 

 

There are several standardized TDM-PON fiber access systems for FTTx but there are still 

no standards based on WDM-PONs. The success of TDM-PONs in standardization is due 

to the fact that WDM-PONs are simply more expensive as compared to TDM-PONs 

[Lam07, p. 21]. In this section, the TDM-PON standards are presented in short to introduce 

the framework of the current and future PON systems. 
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2.5.1 Broadband Passive Optical Network (BPON) 

 

In 1995 the world’s leading telecommunication operators and manufacturers founded Full 

Service Access Network (FSAN) group to develop for optical access network standards 

capable of delivering a full set of narrowband and broadband telecommunication services 

[QBC
+
98]. The first TDM-PON system developed by FSAN was called Broadband Passive 

Optical Network (BPON). It is based on Asynchronous Transfer Mode (ATM) and is 

sometimes referred to as Asynchronous Transfer Mode Passive Optical Network (APON). 

The first BPON standard was published in 1998 in the ITU-T G.983 series 

recommendations [ITU09]. The ITU-T G.983.1 recommendation [ITU98] specified the 

aggregate transmission rates for up to 

 

 622.08 Mbps in the DS, 

 155.52 Mbps in the US. 

 

Since then the G.983 series recommendations have been refined several times. The latest 

release of the G.983.1 recommendation [ITU05] specifies the aggregate transmission rates 

for up to 

 

 1.24416 Gbps in the DS, 

 622.08 Mbps in the US. 

 

2.5.2 Gigabit-capable Passive Optical Network (GPON) 

 

The next generation ITU-T PON referred to as Gigabit-capable Passive Optical Network 

(GPON) was also developed by FSAN. It is defined in the ITU-T G.984 series 

recommendations [ITU09] first published in 2003. The G.984.2 recommendation [ITU03] 

specifies the aggregate GPON system transmission rates for up to  

 

 2.48832 Gbps in the DS, 

 2.48832 Gbps in the US.  

 

However, only up to 1.24416 Gbps US rates are used in practice with current technology as 

2.48832 Gbps US link is still studied [Lam07, p. 44]. The GPON transportation mechanism 

is referred to as GPON Encapsulation Method (GEM). 
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2.5.3 Ethernet Passive Optical Network (EPON) 

 

ATM did not achieve the position of a universal network protocol but Ethernet seems to 

have attained this goal. The Ethernet was adopted in PON technology by the Institute of 

Electrical and Electronics Engineers (IEEE) in 2004. This Ethernet-based PON is known as 

Ethernet PON (EPON) but is sometime also referred to as Gigabit EPON (GEPON). EPON 

is now a part of the IEEE 802.3 standard [IEEE08]. EPON offers the aggregate 

symmetrical line rates of: 

 

 1.25 Gbps in the DS, 

 1.25 Gbps in the US.  

 

Due to 8B/10B line-coding, 20 % of the line rate is lost. For this reason, the DS and the US 

transmission rates of EPON are also often referred to be 1 Gbps. [Lam07, p. 43, 54, 59] 

 

2.5.4 10 Gigabit Ethernet Passive Optical Network (10GEPON) 

 

To address the growing bandwidth demand [CKH
+
09], the IEEE has recently developed a 

next-generation EPON standard IEEE802.3av referred to as 10 Gigabit Ethernet Passive 

Optical Network (10GEPON). The standard was published in September 2009 [IEEE09] 

and defines the aggregate line rates for up to: 

 

 10.3125 Gbps in the DS, 

 10.3125 Gbps in the US. 

 

2.5.5 10 Gigabit-capable Passive Optical Network (XGPON) 

 

As of November 2009, the FSAN is currently working on the next-generation GPON 

standard that is referred to as 10 Gigabit-capable Passive Optical Network (XGPON). The 

X corresponds to the Roman numeral X that is equivalent to 10 in decimal numeral system. 

The evolution towards XGPON will be performed in two phases. It is expected to 

encounter severe clock and data recovery related technological challenges in the practical 

OLT receivers at or above 5 Gbps transmission rates due to the discontinuous US 

transmissions of ONUs. [KBC09] [ME09]  

 

In the first phase, XGPON is planned to achieve 10 Gbps transmission rate in the DS and 

n*2,5 Gbps in the US, where n is 1, 2 or 3. This asymmetric XGPON is referred to as 

XGPON1. The second phase will result in symmetric 10 Gbps DS and US XGPON that is 

referred to as XGPON2. FSAN expects XGPON2 to become practical in a longer time 

frame. Other XGPON system parameters are expected to be the same or better than those of 
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the ITU-T G.984 series GPON. The current standard development time frame is 2009-2012 

for XGPON1 and 2013-2015 for XGPON2. [KBC09] [ME09] 

 

2.5.6 Commercialization of Passive Optical Networks 

 

GPON and EPON were the two competing systems in the beginning of 2009 due to the fact 

that GPON and EPON offered more bandwidth per subscriber than BPON. EPON has 

mostly thrived in Eastern Asia countries such as China, Korea and Japan [BPM09], 

whereas GPON has succeeded very well in the North America [Lam07, p. 70]. According 

to [PLC
+
09] it is likely that the first commercial 10GEPON solution will be deployed in 

2010 in Asia and 2012-2015 in Europe. There is also a lot of interest among operators and 

vendors towards development of XGPON. For instance, Ericsson has recently 

demonstrated its non-standardized XGPON solution [Eri08] which is not however available 

commercially. 

  

GPON is a more advanced system than EPON from the technological parameters point of 

view. It provides higher bandwidth efficiency and higher splitting ratio but generally costs 

more than EPON. The cost per EPON ONU link was about 78 % compared to that of 

GPON in 2008 [GE08]. According to [BPM09], the EPON worldwide revenue in the fourth 

quarter of 2008 was about twice than that of GPON. However, it is forecasted in [BPM09] 

that the GPON revenue might eventually not only overhaul the EPON revenue but become 

approximately 3 times higher in 2013. There exists also an entirely opposite forecast, where 

EPON still leads the race [Tek09]. 

 

2.6 Evolution from TDM-PON to WDM-PON 

 

The latest propositions for the next-generation PONs are usually referred to as Next-

Generation Passive Optical Networks (NG-PONs). The most general requirement for an 

NG-PON is that it should have better techno-economic performance than current PONs. 

The main features of NG-PON according to [LPC
+
08] are listed below:  

 

 long reach, 

 high number of users, 

 high speed, 

 high bandwidth per user, 

 single fiber interface, 

 strictly passive outside plant, 

 simple scalability and upgradeability, 

 easy migration, 

 multi-operability (fiber infrastructure shared by several operators), 
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 centralized management and monitoring, 

 resiliency and traffic balancing, 

 colorless i.e. wavelength-independent ONU equipment, 

 robustness. 

 

It is a common view that due to the drawbacks discussed in section 2.4.3 the next-

generation TDM-PON systems can hardly provide adequate performance for future optical 

access networks with increased traffic. It is expected that TDM-PONs will eventually 

evolve into WDM-PONs. The cost of WDM-PON is however a very serious obstacle. The 

most promising migration path towards the WDM-PON is an approach often referred as 

Hybrid WDM/TDM-PON. This PON combines the features from both TDM-PON and 

WDM-PON in a flexible way and allows more cost efficient network design. [GE08] 

 

The main techno-economical idea behind the Hybrid WDM/TDM-PON is that each 

wavelength of WDM-PON is multiplexed in time between the ONUs. This allows sharing 

the cost of the WDM/TDM-PON among a larger number of users, thus reducing the cost 

per user as compared to WDM-PON. The key concepts and architectural variants related to 

the WDM-PON evolution as seen in 2007 and 2008 are reviewed in [MPLP07] and 

[GE08], respectively. Furthermore, the techno-economical comparison in [MPLP07] shows 

that one particular Hybrid WDM/TDM-PON architecture referred to as SARDANA offers 

the most cost efficient migration path towards broadband NG-PONs. SARDANA 

architecture will be presented in detail in chapter 3. 

 

2.7 Summary 

 

This chapter presented an overview of passive optical access network technologies and 

architectures that are gradually replacing DSL. The current and future FTTx PON standards 

were discussed. Furthermore, the current FTTx PON market situation was partly covered in 

addition to FTTH/B household penetration reports already introduced in chapter 1. The 

future PON market prognoses were also referred to in order to present the near-future 

commercial FTTx PON eco-system.  

 

This chapter also portrayed the long-term evolution path for PONs. The aim of this chapter 

was to present the basics of optical access networking and point out that FTTx is coming in 

form of TDM-PONs. The FTTx PON evolution began with 1 Gbps TDM-PONs and is now 

continuing with the 10 Gbps TDM-PONs. Moreover, a gradual transition to WDM-PONs 

using Hybrid WDM/TDM-PONs as an intermediate step is expected in the longer time 

frame. 
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3 Scalable Advanced Ring-based Passive Dense Area Network 

Architecture (SARDANA) Research Project 
 

This chapter offers an insight on SARDANA research project. SARDANA project goals 

and environment are discussed in section 3.1. Section 3.2 presents the SARDANA concept 

network and section 3.3 the SARDANA demonstration and test network. Section 3.4 

focuses on the SARDANA CO equipment and section 3.5 on the SARDANA OLT. Section 

3.6 describes the SARDANA feeder and distribution networks. Section 3.7 discusses the 

SARDANA RN. Section 3.8 presents the SARDANA ONU and section 3.9 summarizes in 

short the key points of chapter 3. 

 

3.1 SARDANA project overview 

 

SARDANA is an NG-PON research project funded by the European Commission. The aim 

of this project is to design and demonstrate an optical access network that is capable of 

providing all the features required from the NG-PON that were discussed in section 2.6 and 

thus extend the limitations of the standardized FTTx TDM-PON solutions. [SARDa] 

 

The key targets of SARDANA are to enhance scalability and robustness of PONs. These 

enhancements are strongly related to decreasing PON associated investments making the 

technology more attractive for operators. SARDANA is primarily intended for operators 

whose strategy is to invest in an easily scalable network that enables continuous increase in 

the number of network users. [SARDa][LPC
+
08] 

 

There are several partners contributing to SARDANA [SARDc]. The partners and their 

responsibilities are enlisted below:  

 

 Universitat Politècnica de Catalunya, Spain. 

Responsibilities: project coordination, subsystem design. 

 

 France Telecom – Orange, France. 

Responsibilities: architecture definition, field-trial, technical management, techno-

economic studies. 

 

 Tellabs, Finland. 

Responsibilities: OLT and ONU equipment provision, MAC protocol, lab 

demonstrations. 

 

 Intracom, Greece. 

Responsibilities: service platform, management and control planes. 
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 Instituto de Telecommunicações, Portugal. 

Responsibilities: monitoring system, non-linear transmission. 

 

 High Institute of Communication and Information Technology, Greece. 

Responsibilities: RNs, non-linear amplification. 

 

 Research and Educational Laboratory in Information Technology, Italy. 

Responsibilities: electronic PON impairment compensation, techno-economic 

studies. 

 

3.2 SARDANA network architecture 

 

The SARDANA network architecture is shown in Figure 7. The architecture is based on a 

double-fiber ring that is used to enhance network scalability and resilience against failures. 

The transmission scheme of SARDANA takes advantage of Dense WDM (DWDM) 

[ITU02] with 32 wavelengths. Each wavelength is multiplexed in time between different 

ONUs in both the US and the DS. This approach makes SARDANA a Hybrid WDM/TDM-

PON. [LPC
+
08] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. SARDANA network architecture. 

Adopted and modified from [LPC
+
08, Fig. 1]. 

 

In the DS, the DWDM wavelengths are transmitted from the CO along the DS fiber ring. 

Each RN routes the predefined wavelength to a single-fiber access tree connected to it, and 
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be for up to 1:64. This enables for up to 64 ONUs to share the same wavelength in time 

domain. The maximum number of the ONUs in the SARDANA network is thus 2048. 

[LPC
+
08]  

 

The ONUs transmit in the US direction on the same wavelength they receive the DS 

transmission. These US transmissions are coupled by the RNs to the US fiber ring and 

delivered to the CO. The signals are transmitted over the double-fiber ring between the CO 

and the RNs according to the less attenuated path. Bidirectional communication on the 

same wavelength over single fiber is achieved by means of orthogonal modulation or 

careful control of reflections. The SARDANA system operates in full-duplex mode. The 

alternatives for modulation formats are under investigation. [LPC
+
08][SARDb] 

 

The maximum number of ONUs in the network is dependent on the optical link budget and 

the number of wavelengths used. The optical link budget is limited by the access tree 

splitting ratio and the distances between the CO and the ONUs. The number of wavelengths 

is restricted by the amount of DWDM wavelengths and a number of available laser sources. 

Since each wavelength is multiplexed in time domain, the maximum transmission rate per 

ONU heavily depends on the number of ONUs operating on that wavelength. Table 1 

demonstrates these relations. 

 

Table 1. SARDANA network study scenarios. Copied from [PLC
+
09]. 

 

Scalability is achieved by the fact that when the amount of users increases, new TDM trees 

can be added to the existing main WDM double-fiber ring. The network can be easily 

modified according to the geographical and functional scenarios, distances, user density 

and user distribution. Five different SARDANA network scenarios are defined for 

transmission and dimensioning studies. These are shown in Table 1. The collector scenario 

is proposed for other access systems integration study. For instance, DSL can be integrated 

with the SARDANA network. [PLC
+
09] 

 

SARDANA was so far proven to be feasible for up to 1024 users in half-duplex mode with 

10 Gbps DS and 2.5 Gbps US transmission rates. There is now ongoing research to achieve 

2.5 Gbps, 5 Gbps and 10Gbps US transmission rates in full-duplex mode. Table 2 

summarizes the results from [LPC
+
08] and [LBP

+
07]. 

Scenarios Urban 1 Urban 2 Metro Rural Collector 

Maximum CO-ONU distance (km) 20 20 60 100 20/60 

Ring length (km) 17 10 50 80 80 

Feeder network length (km) 2,9 9 9 19 19 

Distribution network length (km) 0,1 1 1 1 1 

Number of wavelengths 32 32 16 16 16 

Splitting ratio 1:64 1:32 1:32 1:16 1:8 

Number of ONUs 2048 1024 516 256 128 

Guaranteed bandwidth/ONU (Mbps) >140 >280 >280 >560 300/1000 
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Table 2. SARDANA half duplex mode proof-of-concept. 

Number of ONUs Ring (km) DS rate (Gbps) US rate (Gbps) 

512 50 10 2.5 

512 100 10 2.5 

1024 50 10 2.5 

1024 100 10 1.25 

 

 

3.3 SARDANA test and demonstration network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. SARDANA test demonstration network. 

 

The SARDANA demonstration network is much smaller in terms of equipment compared 

to the SARDANA concept network presented in section 3.2. The demonstration network is 

planned to support at maximum 4 ONUs. Both Service Network Interface (SNI) and User 

Network Interface (UNI) are based on Ethernet. Three different services are planned to be 

demonstrated across the network. These are Internet access, Internet Protocol Television 

(IPTV) and video-conferencing. All service network switching is performed outside the 

SARDANA network based on the Ethernet Virtual Local Area Network (VLAN) tags in 

the Layer2/Layer3 Ethernet switch. In the ONUs, each service has a separate physical 

Ethernet port so that no switching is required in the user network. Figure 8 depicts the 

intended network configuration. 
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3.4 SARDANA Central Office (CO) 

 

The SARDANA CO shown in Figure 9 contains a number of SARDANA OLTs that 

provide different DWDM signal wavelengths and MAC functions for the SARDANA 

network. Only three OLTs are depicted to simplify the illustration. The CO is responsible 

for wavelength routing of the DS signal, selection of the strongest US signal from the 

double-fiber ring, remote amplification pumping to the RNs and overall network 

performance monitoring. The US and the DS DWDM wavelengths are coupled into the 

corresponding double-fiber ring fibers through Optical Switches (OS) and wavelength 

multiplexers (MUX). These allow dynamic adjustment of the transmission direction for 

each of the wavelengths offering traffic balancing capabilities and providing a connection 

to all the RNs even in case of fiber failure. Moreover, the CO has an additional Control 

Plane that is responsible for network control, management, performance monitoring and 

impairment compensation. The service platform is responsible for the SARDANA network 

test services, and the switch organizes interconnections between the service platform and 

the OLTs. [LPC
+
08] [LPB

+
06] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. SARDANA CO. 

Adopted and modified from [LPC
+
08, Fig. 2]. 
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3.5 SARDANA Optical Line Terminal (OLT) 

 

The high-level structure of the SARDANA OLT is presented in Figure 10. The OLT 

transceiver is based on a precise wavelength semiconductor laser transmitter (Tx) and a 

photo detector receiver (Rx) that are coupled to the single fiber with diplexer. A very 

precise wavelength laser is required for DWDM. The transceiver details are defined by 

Physical Media Dependent (PMD) layer and as such are out of scope of this thesis.  

 

The SXGTC layer in the OLT incorporates MAC and service adaptation functions. The 

service adaptation instance is a signal transformation interface between the PON section 

and the service platform signals. The service platform connection in the SARDANA test 

and demonstration network is based on 10 Gbps Ethernet thus requiring only one service 

adaptation instance in contrast to the standardized TDM-PON systems that might 

incorporate several different service signal formats such as data and voice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. A high-level structure of the SARDANA OLT. 

Adopted and modified from [ITU08, p. 13, Fig. 6-1]. 
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The importance of resilience against failures in the network increases with [LGH04]:  
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In general, optical fiber is used as transmission medium for connections that require high 

capacity and consequently high data rates. Furthermore, the amount of users and thus the 

data rates are constantly growing in the optical networks following latest technological 

advances. A single fiber cut may affect hundreds of users notably reducing revenue for both 

the operators and the subscribers. For this reason, protection schemes for optical fiber 

networks are becoming more and more important [Ehr07]. Availability measures the time 

the connection is accessible. The common target for unavailability is considered to be 5 

minutes/year [RS02, p. 537]. According to [Hea08], the standardized deployed unprotected 

TDM-tree-based PON architectures in Figure 3, Figure 4 and Figure 5 have the 

unavailability of up to 47 min/year, 48 min/year and 53 min/year, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Protection offered by the ring architecture. 

 

The ring-based feeder network architecture of SARDANA provides protection and hence 

enhances the availability of the access network in case of a fiber cut demonstrated in Figure 
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there is no need for a maintenance break in case of a new RN or access tree addition to the 

network as there exists an alternative transmission path. The double-fiber ring is utilized 

also for transmission duplexing as the DS and the US traffic are transmitted over different 

fibers. This scheme optimizes the spectrum and helps to avoid main Rayleigh 

backscattering impairments. The distribution network of SARDANA is a basic 1:64 single-

fiber TDM-PON access tree presented in section 2.4.1 and shown in Figure 3 with the 
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exception that the DS and the US transmissions take place at the same wavelength. 

[BPA
+
08] [LPC

+
08] 

 

3.7 SARDANA Remote Node (RN) 

 

The SARDANA RN implements two functions: 

 

 routing, 

 amplification. 

 

The RN routes different wavelengths from the WDM DS fiber ring to each of the dedicated 

wavelength TDM access trees in the DS. In the US the RN couples the TDM access trees to 

the US ring fiber. This functionality is implemented by a 2-to-1 fiber Optical Add Drop 

Multiplexer (OADM) that allows selecting operating wavelengths for each TDM tree. The 

RN is thus transparent to all the other wavelengths in the fiber ring. [BPA
+
08] [LPC

+
08] 

[PLC
+
09] 

 

Moreover, the RN amplifies the optical DS and the US signals passively by means of 

remote amplification. The remote amplification power is provided by pumping lasers that 

are found in the CO. The signal amplification is then achieved in the RN by means of 

Erbium Doped Fibers (EDFs). As of March 2009, possible implementations of the RN are 

currently studied and the design of RN is still evolving. The most advanced proposition so 

far is described in [BPA
+
08]. [LPB

+
06] 

 

3.8 SARDANA Optical Network Unit (ONU) 

 

In the WDM access architectures, the ONUs should support operation on different 

wavelengths in contrast to the standard TDM-PON ONUs where every ONU receives on 

one wavelength and transmits on another. Wavelength-dependent ONUs however cannot be 

used in WDM networks since the production and management of the ONUs would be 

infeasible [BPW07]. A straightforward approach using tunable transceivers is quite costly 

[RS02, p. 603-609]. Recent techno-economic studies [SBP05] and [MPLP07] suggest that 

colorless i.e. non-wavelength specific ONUs offer reduction in cost of operation, 

administration and maintenance functions in the WDM networks. Moreover, the cost of the 

colorless ONU can be further reduced by mass production [LPC
+
08]. 

 

The signal transmission scheme for colorless ONUs in the SARDANA network is such that 

the OLT lasers provide the wavelengths to be used by the SARDANA ONUs. The ONU 

transceiver guides most of the received DS signal power to the ONU photo detector but a 

portion of the DS signal is also coupled to the Reflective Semiconductor Optical Amplifier 
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(RSOA). This connection is demonstrated in Figure 12. The seeded DS signal applied to 

RSOA enables stimulated emission on the DS signal’s wavelength generating the same 

wavelength US signal. This way, the ONU can transmit on any of the DWDM wavelengths 

provided by the OLTs and thus be colorless. The US transmission power of the RSOA is 

dependent on the RSOA power control circuitry. [Pin07] 

 

The colorless ONU can generate serious amplified spontaneous emission noise and 

Rayleigh backscattering impairments operating on the same wavelength in both the DS and 

the US over a single fiber. Moreover, current transmission rates of commercially available 

RSOAs are limited to 2.5 Gbps. The colorless 5 Gbps and 10 Gbps transmitters based on 

RSOA, as well as the compensation of impairments for SARDANA are discussed in 

[POK
+
08] [OPS

+
09]. [OPS

+
09] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. A high-level structure of the SARDANA ONU. 

Adopted and modified from [ITU08, p. 14, Fig. 6-2]. 

 

Figure 12 shows that the ONU SXGTC layer incorporates MAC and service adaptation 

functions just like the SXGTC layer in the OLT. The service adaptation instance is a signal 
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signals. The UNI in the SARDANA test bed is based on three 1 Gbps Ethernet connections 

thus requiring only one service adaptation instance for Ethernet. The logical model of the 

SXGTC layer is discussed in the chapter 5. The implementation details of the ONU 

SXGTC layer are presented in chapters 6 and 7. 
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3.9 Summary 

 

This chapter discussed the SARDANA project presenting the its environment, goals, 

technological approaches and references to related publications for more details. The high-

level description was given of the SARDANA network equipment to engage the reader’s 

interest on the latest technological advances in FTTx PONs. The key technologies such as 

TDM on WDM, DWDM, remote amplification with EDFs and colorless RSOAs researched 

in SARDANA today, might well be utilized in commercial FTTx networks tomorrow. 

Furthermore, the SXGTC layer was identified and positioned inside the OLT and the ONU 

to demonstrate the relation between the functional instances and lay the foundation for the 

presentation of the logical model of the SXGTC layer. 
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4 FPGA-based Digital System Design 
 

This chapter begins with a short presentation of a Field Programmable Gate Array (FPGA) 

and an Application-Specific Integrated Circuit (ASIC) as implementation alternatives for 

modern complex digital systems in general and the SXGTC layer in particular. Further 

emphasis is put on the FPGA-based system design as it is a more suitable option for the 

SXGTC layer implementation as will become clear in section 4.1. Section 4.2 presents the 

generic FPGA architecture. Section 4.3 covers some data processing related concepts. 

Section 4.4 discusses goals associated with the FPGA-based design. Section 4.5 introduces 

the FPGA design flow. Section 4.6 offers a small summary of the topics. The overall 

purpose of this chapter is to give a short high-level insight on the FPGA technology and 

design process. 

 

4.1 Complex digital system design options 

 

An FPGA is a fully manufactured programmable device for digital logic implementations. 

There are both permanently programmed and reprogrammable FPGAs. A reprogrammable 

FPGA offers a very flexible environment for logic implementation and testing as the FPGA 

can be reprogrammed as many times as required during the design process. Furthermore, 

the design process and testing can advance hand in hand as the FPGA program can be 

continuously refined, uploaded into the FPGA and tested in the hardware environment. 

[Wol04, p. 8] 

 

Today high-end reprogrammable FPGAs such as Altera Stratix IV [Alt09] and Xilinx 

Virtex 6 [Xil09a][Xil09b] take advantage of 40-nm semiconductor technology and consist 

of 680 000 - 760 000 logic elements (LEs) and theoretically support clock frequencies for 

up to 600 MHz. An FPGA start-up Achronix however, claims to be able to offer up to 1.5 

GHz performance with its Speedster FPGA [Ach09]. The maximum clock frequency sets a 

theoretical limit for the FPGA speed but the real performance of the FPGA design is 

limited by the design itself.  

 

The most notable alternative to the FPGAs are custom Very Large Scale Integrated (VLSI) 

purpose-dedicated chips referred to as ASICs. ASICs are designed and optimized for some 

particular logical task or function. They are first designed and simulated in software and 

only then manufactured. Manufacturing of ASICs usually takes up to several months and 

the hardware testing can begin only after manufacturing. ASICs are generally cheaper than 

FPGAs when manufactured in large volumes but the cost for manufacturing the first 10-20 

engineering samples of ASICs can rise up to $ 2-3 millions for the 45-32 nm process 

technology [WMS
+
08, p. 21-26]. [Wol04 s. 7-14] 
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Some FPGAs have one or more CPUs on chip for embedded computing applications and/or 

several different types of programmable structures for more efficient implementation of 

specific functions such as Digital Signal Processing (DSP). This class of FPGAs is referred 

to as platform FPGAs. The platform FPGAs lower the technological performance gap 

between the FPGAs and the ASICs. In fact, the above mentioned high-end Altera and 

Virtex FPGAs are platform FPGAs. [Wol04, p. 11, 457, 460] 

 

There are also platform ASIC solutions that target to reduce design time and development 

costs of an ASIC by offering a basis silicon platform with Intellectual Property (IP) blocks 

and design methodology. The performance of platform ASICs is generally lower compared 

to a fully customized ASIC. [Kha05] 

 

The main advantages of reprogrammable FPGAs as compared to ASICs are: 

 

 The FPGA design cycle is simpler and more predictable [Xil09c] than that of the 

ASIC due to design tools automation. This results in faster time-to-market [Wol04, 

p. 7-14]. 

 The FPGAs are much cheaper in small quantities [Wol04, p. 7-14]. 

 Reprogrammable FPGAs allow early software/hardware integration testing as the 

design can be loaded into the FPGA quickly at any moment in the field [Smi97, p. 

3-5]. 

 The design can be continuously refined in both software and hardware. 

Reprogrammable FPGAs are very suitable for design prototyping as they can be 

reprogrammed as many times as needed [Smi97, p. 3-5]. 

 The same reprogrammable FPGA can be re-used for different designs [Wol04, p. 7-

14]. 

 

The main advantages of ASICs as compared to FPGAs: 

 

 ASICs are generally faster and consume less power than FPGAs as they are 

designed and optimized for some particular task [Wol04, p. 7-14]. 

 ASIC manufacturing is generally cheaper in very high volumes [Xil09c]. 

 

A shorter design cycle and the reprogrammability of the reprogrammable FPGA makes it a 

more adequate implementation option than ASIC or permanently programmed FPGA for 

research projects like SARDANA. On the other hand, the high ASIC costs for small digital 

circuit quantities simply rule out the use of ASIC in SARDANA project. 
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4.2 Generic FPGA architecture 

 

There are several different approaches to design an FPGA. The three major FPGA circuit 

technologies are referred to as Static Random Access Memory (SRAM)-based, antifuse-

based and flash-based. SRAM-based and flash-based approaches are utilized for the 

reprogrammable FPGAs, whereas antifuse-based approach is used for the permanently 

programmed FPGAs. Table 3 summarizes some of the main differences between these 

technologies. [Wol04, p. 110, 128] [Max06] 

 

Table 3. A comparison of different FPGA programming technologies.   

Adopted and modified from [Max06, Table 1]. 

Feature SRAM-based Antifuse-based Flash-based 

Ability to reprogram Yes No Yes 

Volatile Yes No No 

Power consumption Medium Low Medium 

Good for prototyping Yes (very good) No Yes (reasonable) 

Reprogramming speed Fast - 3x slower than SRAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Generic architecture of an FPGA.  

Adopted and modified from [Wol04, p. 106, Fig. 3-1]. 
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All three technological approaches however have the same generic high-level FPGA 

architecture that consists of three types of basic elements (Figure 13): 

 

 Logic Elements (LEs), 

 Interconnect (Int), 

 Input/Output (I/O) blocks and pins. 

 

The programmability of FPGAs comes from the fact that all three of these basic elements 

are programmable. I/O blocks and pins are the FPGA signal interfaces to the outside. LEs 

implement combinational logic functions based on logic gates, multiplexers or Look-Up 

Tables (LUTs). The LE blocks are usually relatively small as each block can typically form 

a function equivalent to a combination of several logic gates. The LEs are surrounded by a 

programmable wiring referred to as interconnect. The interconnect ties the LEs and the I/O 

blocks together. FPGAs typically offer several types of interconnect structures. Different 

interconnect types are used for different connection distances between the LEs. 

Furthermore, clock signals have a separate clock interconnect network to achieve more 

accurate logic synchronization by minimizing clock delay differences between the distant 

parts of the FPGA. [Wol04, p. 105-107] 

 

4.3 FPGA clock frequency and data rate 

 

The data rate defines how many bits are transmitted or processed in one second. From the 

FPGA implementation perspective the data rate can be represented to be directly 

proportional to the data path width and the data processing frequency i.e. the frequency at 

which data is processed in the FPGA. The data processing frequency is referred to as clock 

frequency in the FPGA context. This relationship is represented by 

 

 
bits

data rate (bps) =  = data path width (bits)  clock frequency (Hz)
second

. (1) 

 

It is possible to widen or narrow the data path width by some factor and decrease or 

increase the clock frequency by exactly the same factor, and hence maintain the same data 

rate. This relationship is demonstrated by Equation (2). This approach is used to process the 

data rates higher than the FPGA’s maximum clock frequency inside the FPGA. 

 

 
factor

data rate (bps) = data path width (bits)  clock frequency (Hz)  
factor

 (2) 

 

The clock frequency is inversely proportional to the data processing time referred to as 

clock cycle in the FPGA context. This relationship is given by the Equation (3). The length 
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of the clock cycle restricts the amount and the complexity of logic operations that can be 

performed during each clock cycle.  

 

 
1

clock cycle (s) = 
clock frequency (Hz)

 (3) 

 

Correspondingly, the complexity of the logic sets a constraint on the minimum clock cycle 

length and the maximum clock frequency of the FPGA implementation. In fact, the clock 

frequency of the implementation can be much lower than the FPGA’s theoretical maximum 

clock frequency. The highest implementation clock frequency for a particular design can be 

only roughly estimated in advance. 

 

4.4 FPGA-based digital system design goals 

 

There are several design goals listed in [Wol04, p.13-14, 168] that form the basis for all 

FPGA-based system design projects: 

 

 Correctness of logical function. The FPGA design performs all expected operations 

correctly. 

 Performance. The performance of the FPGA design is usually measured in 

maximum clock frequency, latency and throughput. The FPGA design needs to be 

run at some required speed i.e. clock frequency. Latency measures how many clock 

cycles are required to process the data from the input to the output. Throughput 

defines the maximum amount of data that can be processed in a certain time frame. 

 Power consumption and heat dissipation. The FPGA chip must run within defined 

power and heat dissipation budget. This is estimated when choosing the most 

suitable FPGA and packaging technology for the design. 

 Logic size. The amount of the required logic directly affects the size of the required 

FPGA and hence has an impact on FPGA cost as larger FPGAs cost more. 

 Design time. Design time is usually limited and the time limitation must be taken 

into account. 

 Design cost. The design cost must be within project budget limits. The design cost 

consists of FPGA development platforms, design tools and design time. 

 Manufacturing cost. The manufacturing cost defines the cost of system replication 

and consists of FPGA chips and time spent on FPGA programming. 
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4.5 Reprogrammable FPGA design flow 

 

The design of a complex chip consumes a lot of time and money. The earlier design errors 

are found, the easier, faster and cheaper they are to correct. The design flow that is also 

referred to as design methodology introduces a means to design a chip as fast as possible 

and with as few errors as possible. [Wol04, p. 414] 

 

Different literature sources use somewhat different terminology in context of the FPGA 

design flow. The general stages of the flow are however the same. The following detailed 

reprogrammable FPGA design flow (Figure 14) is generated-based on the analysis of 

[Wol04, p. 169, 414-416] [Xil09c] and [1-C09]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. FPGA design flow.  

Adopted and modified from [Wol04, p. 414, Fig. 6-32], [Xil09c] and [1-C09]. 
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Requirements and specification 
 

The first step is to document the requirements associated with the design. The requirements 

are typically more of general nature and are usually originated from customers and 

marketing. The next step is to reshape the requirements to a detailed technical specification, 

which describes what exactly needs to be done. If the requirements are misunderstood then 

the mistake will propagate to all the following design flow steps resulting in a working chip 

with incorrect functionality. 

 

Architecture design 

 

Architectural design is based on the careful analysis of the requirements and technical 

specification. The output architecture design consists of a complete device architecture 

including structural blocks and their functions, data path widths, clock domains as well as 

inner and outer interfaces. Furthermore, the architecture design includes the architecture of 

a test simulator referred to as a test bench and a preliminary test suit. The FPGA model for 

the design is usually chosen during the architecture design stage, because the choice of the 

FPGA requires understanding of the design implementation details. 

 

Logic design 

 

The device logic is traditionally designed based on textual description using a Hardware 

Description Language (HDL) but there are also schematics-based alternatives that are 

usually referred to as graphical tools. Some graphical tool features hasten the design 

process but the HDL still remains the key instrument that is used to describe the complete 

design in a generic and understandable way. Today the most widely used HDLs in are Very 

High Speed Integrated Circuit Hardware Description Language (VHDL) and Verilog HDL 

[ME08, p. 145-147]. The FPGA program description is provided in these languages on the 

Register Transfer Level (RTL) meaning that the logic is described with an accuracy of a 

clock cycle from register to register. In addition to device logic, the test bench is designed 

in this step.  

 

Functional simulation 

 

In the functional simulation phase, the design is simulated on RTL with a test bench 

designed for that particular design. If the simulation points out functional errors they are 

corrected by refining the HDL description. If no errors are found the logic synthesis may 

begin. 
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Logic synthesis 
 

In this stage RTL HDL description is optimized and converted to a netlist, which represents 

a formally written circuit schematic of the design. The synthesis is a fully automated 

process that is performed in a software. The synthesis may reveal potential errors that may 

have been left unnoticed in the functional simulation and lead to corrections in the HDL 

description. 

 

Implementation 

 

In the implementation phase, the netlist is mapped into the internal structure of the FPGA 

in software. This process is generally referred to as place-and-route as the FPGA resources 

such as LEs are allocated and interconnected with each other. This process may be fully 

automated but sometimes a designer’s intervention is required to obtain better timing 

properties. 

 

Static timing analysis 

 

The static timing analysis is performed on the placed-and-routed design. The analysis is 

based on the software calculations and represents estimated timing properties of the 

particular design. The two most crucial parameters provided by the analysis are the critical 

path and the maximum estimated clock frequency that can be applied to design. The critical 

path defines the longest signal path between two registers. The maximum clock frequency 

in turn is restricted by the time that is required for a signal to propagate through the critical 

path. If the maximum clock frequency given by static timing analysis is lower than the 

target clock frequency, the design is not adequate and a modification of the HDL 

description is necessary. 

 

Bitstream generation and FPGA programming 

 

A bitstream file is generated after the place-and-route process. The file contains a program 

that is used to program the FPGA for the particular design. The FPGA is programmed by 

uploading the bitstream file into the FPGA. 

 

In-FPGA verification 

 

In this final step, the design functionality is verified inside the FPGA initially using some 

test set-up for easier debugging. The test set-up depends on the FPGA design and future 

usage environment. Finally, the design is verified in the real application environment. If 

problems with the design are detected, the HDL description needs to be refined. 
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Design iterations 

 

Ideally, the design cycle described above is gone through only once. However, that is rarely 

the case with complex designs, partly due to the complexity and partly due to the fact that 

early design stages may be based on incomplete information. Advancing in the design 

accumulates design related information which may point out that some of the previous 

assumptions were incorrect. This requires going one or more stages back and refining the 

design. 

 

4.6 Summary 

 

This chapter discussed the alternatives for digital system design in hardware and identified 

ASICs and FPGAs as two main approaches. The FPGA was considered a more suitable 

alternative for the SXGTC layer implementation mainly for two reasons. First of all the 

usage of FPGA for the SXGTC layer is much cheaper due to the million class initial ASIC 

costs. Secondly, the reprogrammability of the FPGAs makes the technology much more 

applicable for usage in prototyping and research projects like SARDANA. Moreover, this 

chapter presented a short introduction to FPGA technologies, design process and design 

goals to portray the framework for the ONU SXGTC layer design and implementation. 
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5 SARDANA 10 Gigabit-capable Passive Optical Network 

Transmission Convergence Layer: Logical Model 
 

The ITU-T G.984.3 GTC layer recommendation [ITU08] specifies the GPON MAC 

protocol for up to 2.5 Gbps transmission rates for both the US and the DS directions. The 

transmission rate targets for the SXGPON MAC protocol were set to [Soi08]: 

 

 10 Gbps in the DS, 

 2.5 Gbps, 5 Gbps and 10 Gbps in the US.  

 

The development process of the SXGTC layer was severely constrained by: 

 

 human resources, 

 time. 

 

Due to these constraints, the objective was to develop a straightforward implementation of 

the SXGTC layer. The requirements for the SXGTC layer imposed by the SARDANA test 

network allowed for the reduction of the complexity of the G.984.3 recommendation 

[ITU08] in terms of some not needed GPON related features [Soi08]. On the other hand, 

the SXGTC protocol had to incorporate all relevant GTC functionalities. These targets 

served as a starting point for the complete SXGTC layer system design. This and the 

following chapters concentrate on presenting the SXGTC layer design process from the 

ONU perspective because the implementation of the ONU part of the SXGTC layer was 

assigned to the writer. 

 

The target of chapter 5 is to describe the logical model of the SXGTC layer with a special 

emphasis on the ONU. The manner of representation is such that the logical link to the 

G.984.3 recommendation [ITU08] is maintained in all contexts. Furthermore, this text 

addresses also the very first G.984.3 recommendation [ITU04]. Chapter 5.1 portrays the 

protocol stack of the SXGTC system. Chapter 5.2 introduces the SXGTC layer framing 

mechanisms. Chapter 5.3 describes the SXGTC layer multiplexing architecture and MAC 

functions. Chapter 5.4 presents the logical model for the complete ONU SXGTC layer 

system. Chapter 5.5 serves as a summary of the logical model differences between the 

SXGTC and GTC layers. 

 

5.1 SXGTC protocol stack 

 

Figure 15 shows the protocol stack for SXGTC layer. The protocol stack and its functions 

are congruent with those described by the G.984.3 GTC layer recommendation [ITU08].   
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The main responsibility of the SXGTC layer is: 

 

 To provide traffic multiplexing between the OLT and the ONUs. 

 

The SXGTC layer is situated on top of the SXGPON PMD layer and is offering a 

transportation mechanism over the PON for SXGTC layer clients found directly above it. 

The SXGTC layer consists of two sub-layers: 

 

 SXGTC Framing sub-layer, 

 SXGTC Adaptation sub-layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Protocol stack for SXGTC layer system.  

Adopted and modified from [ITU08, p. 16, Fig. 7-1]. 

 

In the G.984.3 recommendation [ITU08], the GTC layer consists of the GTC Framing sub-

layer and the GTC Adaptation sub-layer, respectively. The Optical network unit 

Management and Control Interface (OMCI) enables management and control of service 

defining layers found above the SXGTC layer. These higher layers are beyond the scope of 

this work. The OMCI client is the OMCI message processing entity that communicates 

with the SXGTC Adaptation sub-layer. The outer interfaces of the SXGPON OLT and 

ONU are based on Ethernet. The Ethernet clients communicate directly with the SXGTC 

Adaptation sub-layer. 

 

 

SXGPON Physical Media Dependent layer 

SXGTC layer 

SXGTC Adaptation sub-layer 

SXGTC Framing sub-layer 

Ethernet clients OMCI client 



 37 

5.2 SXGTC layer transmission and framing mechanisms 

 

Two different transmission mechanisms are specified for usage inside the GPON system by 

the original G.984.3 GTC recommendation [ITU04]: 

 

 Asynchronous Transfer Mode (ATM) over GTC framing method, 

 GPON Encapsulation method (GEM) over GTC framing method. 

 

The latest release of the G.984.3 recommendation [ITU08] deprecates all the ATM related 

features. This is because of the fact that ATM is not needed for any service in the FTTx 

networks. Following the technological trend SXGPON supports only for similar 

 

 SXGPON Encapsulation Method (SXGEM) over SXGTC framing method. 

 

5.2.1 SXGTC layer Service Data Units (SDUs) 

 

The Service Data Units (SDUs) of the SXGTC layer are generated by the OMCI and 

Ethernet clients shown in Figure 15. The SDUs are defined respectively as: 

 

 Ethernet frame i.e. user frame,  

 OMCI frame. 

 

Similarly, both user and OMCI frames are defined to be SDUs of the GTC layer in the 

G.984.3 recommendation [ITU08]. 

 

5.2.2 SXGEM framing principle 

 

 

 

 

 

 

 

 

 

Figure 16. SXGEM framing. 
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and an SXGEM payload sections. The SXGEM header is of fixed length. The SXGEM 

payload section length depends on the length of the encapsulated SDU. Figure 16 

demonstrates this SXGEM framing approach. Furthermore, the idle SXGEM frame is 

defined for the case when there is no SDU to be carried over the PON. SXGEM provides a 

similar to GEM transportation method. The exact SXGEM frame format is however 

different from GEM described by the G.984.3 recommendation [ITU08]. The SXGEM 

frame is optimized for 8-byte-based data processing in both the OLT and the ONU. The 

changes and the reasons for modifications are further discussed in sections 6.3, 6.4 and 6.5. 

[ITU08] 

 

5.2.3 Downstream SXGTC framing principle 

 

The DS SXGTC frame (Figure 17) defines a periodic 125 µs time interval that consists of 

the variable length SXGTC frame overhead and the SXGTC frame payload sections. The 

SXGTC frame overhead provides a control channel for the PMD and the SXGTC layers. 

The SXGTC payload section carries SXGEM frames that encapsulate user and OMCI 

frames. The length of the SXGTC payload section depends on the length of the SXGTC 

frame overhead. The SXGTC frames are broadcasted contiguously in the DS and 

correspondingly received by all ONUs. The DS synchronization between the OLT and all 

ONUs is hence always maintained in normal operation. The SXGTC framing principle is 

identical to that of the GTC although the exact frame formats are different. The DS SXGTC 

frames are optimized for 8-byte-based data processing in both the OLT and the ONU. The 

differences and the reasons for difference are discussed in sections 6.6, 6.7 and 6.8. 

[ITU08] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. DS SXGTC framing principle.  

Adopted and modified from [ITU08, p. 31, Fig. 8-2]. 
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5.2.4 Upstream SXGTC framing principle 

 

The US transmission is different compared to the DS transmission. Since there is only one 

receiver at the OLT and all ONUs share the same wavelength over a single fiber in the 

feeder network, the transmitter of each ONU must be shut down whenever the ONU is not 

transmitting anything in order not to interfere with transmissions from other ONUs. 

Moreover, because of the transmitter shut down, synchronization with the OLT is lost. This 

on/off-like transmission by different ONUs is referred to as a burst mode transmission. 

Each ONU transmission time is correspondingly referred to as a burst. [Lam07, p. 33] 

 

To obtain synchronization at the OLT, each ONU must transmit a preamble in the 

beginning of each burst prior to transmission of actual data. The preamble provides the 

OLT receiver with a training sequence, based on which a phase lock can be achieved and 

synchronization performed. Moreover, guard intervals between the bursts are required in 

order for the OLT receiver to return to its initial state before the beginning of the next burst. 

[Lam07, p. 33] 

 

The US SXGTC frame shown in Figure 18 defines a periodic 125 µs time interval that 

consists of the bursts from all transmitting ONUs and guard intervals in between the bursts. 

The number of bursts and their lengths are defined by the Transmission Containers (T-

CONTs) that are assigned by the OLT to each ONU in the DS SXGTC frame overhead. 

The T-CONT concept will be discussed in more detail in section 5.3.2. [ITU08] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. The US SXGTC framing principle.  

Adopted and modified from [ITU08, p. 30, Fig. 8-1]. 
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Each burst in SXGPON consists of the US burst overhead and the US burst payload 

sections. Both the US burst overhead and payload sections are of variable length. Burst 

overhead embodies both the PMD and the SXGTC layer related information. The US burst 

payload section is composed of SXGEM frames. The US framing principle of SXGPON is 

similar to that of GPON [ITU08]. The more detailed structures of the US bursts of 

SXGPON however differ from those of GPON. The SXGPON US bursts are optimized for 

8-byte-based data processing in both the OLT and the ONU. The differences and the 

reasons for the changes are presented in sections 6.9 and 6.10. [ITU08] 

 

5.2.5 User and OMCI frame fragmentation 

 

In the G.984.3 recommendation [ITU08] the GTC layer supports user and OMCI frame 

fragmentation over several GEM frames (Figure 19) but there is no such functionality in 

the first implementation version of the SXGTC layer [Soi08]. In GPON, fragmentation 

allows for filling the payload sections of both the DS GTC frame and the upstream burst 

completely with SDUs independently of their lengths.  

 

 

 

 

 

 

 

 

 

Figure 19. User and OMCI frame fragmentation process in GPON. 

Adopted and modified from [ITU08, p. 43, Fig. 8-13b]. 

 

Due to the lack of frame fragmentation in SXGPON, each user and OMCI frame is 

encapsulated by exactly one SXGEM frame as demonstrated in Figure 16. The potential 

free space at the end of each DS SXGTC frame or upstream burst payload section is filled 

with idle SXGEM frames. Furthermore, the lack of frame fragmentation makes the SXGTC 

layer design easier but results in extra overhead that is discussed in sections 7.3.5 and 7.4.  

 

5.3 SXGPON Medium Access Control (MAC) and flow multiplexing 

5.3.1 In the downstream 

 

In the DS, the OLT broadcasts the SXGTC and SXGEM frames continuously to all ONUs. 

Correspondingly, all SXGTC and SXGEM frames are received by all ONUs. Each 

SXGEM frame is marked by the OLT with a special traffic identifier label referred to as 
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SXGEM Port-ID according to the destination ONU. The DS SXGEM frames for different 

ONUs are thus multiplexed in time based on the SXGEM Port-IDs, as shown in Figure 17. 

 

The SXGEM Port-ID labels are used to identify different SXGEM frame flows over the 

PON and thus represent logical connections between the OLT and the ONUs (Figure 20). 

Each ONU recognizes the SXGEM frames intended for it by inspecting the SXGEM Port-

ID labels. The SXGEM frames with inappropriate SXGEM Port-IDs that are not intended 

for the particular ONU are discarded. This flow multiplexing scheme is identical to that of 

GPON [ITU08].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Logical multiplexing in the DS based on SXGEM Port-ID. 

Adopted and modified from [ITU08, p. 9, Fig. 5-1]. 
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The US Bandwidth (BW) map field of each DS SXGTC frame contains the US 

transmission allocation information for each T-CONT for all ONUs and defines completely 

the next US SXGTC frame structure. Figure 21 illustrates this MAC process. The US burst 

overhead block added by the ONU in front of the T-CONTs is primarily used for 

synchronization. Furthermore, this OLT controlled transmission time allocation scheme 

guarantees that only one ONU at a time will access the medium avoiding the US burst 

collisions in normal operation. The MAC control principles presented here are identical 

with those described in the G.984.3 recommendation [ITU08]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. MAC process in SXGPON.  

Adopted and modified from [ITU08, p. 19, Fig. 7-4]. 

 

Each T-CONT defines a logical communication link between the OLT and an ONU in the 
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CONTs, as emphasized by Equation (4). T-CONTs carry different SXGEM frame flows 

identified by the SXGEM Port-ID tags. The same SXGEM Port-IDs are used in both the 

DS and the US transmissions and hence there is no ambiguity in logical mapping between 

the US and the DS flows. Figure 22 depicts the concept of the T-CONT and the logical 

flow multiplexing in the US. This US traffic multiplexing scheme is identical in both 

GPON [ITU08] and SXGPON. 
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There are five different types of T-CONTs defined in the G.984.3 recommendation [ITU08] 

and shown in Table 4. Each type is associated with a different US bandwidth allocation 

strategy. According to Table 4, these strategies vary from Static Bandwidth Allocation 

(SBA) to DBA discussed in section 2.4.1. Furthermore, in GPON the OLT may assign a 

variable number of T-CONT to each ONU and the type of a T-CONT can be changed by 

reconfiguration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Logical US multiplexing based on T-CONT Alloc-ID and SXGEM Port-ID. 

Adopted and modified from [ITU08, p. 10, Fig 5-2]. 
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Table 4. GPON T-CONT type summary. Copied from [ITU08, p. 28, Table 7-1]. 

Traffic descriptor 

component 
Type 1 Type 2 Type 3 Type 4 Type 5 

Fixed BW RF    RF 

Assured BW  RA RA  RA 

Maximum BW RM = RF RM = RA RM > RA RM RM ≥ RF  + RA 

Additional BW 

eligibility 
None None NA BE Any 

 

SXGPON will always allocate exactly two contiguous T-CONTs of Type 1 per ONU as 

shown in Figure 21-23: 

 

 1 T-CONT per ONU is allocated for the transmission of OMCI SXGEM frames 

only and is referred to as OMCI T-CONT in this text [Soi08]. 

 1 T-CONT per ONU is allocated for the transmission of user SXGEM frames only 

and is referred to as data T-CONT in this text [Soi08]. 

 

Type 1 T-CONT is characterized by a Fixed BW component only. This results in SXGPON 

having only SBAs. The allocations themselves are configurable and hence T-CONTs may 

generally be of variable length. The lack of DBA functions and the fixed number of T-

CONTs simplifies the SXGTC layer system design and implementation, as there is no need 

for intelligent DBA management capabilities in the OLT or the ONU. 

 

Furthermore, the G.984.3 recommendation [ITU08] defines that an ONU generates an US 

burst based on the T-CONT allocation by adding an US burst overhead block in front of the 

T-CONT. In case of two or more contiguous T-CONTs only one US burst overhead block 

is added in front of the T-CONTs. The SXGPON OLT allocates always two T-CONTs for 

each ONU and consequently each ONU generates only one US burst overhead block ahead 

of the T-CONTs as shown in Figure 21 and Figure 23.  

 

The relation between the T-CONT and the US burst is different in SXGPON (Figure 23) 

compared to the GPON [ITU08]:  

 

 In SXGPON data T-CONT consists of user SXGEM frames only. 

 In SXGPON OMCI T-CONT consists of OMCI SXGEM frames only. 

 

In the G.984.3 recommendation [ITU08] each T-CONT may consist of 

 

 US burst overhead sections, 

 US burst payload section containing: 

o GEM and OMCI frames, 
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o GEM frames only, 

o OMCI frames only, 

 a combination of the overhead and payload sections. 

 

The absence of additional burst overhead sections in the SXGPON T-CONTs is related to 

the lack of the DBA related signaling capabilities and optimization of the original GPON 

US burst overhead structure for 8-byte-based data processing. These modifications are 

discussed in sections 6.9 and 6.10. The detailed SXGPON US burst structure is presented in 

section 6.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Relation between T-CONT and the US burst in SXGPON. 
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process, where the delay from the OLT to the ONU and back to the OLT is measured. 

[Lam07, p. 33-35] 

 

First the OLT sends a ranging request to each ONU and waits for that ONU to respond with 

a ranging response. Based on the response time, the OLT computes equalization delay and 

communicates it to the ONU. The equalization delay is stored in the ONU and used to align 

that particular ONU to the common timing reference. After ranging has been completed no 

collisions occur within GPON or SXGPON systems. [Lam07, p. 33-35] 

 

5.4 User and Control/Management Planes of ONU SXGTC layer system 

 

The functionality of the ONU SXGTC layer system is described in the User Plane (U-

Plane) and in the Control/Management Plane (C/M-Plane), in chapters 5.4.1 and 5.4.2 

respectively. The U-plane in Figure 24 presents the SXGTC protocol layers, their 

functional blocks and interactions with clients from user frame processing. The C/M-Plane 

in Figure 25 presents the SXGTC protocol layers from the ONU management and control 

functions point of view. The SXGPON U- and C/M-Planes are similar to those of GPON 

[ITU08].  

 

5.4.1 ONU SXGTC layer system in User Plane 

 

User frame processing in the downstream: 

 

In the DS, the SXGTC payload gets separated from the SXGTC frame in the SXGTC 

Framing sub-layer and forwarded to the SXGEM TC adapter at the SXGTC Adaptation 

sub-layer. The SXGEM TC adapter delineates the individual SXGEM frames from the 

SXGTC payload. All SXGEM frames are filtered by the SXGEM Port-ID filter that allows 

only the SXGEM frames having appropriate SXGEM Port-IDs to propagate to the Ethernet 

adapter entity. An appropriate Port-ID indicates that the SXGEM frame is sent by the OLT 

to this particular ONU and encapsulates a user frame. Ethernet adapter de-encapsulates the 

SXGEM payload, adapts it to the format required by the Ethernet clients and forwards it to 

the appropriate Ethernet client. 

 

User frame processing in the upstream: 

 

In the US, the user frames coming from the Ethernet clients, are adapted to the SXGTC 

layer processing format in the Ethernet adapter. They are further encapsulated by the 

SXGEM frames and put in the data T-CONT queue in the SXGEM adapter. The Alloc-ID 

filter picks user SXGEM frames from the data T-CONT queue based on the Alloc-ID 

received from the OLT and maps them into the data T-CONT allocation. The data T-CONT 

allocation is in turn multiplexed into the US burst 
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Figure 24. U-Plane view on ONU SXGTC layer.  

Adopted and modified from [ITU08, p. 18, Fig. 7-3]. 

 

5.4.2 ONU SXGTC layer system in Control/Management Plane 

 

There are three control and management mechanisms defined by the G.984.3 GTC 

recommendation [ITU08] that are also implemented in SXGPON:  

 

 Embedded Operations, Administration and Maintenance (OAM), 

 Physical Layer Operations, Administration and Maintenance (PLOAM), 

 Optical Network Unit Management and Control Interface (OMCI). 

 

Embedded OAM processing in the downstream and the upstream: 
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predetermined field mapping in the SXGTC frame overhead. The main function of the 

Embedded OAM in SXGPON is the US bandwidth granting. The Embedded OAM 

processing is handled at the SXGTC Framing sub-layer. In GPON [ITU08], Embedded 

OAM has also other important signaling responsibilities that are related to DBA, 

transmission encryption and transmission power leveling functions. These are deprecated in 

SXGPON [Soi08]. The encryption is simply not required in the SARDANA demonstration 

network. Transmission power level adjustment is irrelevant since the envisioned 

transmission distances are expected to require maximum transmission power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. C/M-Plane view on ONU SXGTC layer.  

Adopted and modified from [ITU08, p. 17, Fig. 7-2]. 

 

PLOAM processing in the downstream and the upstream: 

 

The PLOAM provides a channel for all the other PMD and SXGTC layer information that 

is not that time critical. This channel communicates different control messages in a 

SXGPON Physical Media Dependent layer 

SXGTC  

   layer 
              SXGTC 

           Adaptation 

             sub-layer 

SXGEM TC adapter 

PLOAM client OMCI client 

Port-ID filter 

Embedded OAM 

Multiplexing according to location within burst or downstream SXGTC frame 

PLOAM partition SXGTC payload 

Alloc-ID filter 
                     SXGTC     

                                                                                                                    Framing  

       sub-layer 

OMCI adapter 

OMCI T-CONT 



 49 

dedicated SXGTC overhead field. The PLOAM messages are processed in the PLOAM 

block that is a client to the SXGTC Framing sub-layer. 

 

OMCI processing in the downstream: 

 

The SXGTC payload gets separated from the SXGTC frame in the SXGTC Framing sub-

layer and forwarded to the SXGEM TC adapter. The SXGEM TC adapter delineates 

individual SXGEM frames from the SXGTC payload. All SXGEM frames are filtered by 

the SXGEM Port-ID filter that allows only the SXGEM frames having an appropriate 

SXGEM Port-ID to propagate to the OMCI adapter. An appropriate SXGEM Port-ID 

indicates that the SXGEM frame is sent by the OLT to this particular ONU and contains an 

OMCI message. The OMCI adapter de-encapsulates the SXGEM frames. The OMCI 

frames are then adapted to the format required by the OMCI client and passed to the OMCI 

client. 

 

OMCI processing in the upstream: 

 

The OMCI frames coming from the OMCI client are adapted to the SXGTC layer 

processing format in the OMCI adapter. The OMCI frames are then forwarded to the 

SXGEM TC adapter that is responsible for SXGEM encapsulation and the OMCI T-CONT 

queuing. The Alloc-ID filter picks the OMCI SXGEM frames from the OMCI T-CONT 

queue based on the Alloc-ID received from the OLT and maps them into the OMCI T-

CONT allocation that is multiplexed into the US burst. The OMCI frame processing in both 

the US and the DS is very similar to the user frame processing over the SXGTC layer. This 

is a natural consequence of fact that both OMCI and user frames are SDUs with respect to 

SXGEM framing mechanism. 

 

5.5 Summary of SXGPON and GPON logical model differences 

 

Chapter 5 described the logical model of the SXGTC layer that is congruent with the 

G.984.3 recommendation [ITU08] on a high level of abstraction. This logical model was 

presented from the ONU perspective. The subjects covered were the SXGTC layer framing 

and multiplexing mechanisms, MAC, U-Plane and C/M-Plane. On the OLT side the 

protocol is very similar but contains somewhat different features related to network 

mastering functions.  

 

The two main logical model differences between GPON and SXGPON that came up in this 

chapter are user and OMCI frame fragmentation and T-CONT allocation policy. GPON 

[ITU08] divides OMCI and user frames into fragments to avoid empty space at the end of 

the DS GTC frame and the US T-CONT allocation. Each fragment is encapsulated with the 

GEM frame. SXGPON in contrast does not utilize user or OMCI frame fragmentation in 

the first implementation version [Soi08]. Some portion of the bandwidth efficiency is lost 
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because of this. On the other hand, SXGTC layer implementation gets easier, which is the 

primary goal of the SXGTC layer design. The impact on the bandwidth efficiency is 

investigated in sections 7.3.5 and 7.4. 

 

Furthermore, GPON specification [ITU08] allows for the dynamic T-CONT allocation and 

management, meaning that a T-CONT can be always created, modified and removed. In 

SXGPON, exactly two static T-CONTs are allocated for each ONU [Soi08]. The length of 

the allocations is configurable by the user. One T-CONT is intended for the OMCI 

messages and the other for the Ethernet user frames i.e. data traffic. This T-CONT 

allocation scheme considerably reduces the complexity of the SXGTC layer. 

 

The US burst, DS SXGTC and SXGEM frame structures are different from those of GPON 

[ITU08]. The difference and the drivers behind them are discussed in chapter 6. In addition, 

some GPON [ITU08] OAM related features are not implemented in SXGPON due to the 

fact that they are not needed in the demonstration network. The functional differences of 

the SXGTC layer compared to the standard GTC layer are listed below: 

 

 Only 10 Gbps DS transmission rate is supported in SXGPON [Soi08]. 

 Only 2.5 Gbps, 5 Gbps and 10 Gbps US transmission rates are supported in 

SXGPON [Soi08]. 

 Only Ethernet interface is supported at SXGPON UNI/SNI [Soi08]. 

 Only static T-CONT allocation scheme with two T-CONTs is used in SXGPON. 

The T-CONT allocation lengths are configurable but DBA is deprecated. One T-

CONT is intended for the OMCI frames and the other for the Ethernet user frames. 

[Soi08] 

 User and OMCI frame fragmentation is not used in the first implementation version 

of the SXGTC layer [Soi08]. 

 Forward Error Correction (FEC) is not used in the first implementation version of 

the SXGTC layer [Soi08]. 

 Transmission encryption in not used in SXGPON [Soi08]. 

 Transmission power leveling functions are not used in SXGPON [Soi08]. 

 Different GEM frame format referred to as SXGEM. 

 Different DS GTC frame format referred to as DS SXGTC frame. 

 Different US burst format. 
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6 SARDANA 10 Gigabit-capable Passive Optical Network 

Transmission Convergence Layer: System Design and 

Optimization 
 

The general FPGA design goals were listed in the section 4.4. All of these have an effect on 

the design in case of the SXGTC layer. The most critical aims for the SXGTC layer system 

design can be summarized as: 

 

 reduction of the design time, 

 achievement of the required performance and the correctness of logical function.  

 

The G.984.3 protocol is modified to support for the targeted transmission rates [Soi08]: 

 

 10 Gbps in the DS, 

 2.5 Gbps, 5 Gbps and 10 Gbps in the US.  

 

The modifications made to the GPON protocol are driven by the two goals presented 

above. The emphasis is to reduce coding effort and thus simplify the SXGTC layer as much 

as possible. The modifications are such that they take into account functional requirements, 

workload issues and FPGA related technological constraints associated with the SXGTC 

layer design. This chapter presents a balanced solution for the SXGTC layer that preserves 

relevant GPON related features yet enables relatively straightforward implementation.  

 

The structure of this chapter is such that in section 6.1, the exact transmission rates for the 

SXGPON system are defined. Section 6.2 describes the FPGA implementation clock 

frequency and the data path width selection for the design. Sections 6.3-6.5 discuss the 

applicability of the GEM frame format for the SXGTC layer implementation. Sections 6.6-

6.8 deal with the DS GTC frame structure suitability for the DS SXGTC framing. Sections 

6.9-6.10 in turn focus on the GPON US burst structure adequacy for the SXGTC layer 

implementation. Section 6.11 concludes discussion on the SXGTC layer design. 

 

6.1 Definition of transmission rates for SXGPON 

 

As described in sections 5.2.3 and 5.2.4, the US and the DS GTC as well as the US and the 

DS SXGTC frames are defined as periodic 125 µs structures. Furthermore, the G.984.3 

recommendation [ITU08] specifies the GTC frame to be composed of:  

 

 19440 bytes at 1.24416 Gbps transmission rate, 

 38880 bytes at 2.48832 Gbps transmission rate. 
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The interdependency of these parameters is represented by 

 

 
bits bytes  8

transmission rate (bps) =  = 
frame duration (s) frame duration (s)

. (5) 

 

Following the G.984.3 recommendation [ITU08], the base transmission rate of 2.48832 

Gbps is kept the same and the faster SXGPON transmission rates are obtained by 

multiplying the base rate of 2.48832 Gbps by a factors of two and four. According to 

Equation (5) this also increases the SXGTC frame length in bytes respectively. Table 5 

summarizes the SXGPON transmission rates and the corresponding SXGTC frame details. 

 

Table 5. SXGPON transmission rate and SXGTC frame details. 

Direction 
SXGTC frame 

duration 

SXGTC 

frame length 
Transmission rate 

US 125 µs 38880 bytes 2.48832 Gbps 

US 125 µs 77760 bytes 4.97664 Gbps 

US 125 µs 155520 bytes 9.95328 Gbps 

DS 125 µs 155520 bytes 9.95328 Gbps 

 

6.2 FPGA implementation clock frequency and data path width 

estimation 

 

The estimation of the SXGTC layer FPGA implementation maximum clock frequency and 

the data path width has an important role in the design and implementation of the protocol. 

This is due to the SXGTC layer specific implementation issues as will be seen in the 

following sections. The highest data rate of SXGPON is 9.95328 Gbps. The only way an 

FPGA can process such a high data rate is to parallelize the data to a wide enough data path 

as parallelization enables dropping the FPGA clock frequency to an achievable value as 

described in section 4.3.  

 

Furthermore, a real FPGA logic implementation clock frequency is highly dependent on the 

amount of logical operations needed to be performed during one clock cycle. The 

SXGPON protocol implementation involves a number of complicated and time consuming 

functions. It was estimated that a high frequency design will require a significant amount of 

optimizations and hence a relatively long design time, which is against the SXGTC layer 

design goals. It was further proposed that the best option for the SXGTC layer 

implementation with a reasonable logic design is to use the 64-bit wide data paths for a 

9.95328 Gbps rate. Using Equation (1), this results in FPGA’s clock frequency of 

 

 
9.95328 Gbps

clock frequency (Hz) =  = 155.52 MHz
64 bits

. (6) 
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The resulting highest data path implementation clock frequency with the 64-bit wide data 

path is thus 155.52 MHz and hence the implementation must support at least this clock 

frequency. The clock frequencies with the 64-bit data path widths for lower 4.97664 Gbps 

and 2.48832 Gbps data rates are obtained using (1) again. The resulting clock domains are 

summarized in Table 6. 

 

Table 6. SXGTC layer clock domains. 

Data rate Data path width Clock domain 

2.48832 Gbps 64 bits 38.88 MHz 

4.97664 Gbps 64 bits 77.76 MHz 

9.95328 Gbps 64 bits 155.52 MHz 

 

6.3 GEM frame structure 

 

The G.984.3 recommendation [ITU08] GEM frame format is presented in the Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. GEM frame format. 

Adopted and modified from [ITU08, p. 41, Fig. 8-11]. 

 

 Payload Length Indicator (PLI) defines the length of the GEM frame payload 

partition in bytes. Being a 12-bit number it limits the GEM payload to 2
12

-1 = 4095 

bytes. 

 

 GEM Port Identifier (GEM Port-ID) is a 12-bit indicator that is used to provide 

unique traffic identifiers and traffic multiplexing on the PON. 

 

 Payload Type Indicator (PTI) is used to provide additional information of the 

payload content type. 
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 Header Error Correction (HEC) provides error detection and correction functions 

for the header. It is a combination of Bose-Chaudhuri-Hocquenghem (BCH) (39, 

12, 2) code and a single parity bit. 

 

 GEM payload is of variable length, measured in bytes and restricted from above by 

the PLI field. 

 

Furthermore, an idle GEM frame is defined to have an all-zero PLI. As a consequence of 

this, the GEM payload is zero bytes long and the idle GEM frame is only 5 bytes long. 

 

6.4 Applicability of GEM frame structure in SXGPON 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. An arbitrary registered 8-byte-word on the 8-byte data path. 

 

For simpler illustration the 64-bit data path is referred to as a 8-byte data path in the rest of 

the text. Furthermore, each 8 bytes on the data path represent one entity that is referred to 

as an 8-byte-word. Figure 27 illustrates these concepts presenting an arbitrary data 

sequence seen on the 8-byte wide data path moving through the 8-byte register in time to 

the right. 

 

When delineating the GEM frames from the GTC payload partition in the ONU DS the 

beginning of the next GEM frame is not known until the header of the previous GEM frame 

is processed with HEC and PLI pointer extracted. The GEM header and hence the GEM 

idle frames are only 5 bytes long and are smaller compared to the 8-byte data path width.  
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A GEM frame is of variable length and may in general begin on any of the 8 bytes on the 8-

byte data path. It is hence possible to have pieces of up to three GEM frames in one 8-byte-

word on one clock cycle. The case with three GEM frames is the most complex case for the 

GEM frame delineation process. This case may take place for instance when there is an 8-

byte-word consisting of one last byte of the previous GEM frame 1, a current idle 5-byte 

GEM frame 2, and two first bytes of the next GEM frame 3 header (Figure 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Example of having 3 different GEM frames on the 8-byte data path during one 

clock cycle. 

 

All 8 bytes of the 8-byte-word need to be processed simultaneously and every word 

contiguously because GEM frames are sent as a continuous flow in the DS. The following 

actions must be performed in one clock cycle: 

 

 delineate the last byte of GEM frame 1, 

 start decoding GEM frame 2 header, 

 dtart decoding the next potential GEM frame 3, as the length of the GEM frame 2 

being decoded currently is unknown. 
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requirement to process two GEM frames with unknown lengths on the same clock cycle 

notably complicates the processing of the GEM frames in the DS. In the US, the process of 

packaging the GEM frames in the GTC payload partition is similar but reverse. This results 

in the complicated US implementation. Furthermore, exactly the same difficulties are 

encountered in the OLT. 

 

An alternative solution to the GEM frame delineation involves changing the data path 

width and the clock frequency but keeping the data rate fixed as described in section 4.3. 

To minimize the coding effort associated with the GEM frame delineation and processing, 

the GEM frames should be processed byte-by-byte i.e. on the 1-byte data path (Figure 29). 

Only then each GEM frame can be processed independently of its alignment on the data 

path. This approach however requires decreasing the data path width by a factor of 8, hence 

increasing the frequency by a factor of 8. Using Equation (1), this results in the FPGA 

clock frequency of  

 

 
9.95328 Gbps

clock frequency (Hz) =  = 1244.16 MHz
8 bits

. (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Example of processing data on 1-byte wide data path. 

 

This frequency is in fact much higher even than the theoretical FPGA clock frequency and 

hence unachievable. Using Equation (1) for 32-bit data path width results in FPGA clock 

frequency of 

 

 
9.95328 Gbps

clock frequency (Hz) =  = 311.04 MHz
32 bits

. (8) 

 

This frequency would decrease the complexity of the delineation function, as there could be 

only one beginning GEM frame on the data path during one clock cycle (Figure 30). 

However, the alignment would still be variable. Moreover, designing the SXGTC layer for 

higher frequencies than 155.52 MHz would probably require more design time due to 
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tighter timing requirements. It is also possible that GEM delineation function is not 

implementable at 311.04 MHz as the frequency might be too high for the complex logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Example of GEM frame processing on 4-byte wide data path. 

 

6.5 SXGEM frame structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Alignment of SXGEM on 8-byte wide data path. 
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Another way to simplify the 8-byte wide data path design and reduce the workload 

associated with coding is to extend the GEM header to occupy 8 bytes and the GEM frame 

length to be a multiple of 8 bytes. This new format is referred to as SXGEM. This way each 

SXGEM header and SXGEM frame is always equally aligned with respect to the 8-byte 

data path (Figure 31). The processing of each SXGEM frame header can be performed 

equally, minimizing the amount of the required logic. Possible unused payload bytes at the 

end of each SXGEM frame can be simply padded with zeroes to keep the alignment. 

 

Furthermore, the 8-byte SXGEM header permits the usage of 32-bit Cyclic Redundancy 

Check (CRC-32) instead of 13-bit GEM HEC code. The positive aspects of using CRC-32 

are: 

 

 GEM HEC code needs not be implemented, 

 CRC-32 implementation already exists. 

 

The re-use of the existing CRC-32 block in the design hence notably reduces coding effort. 

CRC-32 lacks error-correcting capabilities and hence the SXGEM frame error-tolerance is 

expected to be lower than that of the standard GEM frame. The resulting SXGEM frame 

format is presented in detail in Figure 32. The modified SXGEM frame encapsulation and 

validation mechanism has an impact on the SXGPON protocol overhead and throughput. 

These are studied in chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. SXGEM frame format. 

 

 Payload Length Indicator (PLI) defines the length of the SXGEM frame payload 

partition in bytes. Being a 12-bit number it limits the SXGEM payload to 2
12

-1 = 

4095 bytes. 

 

 SXGEM Port Identifier (SXGEM Port-ID) is a 12-bit indicator that is used to 

provide unique traffic identifiers and traffic multiplexing on the PON. 

 

 Payload Type Indicator (PTI) is used to provide additional information of the 

payload content type. The extension of the PTI field to 1 byte is related only to the 
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extension of the header. The additional 5 Most Significant Bits (MSBs) are simply 

zero-padded. 

 

 CRC-32 provides error detection functions for SXGEM frame header. 

 

 SXGEM payload is of variable length, measured in bytes and restricted from above 

by the PLI field. 

 

 Fill (0s) is a zero-padded field for making the SXGEM frame length divisible by 8 

bytes. The length of this field is 0-7 bytes depending on the SDU length. 

 

6.6 Downstream GTC frame structure 

 

The G.984.3 [ITU08] DS GTC frame structure is presented in Figure 33. Section 5.2.3 

describes the DS GTC frame to consist of the GTC frame overhead and payload partitions. 

The overhead partition is of variable length and is referred to as Physical Control Block 

downstream (PCBd). 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. GPON DS GTC frame structure. 

Adopted from [ITU08, p. 31, Fig. 8-3]. 

 

 Physical synchronization (Psync) is a 4-byte fixed pattern field that is used for DS 

synchronization. 

 

 Ident field is used to indicate usage of FEC in the DS and larger framing structures 

required by encryption system. Furthermore Ident field can be used for additional 

synchronization check. Ident is 4 bytes long. 

 

 PLOAM downstream (PLOAMd) field (Figure 34) is used for transmission of 

PLOAM messages. One PLOAM message occupies the entire PLOAMd field. This 

results in the fact that only one PLOAM message can be sent in one DS GTC frame. 

PLOAMd is a 13 bytes long field that consists of  
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o ONU identifier (ONU-ID) that occupies 1 byte. 

o Message identifier (Message-ID) that occupies 1 byte. 

o Message data that occupies 10 bytes. 

o 8-bit Cyclic Redundancy Check (CRC-8) field that is used to verify the 

correctness of the PLOAMd message. 

 

 

 

 

 

 

 

 

 

 

Figure 34. GPON PLOAMd and PLOAMu field. 

Adopted and modified [ITU08, p. 49, Fig. 9-1]. 

 

 8-bit Bit Interleaved Parity (BIP-8) field contains the 8-bit interleaved parity of 

all bytes transmitted since the last BIP-8. 

 

 Payload length downstream (Plend) shown in Figure 35 is a 4-byte field that is 

composed of three fields:  

 

o Bandwidth map length (Blen) that defines the length of the US BW map 

partition in terms of bandwidth map allocation structure count. Blen is 12-

bits long. 

o 12-bit zero-padded field that is part of Plend due to historical reasons. This 

field was used previously in G.984.3 [ITU04] to indicate the length of the 

ATM partition. The latest release of the G.984.3 recommendation [ITU08] 

deprecates the usage of ATM and pads this ATM field with zeros. 

o CRC-8 error-detecting code field that is used to verify the correctness of 

Plend field. 

 

As shown in Figure 33, there are two Plend fields in the PCBd. These fields carry 

exactly the same information. The repetition of Plend provides with better error 

tolerance and error-correction possibilities when processed interdependently. This 

dual Plend field transmission and processing scheme offers robustness against up to 

3 bit errors. If Blen field cannot be parsed successfully, the complete DS GTC 

frame is rejected. Due to this fact, the US allocation information is lost and no US 

bursts are sent during the next US GTC frame. 
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Figure 35. GPON Plend field.  

Adopted and modified from [ITU08, p. 34, Fig. 8-6]. 

 

 Upstream (US) Bandwidth (BW) map specifies the US transmission times for all 

T-CONTs of all ONUs in the PON and hence completely defines the next US GTC 

frame. 8 bytes are required to define the transmission time for each T-CONT. The 

length of the US BW map is thus always a multiple of 8 bytes and depends on the 

number of T-CONTs that are granted transmission time. Each allocation structure in 

the Figure 36 provides an ONU with all required information regarding a certain T-

CONT transmission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. GPON US bandwidth map structure. 

Adopted and modified from [ITU08, p. 34, Fig. 8-7]. 

 

o Each T-CONT is identified by a 12-bit Allocation Identifer (Alloc-ID) field 

described in section 5.3.2. 

o Flags field provides T-CONT related indicators. Flags field is 12 bits long. 

o StartTime is a 2-byte field that defines the beginning of the T-CONT 

transmission time in bytes. 
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o StopTime is a 2-byte field that defines the end of the T-CONT transmission 

time in bytes. 

o CRC-8 field protects each allocation structure. 

 

Downstream GTC payload partion 

 

The GTC payload partition carries GEM frames. The length of the GTC payload partition 

depends on the PCBd length and equals to whatever is left after the PCBd 

 

 GTC payload length = GTC frame length - PCBd length . (9) 

 

6.7 Applicability of downstream GTC frame structure in SXGPON 

 

The DS SXGTC frame is 155520 bytes long and hence divisible by 8 bytes. There is no 

conflict from the perspective of processing the entire frame on the 8-byte data path with the 

same alignment, as the length of the frame is divisible by 8 bytes. If the original GTC 

PCBd block structure is used in the DS SXGTC frame, there are no particular difficulties in 

PCBd processing as: 

 

 The beginning of every PCBd aligns evenly with the respect to the 8-byte data path 

because SXGTC frame length is divisible by 8 bytes. 

 The beginning of the variable part of PCBd i.e. the US BW map partition is always 

known. 

 The US BW map partition length is divisible by 8 bytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. DS SXGTC frame parsing with the original G.984.3 PCBd format. 
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8 bytes because the fixed part of GTC PCBd is 30 bytes long (Figure 33). The proposed 

SXGEM format does not fully fit into the SXGTC frame if the PCBd format is not altered 

to ensure the SXGTC payload divisibility by 8 bytes. 

 

The length of the US BW map is not known until both Plend fields are evaluated and 

checked with CRC-8. This requires Plend comparison logic with possible error-correcting 

measures and buffering of the US BW map and SXGTC payload partitions. A high-level 

view on the overall SXGTC frame parsing with the original GPON PCBd structure [ITU08] 

is shown in Figure 37. It is evident that the frame processing is not particularly 

straightforward due to dual Plend processing requirement and could be simplified in 

SXGPON. 

 

6.8 Downstream SXGTC frame structure 

 

The SXGTC frame structure is based on the SXGEM format and a modification of the 

GPON PCBd format to better suit the 8-byte-word-based processing. Increasing the length 

of the fixed PCBd part to be divisible by 8 bytes at the expense of the SXGTC payload 

partition:  

 

 allows usage of SXGEM frame format, 

 simplifies the DS SXGTC frame parsing. 

 

As a consequence, the fixed part of PCBd, the US BW map partition and the SXGTC 

payload partition can be always processed with the same alignment on the 8-byte data path. 

Further simplifications and modifications of PCBd were studied and carried out to achieve 

better suitability with 8-byte data path in SXGPON: 

 

 4-byte Psync and 4-byte Ident fields are not modified as they are used to provide 

synchronization. 

 

 BIP-8 is changed to 64-bit Bit Interleaved Parity (BIP-64), as it results in a more 

straightforward implementation for the 8-byte data path. 

 

 Plend is modified to be 2 bytes long (Figure 38). Since ATM is not used, the 12-bit 

zero fill field is completely removed. CRC-8 protection is also discarded. 

Furthermore, the mutual processing of the Plend fields is simplified to reduce 

coding effort by abolishing one of the Plend fields from the PCBd. This results in 

losing the 3-bit error-correcting capability provided by two copies of CRC protected 

Plend fields. The protection scheme used for Plend is discussed below. 
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Figure 38. SXGPON Plend field. 

 

 PLOAMd-Plend. Both GPON Plend and PLOAMd fields are protected by CRC-

8s. The first step in the processing of Plend and PLOAMd is similar in the sense 

that before processing of actual data the CRC-8s need to be calculated in order to 

find out whether the data is valid. If the CRCs are incorrect both fields are 

completely discarded. It is realized that coding effort can be further reduced by 

combining PLOAMd and Plend into one PLOAMd-Plend field protected by one 

CRC-32 field. The PLOAMd message is kept as defined in the G.984.3 

recommendation [ITU08]. 

 

Based on the experience gained from analyzing the original DS GTC frame PCBd 

structure the length of PLOAMd-Plend field is extended to 24 bytes to make it 

divisible by 8 bytes by inserting 6 fill bytes into it. The SXGPON PLOAMd-Plend 

field structure is demonstrated in Figure 39. If Blen field cannot be parsed 

successfully, the complete DS SXGTC frame is rejected. Due to this fact, the US 

allocation information is lost and no US bursts are sent during the next US SXGTC 

frame. The modified DS SXGTC frame validation mechanism affects the system 

throughput. The throughput of the SXGPON system with implemented frame 

modifications is examined in section 7.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. SXGPON PLOAMd-Plend field structure. 
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 Fixed part of the PCBd consists of Psync, Ident, PLOAMd-Plend and BIP-64 and 

is redefined to be 40 bytes long (Figure 40). The DS SXGTC frame PCBd is 

divisible by 8 bytes. 

 

 

 

 

Figure 40. SXGPON fixed part of the PCBd. 

 

 US BW map partition format is modified. In the G.984.3 [ITU08] both the 

StartTime and the StopTime pointers are 16-bit numbers limiting the US GTC 

frame to 2
16

-1 = 65535 bytes. Using (5), this is sufficient to address the US 

transmission rates only for up to 

 

 
65535 bytes  8

transmission rate = 4.1942 Gbps
125 s

. (10) 

 

The 9.95328 Gbps US transmission rate can be achieved using the 16-bit StartTime 

and StopTime fields if these are used to indicate 4-byte- or 8-byte-words. Since the 

data path in the US also needs to be 8-byte wide at 9.95328 Gbps, the StartTime and 

StopTime pointers in SXGPON indicate 8-byte-words instead of bytes. This change 

allows the logical US transmission rate to be for up to  

 

 
65535 8-byte words  64

transmission rate =  33.55392 Gbps
125 s

. (11) 

 

The lower transmission rates can be also processed in the 8-byte-word mode on the 

8-byte wide data path using lower clock frequencies. Furthermore, each allocation 

structure is protected by CRC-8 in the G.984.3 recommendation [ITU08]. Re-using 

the 4-byte CRC-32 at the expense of CRC-8 requires extending each allocation 

structure by 3 bytes. To further decrease the coding effort, the allocation structure is 

modified in the following way: 

  

o The length of each allocation structure is extended from 8 bytes to 16 bytes 

i.e two 8-byte-words. 

o Allocation information occupies the first 8-byte-word. 

o Original CRC-8 field in the first 8-byte word is zero-padded. 

o CRC-32 field occupies first 4 bytes of the second 8-byte-word. 

o The latter 4 bytes of the second 8-byte-word are zero-padded. 
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This new SXGPON US BW map scheme provides re-use of CRC-32 block and easy 

implementation for 8-byte processing and CRC-32 verification. The scheme is 

shown in the Figure 41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. SXGPON US bandwidth map format. 

 

 Downstream SXGTC frame in SXGPON is modified to have both the fixed and 

the variable part of PCBd to be divisible by 8 bytes (Figure 42). As a direct 

consequence of this the SXGTC payload partition is also divisible by 8 bytes. The 

length of the SXGTC payload partition is obtained using 

 

 SXGTC payload length = SXGTC frame length - PCBd length . (12) 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. DS SXGTC frame.  

 

The modified DS SXGTC frame structure has an impact on the SXGPON protocol 

overhead and throughput. These are studied in chapter 7. 
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6.9 GPON upstream burst structure 

 

The detailed figure of the G.984.3 [ITU08] GPON US burst structure with possible 

mandatory and optional overheads for 2 T-CONTs is presented in Figure 43. The optional 

fields are sent only if they are requested by the OLT. 

 

GPON upstream burst 

 

 

 

 

 

 

 

 

 

 

Figure 43. GPON US burst structure with 2 T-CONTs. 

Adopted and modified from [ITU08, p. 38, Fig. 8-8]. 

 

 Physical Layer Overhead upstream (PLOu) is a mandatory block for each US 

burst. It consists of: 

 

 variable length Preamble field, 

 variable length Delimiter field, 

 1-byte BIP-8 field, 

 1-byte ONU-ID field, 

 1-byte Indication (Ind) field used for signaling. 

 

 PLOAM upstream (PLOAMu) is an optional block with respect to each GPON 

US burst. The PLOAMu field is used to communicate PLOAM messages in the US 

direction. The block is identical to the PLOAMd block and contains only one 

PLOAM message. The PLOAMu length is 13 bytes consisting of 12-byte PLOAM 

message and 1-byte CRC-8 field (Figure 34). The PLOAMu is sent in the beginning 

of a T-CONT. In case of a multiple T-CONTs, the PLOAMu is sent in one T-CONT 

allocation only. The command to send the PLOAMu in specific allocation is 

communicated to the ONU by the OLT. 

 

 Dynamic Bandwidth Report Upstream (DBRu) is an optional block with respect 

to each T-CONT. It provides the OLT with the information about T-CONT traffic 

waiting at the ONU. The possible lengths of DBRu are 1, 2 and 4 bytes depending 

on the DBA report mode. 
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 Payload partition length is defined by Equation (13) as a function of the T-CONT 

StartTime and StopTime pointers and requested overheads.  

 

 Payload length = StopTime - StartTime + 1 - requested overheads  (13) 

 

T-CONT StartTime pointer indicates the beginning of the T-CONT and StopTime the end 

of the T-CONT, respectively. The StartTime points at the next byte after the PLOu. The T-

CONT may thus consist of the GTC payload only, requested overheads only or both. 

 

6.10 SXGPON upstream burst structure 

 

The modifications of the US GPON burst structure are based on the analysis and 

modifications introduced to the DS GTC frame as the US burst processing is very similar. 

It is understood from the DS analysis that each SXGPON US burst and its separately 

processed building blocks need to be divisible by 8 bytes. The GPON US burst structure 

was hence analyzed and modified to achieve better applicability with the 8-byte-word-

based data processing scheme. As the result of the analysis: 

 

 DBRu signaling blocks are not implemented. As discussed in section 5.3.2 

SXGPON will have static bandwidth allocations and hence the DBRu block is 

unnecessary. 

 

 PLOAMu-Ind. Following the component re-use approach utilized for the 

PLOAMd, the PLOAMu is also modified to be protected by CRC-32 instead of 

CRC-8. Since the DBRu is not implemented in SXGPON, the only optional and 

relatively small overhead left is the PLOAMu. The PLOAMu is made a mandatory 

block in SXGPON for each US burst because this reduces the implementation effort 

associated with burst building logic. The reduction in logic is achieved due to 

implementation of only one US burst structure compared to two alternative 

structures if the PLOAMu block was optional.  

 

Furthermore, 1-byte ONU-ID field of the GPON PLOu can be discarded as a direct 

consequence of the fact that PLOAMu message always includes ONU-ID. Another 

overhead of the GPON PLOu is 1-byte Ind field. It is combined with the PLOAMu 

field and protected with CRC-32. The resulting mandatory block is referred to as 

PLOAMu-Ind. Furthermore, the block is extended to 24 bytes to be divisible by 8 

bytes. The PLOAMu-Ind field is shown in Figure 44. Since PLOAMu-Ind is a 

mandatory block for every US burst, it is redefined to be a part of the PLOu 

structure instead of being a part of a T-CONT.  
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Figure 44. SXGPON PLOAMu-Ind field. 

 

 PLOu (Figure 45) is redefined to have a length that is a multiple of 8 bytes due to 

the fact that synchronizing to the 5 Gbps and 10 Gbps might require a longer 

preamble and the length of preamble may need to be extended. The PLOu structure 

is changed to consist of: 

 

 Variable length preamble,   the length of preamble and delimiter is  

 Variable length delimiter,       a multiple of 8 bytes  

 8-byte BIP-64 that compensates for BIP-8 like in the DS, 

 24-byte PLOAM-Ind. 

 

 

 

 

 

 

 

 

 

Figure 45. SXGPON PLOu field. 

 

 SXGTC payload is equivalent to a T-CONT due to including the PLOAMu in the 

PLOu and excluding the DBRu block. As shown in Figure 46, the T-CONT 

StartTime pointer points at the beginning of the SXGTC payload partition. 

Furthermore, each T-CONT is actually already obliged to be divisible by 8 bytes 

due to the redefinition of StartTime and EndTime pointers to indicate the first and 

the last 8-byte-words of the T-CONT, respectively. Consisting of the PLOu and two 

T-CONTs each US burst is thus divisible by 8 bytes. 

 

The modified US burst structure has an impact on the SXGPON protocol overhead and 

throughput that are studied in chapter 7. 
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Figure 46. SXGPON burst structure. 

 

6.11 Summary of SXGTC layer system design and optimization 

 

Chapter 6 described the design of the SXGTC layer system details from the SARDANA 

ONU perspective. As a result of the design, the SXGTC layer is able to logically support 

transmission at exactly: 

 

 9.95328 Gbps in the DS, 

 2.48832 Gbps, 4.97664 Gbps and 9.95328 Gbps in the US. 

 

To achieve these transmission rates and the targeted reduction of coding effort on the 

SXGTC layer implementation, the original DS GTC frame, GPON US burst and GEM 

frame structures defined by the G.984.3 recommendation [ITU08] were all modified. The 

resulting frame structures are referred to as DS SXGTC frame, SXGPON US burst and 

SXGEM frame, respectively. 

 

The approach used for frame structure modifications was based on the estimation of a 

suitable implementation clock frequency for the FPGA and a corresponding data path 

width. The data path was specified to be 64-bit i.e. 8-byte wide. All the modifications of the 

frame structures were targeted to make processing of the frames as straightforward as 

possible on the 8-byte wide data path. The SXGTC layer system is thus optimized for the 8-

byte data path processing. Since the OLT incorporates mostly the same functions as ONU, 

the reduction of the implementation effort in the OLT is expected to be close to that of the 

ONU.  
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7 SARDANA 10 Gigabit-capable Passive Optical Network 

Transmission Convergence Layer: Bandwidth Efficiency and 

Expected Throughput 
 

As comes across in the G.984.3 recommendation [ITU08] GPON protocol overhead 

heavily depends on the GPON system configuration parameters such as transmission rates, 

number of ONUs, number of T-CONTs, type of T-CONT used, as well as on the traffic 

Packet Size Distribution (PSD). The logical model of SXGPON is congruent with GPON 

and hence the SXGPON protocol overhead is affected by the same parameters.  

 

An assessment and comparison of GPON and SXGPON bandwidth efficiency can be made 

using similar system configuration parameters. In this chapter, the overhead of the 

SXGPON system is compared to the reference GPON system presented in [HSM06]. The 

reference GPON configuration parameters used in [HSM06] are:  

  

 1.25 Gbps transmission rate in the DS, 

 1.25 Gbps transmission rate in the US, 

 16 ONUs, 

 1 T-CONT per ONU, 

 even bandwidth allocations between all ONUs, 

 several specific frame lengths used for the evaluation of expected GEM overhead. 

 

The GPON reference system overhead is re-evaluated as the [HSM06] lacks some overhead 

calculation details. The re-evaluated results for GPON are compared to those obtained in 

[HSM06] to establish a baseline for the reliability of the results presented in this analysis.  

 

As of October 2009, there exists no specification on exact guard time, preamble and 

delimiter bits for 5 Gbps and 10 Gbps US transmission rates for SXGPON and hence the 

computation of protocol overhead for these data rates is not yet possible. The SXGPON 

reference system protocol overheads are estimated based on the reference GPON 

configuration using as similar as possible overhead affecting parameters to those used in 

[HSM06]:  

 

 10 Gbps transmission rate in the DS, 

 2.5 Gbps transmission rate in the US, 

 16 ONUs, 

 2 T-CONTs per ONU, 

 even bandwidth allocations between all ONUs, 

 same frame lengths as in [HSM06]. 
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Furthermore the SXGPON protocol overhead is evaluated for the SXGPON demonstration 

network scenario with: 

 

 10 Gbps transmission rate in the DS, 

 2.5 Gbps transmission rate in the US, 

 4 ONUs, 

 2 T-CONTs per ONU, 

 even bandwidth allocations between all ONUs, 

 same frame lengths as in [HSM06]. 

 

All three of the above configuration scenarios are assessed throughout this chapter. The US 

burst overheads are researched in section 7.1. The DS GTC and SXGTC frame overheads 

are examined section 7.2. GEM and SXGEM encapsulation overheads are studied in 

section 7.3. In section 7.4, the total DS and US overheads for both the GPON and 

SXGPON systems, analyzed and compared to those presented in [HSM06]. Section 7.5 

evaluates expected throughput of the SXGPON system with 10
-10

 BER. Section 7.6 

provides a summary of the overhead and throughput results obtained in this chapter. 

 

7.1 Upstream burst overhead 

 

In the GPON reference system [HSM06] general US burst overhead is assumed to consist 

of: 

 

 PLOu: guard time [ITU03], preamble [ITU03], delimiter [ITU03], BIP, ONU-ID 

and Ind fields. 

 GTC layer overhead: DBRu field. 

 

In the SXGPON reference system the US burst has a comparable structure: 

 

 PLOu: guard time [ITU03], preamble [ITU03], delimiter [ITU03], BIP-64 and 

PLOAMu-Ind. 

 SXGTC layer overhead: OMCI T-CONT allocation. 

 

As discussed in section 5.4.2, the OMCI channel is used for communication between the 

service defining layers above the SXGTC layer in SXGPON and is hence expected to have 

some grade of traffic. SXGPON allocates always two T-CONTs per ONU, one for the 

OMCI control messages and the other for the user frames transmission, thus separating 

control functions from data. Being dedicated to control, the OMCI T-CONT allocation is 

thus a part of the US overhead in SXGPON. 
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The exact bandwidth requirement for the OMCI T-CONT in SXGPON is not known. 

Initially, each OMCI T-CONT will be allocated for one OMCI message only. If this is not 

sufficient, the T-CONT allocation will be increased. Each OMCI SXGEM frame allocates 

exactly 56 bytes consisting of 8-byte SXGEM header and 48-byte OMCI message. The 

OMCI T-CONT is hence initially 56 bytes long.  

 

Only one T-CONT allocation is used per ONU in the GPON reference system [HSM06]. 

Both user frames and OMCI frames are sent in this T-CONT allocation. The impact of 

OMCI on overhead in this case is not discussed in [HSM06], probably due to the fact that 

exact overhead is very hard to estimate or the impact is relatively low. To make the 

calculations comparable with those presented in [HSM06], potential OMCI overhead of the 

GPON US burst is also neglected in this study. 

 

Table 7. US burst overheads. 

 
Reference  

1.25G DS / 1.25G US 

GPON 

Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

Number of ONUs 16 16 4 

GTC or SXGTC frame 19440 bytes 38880 bytes 38880 bytes 

Burst length 1215 bytes 2430 bytes 9720 bytes 

    

Guard time 4 bytes 8 bytes 8 bytes 

Preamble 5.5 bytes 13.5 bytes 13.5 bytes 

Delimiter 2.5 bytes 2.5 bytes 2.5 bytes 

BIP field 1 byte 8 bytes 8 bytes 

ONU-ID field 1 byte - - 

Ind field 1 byte - - 

PLOAMu-Ind - 24 bytes 24 bytes 

Total PLOu overhead 15 bytes 56 bytes 56 bytes 

    

DBRu 2 bytes - - 

OMCI T-CONT - 56 bytes 56 bytes 

Total GTC or SXGTC 

layer overhead 
2 bytes 56 bytes 56 bytes 

    

Total burst overhead 
17 bytes /  

1.40 % 

112 bytes /  

4.61 % 

112 bytes /  

1.15 % 

 

Both, the GPON and SXGPON US burst overheads can be computed by summing the 

relevant burst overhead components found in Table 7. The burst length is obtained by 

dividing the US GTC or SXGTC frame length by the number of ONUs in the system using 

Equation (14). Final burst overhead results are presented in Table 7. 

 

 



 74 

upstream GTC or SXGTC frame length
Burst length = 

number of ONUs
                                 (14) 

 

7.2 Downstream GTC and SXGTC frame overhead 

 

In the GPON reference system [HSM06], the DS GTC frame overhead consists of: 

 

 the fixed part of PCBd: PSync, Ident, PLOAMd, BIP, and two PLend fields, 

 the variable length US bandwidth map partition: each bandwidth map is 8 bytes 

long. 

 

In SXGPON the SXGTC frame overhead has a very similar composition:  

 

 the fixed part of PCBd: PSync, Ident, PLOAMd-PLend and BIP-64 fields, 

 the variable length US bandwidth map partition: each bandwidth map is 16 bytes 

long. 

 

Table 8. DS GTC and SXGTC frame overheads. 

 
Reference  

1.25G DS / 1.25G US 

GPON 

Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

DS GTC or SXGTC  

frame length 
19440 bytes 155520 bytes 155520 bytes 

PSync field 4 bytes 4 bytes 4 bytes 

Ident field 4 bytes 4 bytes 4 bytes 

PLOAMd field 13 bytes - - 

Plend fields 8 bytes - - 

PLOAMd-PLend field - 24 bytes 24 bytes 

BIP field 1 byte 8 bytes 8 bytes 

Total fixed  

PCBd overhead 
30 bytes 40 bytes 40 bytes 

    

Number of ONUs 16 16 4 

Number of T-CONTs 

per ONU 
1 2 2 

Length of 1 BW map 8 bytes 16 bytes 16 bytes 

US BW map partition 

overhead 
128 bytes 512 bytes 128 bytes 

    

Total DS GTC or 

SXGTC frame 

overhead 

158 bytes /  

0.81 % 

552 bytes /  

0.35 % 

168 bytes /  

0.11 % 
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The DS GTC and SXGTC frame overhead for both GPON and SXGPON can be computed 

using Equation (15) and Equation (16). The overhead components and the results are 

summarized in Table 8. 

 

 ONUs ofnumber     ONUper    CONTs-Tlength  mapBW   overheadpartition  mapBW  US  (15) 

 

 PCBd overhead = fixed PCBd overhead + US BW map partition overhead  (16) 

 

In the DS, each OMCI frame travels inside the GTC or SXGTC payload partition and 

cannot be assigned a specific bandwidth. For this reason, the effect of the OMCI channel in 

the DS is not taken into account in either GPON [HSM06] or SXGPON calculations. 

 

7.3 GEM and SXGEM user frame encapsulation overhead 

 

The effect of SXGEM encapsulation on the overhead compared to GEM encapsulation 

depends on the expected user frame length. The reference average frame lengths used in 

[HSM06] are 542 bytes for Microwave Communications, Inc. (MCI) backbone 

measurement and 655 and 511 bytes for the DS and the US Cable TV (CATV) frames, 

respectively. These frame lengths are also used for the estimation of GEM and SXGEM 

encapsulation overheads in the following calculations. GEM and SXGEM frame overheads 

are defined by Equation (17) and Equation (18), respectively. 

 

 lengthheader  GEM  overhead frame GEM  (17) 

 

 length pad zero length header  SXGEM  overhead frame SXGEM  (18) 

 

7.3.1 Length of GTC and SXGTC payload partitions 

 

In the DS, the GEM and SXGEM user frames are carried in the GTC and SXGTC payload 

partitions, respectively. Neglecting the OMCI channel overhead, the free space for the 

GEM and SXGEM user frames i.e. the GTC and SXGTC payload partition lengths are 

evaluated with system specific parameters gathered in Table 9 using Equation (9) and 

Equation (12), respectively. 

 

In the US, the SXGEM user frames have a dedicated data T-CONT allocation that is equal 

to the SXGTC payload partition in the US. The length of the data T-CONT depends on the 

burst overhead and the OMCI T-CONT length. In section 7.1, the OMCI T-CONT 

allocation was included in the US burst overhead. Due to this fact, the data T-CONT 

allocation length can be obtained using Equation (19) and SXGPON specific parameters 

listed in Table 9. 
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 Burst payload partition length = burst length - burst overhead  (19) 

 

Due to neglecting the effect of the OMCI channel in GPON case, the single GPON T-

CONT is considered being equal to the GTC payload partition that is correspondingly filled 

with GEM encapsulated user frames only. Hence, the length of this T-CONT can be 

computed by the same Equation (19) using GPON specific parameters of Table 9. 

 

Table 9. Common parameters used for GEM and SXGEM DS overhead evaluation. 

 
Reference  

1.25G DS / 1.25G US 

GPON 

Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

Number of ONUs 16 16 4 

DS GTC or SXGTC 

frame length 
19440 bytes 155520 bytes 155520 bytes 

DS GTC or SXGTC 

frame overhead 
158 bytes 552 bytes 168 bytes 

DS GTC or SXGTC 

payload length 
19282 bytes 154968 bytes 155352 bytes 

US GTC or SXGTC 

frame length 
19440 bytes 38880 bytes 38880 bytes 

US burst length 1215 bytes 2430 bytes 9720 bytes 

US burst overhead 17 bytes 112 bytes 112 bytes 

US GTC or SXGTC 

payload length 
1198 bytes 2318 bytes 9608 bytes 

GEM or SXGEM 

header length 
5 bytes 8 bytes 8 bytes 

Average frame length 

(MCI) [HSM06] 
542 bytes 542 bytes 542 bytes 

Average frame length 

(CATVd) [HSM06] 
655 bytes 655 bytes 655 bytes 

Average frame length 

(CATVu) [HSM06] 
511 bytes 511 bytes 511 bytes 

Average zero padded 

SXGEM payload length 

(MCI) 

- 544 bytes 544 bytes 

Average zero padded 

SXGEM payload length 

(CATVd) 

- 656 bytes 656 bytes 

Average zero padded 

SXGEM payload length 

(CATVu) 

- 512 bytes 512 bytes 
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7.3.2 GEM user frame encapsulation overhead 

 

The GEM encapsulation overhead consists of 5 header bytes per encapsulated frame. Since 

frame fragmentation is used in GPON, it is very likely that a user frame will be fragmented 

at the end of the GTC payload partition in both the DS and the US. In the frame 

fragmentation process, the user frame gets divided into two pieces – the first piece occupies 

the end of the current GTC payload partition and the second the beginning of the next GTC 

payload partition (Figure 19). The GTC payload partition must begin with GEM header and 

hence the fragmented user frame will be actually encapsulated with two GEM headers. The 

total GEM user frame overhead for the DS GTC frame or the US burst can be 

approximated using: 

  

 
overhead frame GEM length  frameuser  average

lengthheader  GEM -length  payload GTC
   payload GTCin  frames GEM , (20) 

 

 

  lengthheader  GEM   payload) GTCin  frames (GEMinteger an   toup round  overhead GEM or US DS . (21) 

 

7.3.3 SXGEM user frame encapsulation overhead 

 

The SXGEM encapsulation overhead consists of 8 header bytes per encapsulated frame and 

possible zero padding bytes. The average frame length from [HSM06] cannot be used 

directly because of zero padding. Instead, the average length frame is rounded up using 

Equation (22) to be divisible by eight bytes to reflect the average zero padded SXGEM 

payload length for SXGEM (Table 9). Since frame fragmentation is not used in SXGPON, 

the total SXGEM overhead for the SXGTC payload partition can be thus approximated 

using Equation (23) and Equation (24). 

 

 length) frameuser  (average bytes 8 of multiple a  toup round length  payload SXGEM  padded zero average  (22) 

 

 

 

lengthheader  SXGEM length  payload SXGEM padded zero average

length payload SXGTC

length frame SXGEM average

length payload SXGTC
  payload SXGTCin  frames SXGEM

 (23) 
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length frame SXGEM average 

 payload) SXGTCin  frames (SXGEM ofpart  decimal 

overhead frame SXGEM 

 payload) SXGTCin  frames (SXGEM ofpart integer   overhead SXGEM DSor  US

 (24) 

 

7.3.4 GEM and SXGEM user frame encapsulation overhead results 

 

Table 10. GEM and SXGEM DS overhead. 

 
Reference  

1.25G DS / 1.25G US 

GPON 

Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

DS GTC or SXGTC 

payload length 
19282 bytes 154968 bytes 155352 bytes 

GEM or SXGEM frames 

in GTC or SXGTC 

payload (MCI)  

35.24 280.74 281.43 

GEM or SXGEM frames 

in GTC or SXGTC 

payload (CATVd) 

29.21 233.39 233.96 

    

DS GEM or SXGEM 

overhead (MCI) 

180 bytes / 

0.93 % 

3208 bytes / 

2.06 % 

3050 bytes / 

1.96 % 

DS GEM or SXGEM 

overhead (CATVd) 

150 bytes / 

0.77 % 

2353 bytes / 

1.51 % 

2737 bytes / 

1.76 % 

 

 

Table 11. GEM and SXGEM US overhead. 

 
Reference  

1.25G DS / 1.25G US 

GPON 

Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

US GTC or SXGTC 

payload length 
1198 bytes 2318 bytes 9608 bytes 

GEM or SXGEM frames 

in GTC or SXGTC 

payload (MCI) 

2.18 4.20 17.41 

GEM or SXGEM frames 

in GTC or SXGTC 

payload (CATVu) 

2.31 4.46 18.48 

    

US GEM or SXGEM 

overhead (MCI) 

15 bytes / 

1.23 % 

150 bytes / 

6.17 % 

394 bytes / 

4.05 % 

US GEM or SXGEM 

Overhead (CATVu) 

15 bytes / 

1.23 % 

274 bytes / 

11.28 % 

410 bytes / 

4.22 % 
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Table 10 presents the GEM and SXGEM encapsulation overheads in the DS computed with 

the parameters found in Table 9 and Equations (17-24). Correspondingly, Table 11 shows 

the US GEM and SXGEM encapsulation overheads results obtained using Equations (17-

24) and parameters listed in Table 9. 

 

7.3.5 The effect of user frame fragmentation on SXGEM overhead 

 

As noted in section 5.2.5 the fragmentation is utilized in GPON whereas in SXGPON it is 

not. In SXGPON frame fragmentation was left out intentionally to reduce the amount of 

work associated with initial SXGTC layer implementation. This section provides an 

estimate for how large portion of bandwidth is in fact wasted due to the absence of frame 

fragmentation. The effect of fragmentation on the SXGPON protocol can be estimated 

applying the fragmented GEM overhead related Equations (20-21) for SXGEM along with 

the SXGPON parameters found in Table 9. The fragmented SXGEM overhead results are 

shown in Table 12 for the DS and in Table 13 for the US cases, respectively. 

 

Table 12. SXGEM overhead in the DS with frame fragmentation. 

 
Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

DS SXGTC payload length 154968 bytes 155352 bytes 

SXGEM frames in SXGTC payload (MCI)  280.72 281.42 

SXGEM frames in SXGTC payload (CATVd) 233.37 233.95 

   

DS SXGEM overhead (MCI) 
2248 bytes /  

1.45 % 

2256 bytes /  

1.45 % 

DS SXGEM overhead (CATVd) 
1872 bytes /  

1.20 % 

1872 bytes /  

1.20 % 

 

Table 13. SXGEM overhead in the US with frame fragmentation. 

 
Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

US SXGTC payload length 2318 bytes 9608 bytes 

SXGEM frames in SXGTC payload (MCI) 4.18 17.39 

SXGEM frames in SXGTC payload (CATVu) 4.44 18.46 

   

US SXGEM overhead (MCI) 
40 bytes /  

1.65 % 

144 bytes /  

1.48 % 

US SXGEM overhead (CATVu) 
40 bytes /  

1.65 % 

152 bytes /  

1.56 % 
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7.4 GPON and SXGPON protocol total overhead results 

 

The final GPON and SXGPON protocol overhead results are gathered in Table 14 and 

Table 15. Table 14 DS results are obtained by summing the overhead results of Table 8 and 

Table 10 together. Table 14 US results are obtained by summing the overhead results of 

Table 7 and Table 11 together. Table 15 results for the DS are obtained by summing the 

overhead results of Table 8 and Table 12 together. Table 15 results for the US are obtained 

by summing the overhead the results of Table 7 and Table 13 together. 

 

Table 14 reveals that the results obtained for GPON in this chapter are essentially the same 

as those presented in [HSM06] implying reliability of this overhead analysis. The slight 

difference in the DS is probably caused by a rounding error and the error in section 2.B.4 of 

[HSM06] where the fixed part of PCBd is computed to be 26 bytes instead of the standard 

30 bytes. 

 

Furthermore, Table 14 portrays that the DS GPON and the DS SXGPON protocol overhead 

percentage does not vary significantly in any of the presented system scenarios even 

without the SXGPON frame fragmentation capability, thus justifying the modification 

made to the DS GTC and GEM frames. Table 15 demonstrates that the effect of frame 

fragmentation on the SXGPON protocol overhead is rather small in the DS, hence 

justifying omission of fragmentation in the DS. This is an expected result because of the 

huge length difference between the DS SXGTC frame and the user frame of maximum 

length. The SXGTC frame is more than 100 times longer than an Ethernet user frame of 

maximum length i.e. 1518 bytes. Hence, the effect of frame fragmentation must be less 

than 1 %. 

 

Table 14. GPON and SXGPON total overhead. 

 

Reference  

1.25G DS / 

1.25G US 

GPON  

[HSM06] 

Reference  

1.25G DS / 

1.25G US 

GPON 

Reference 

10G DS / 

2.5G US 

SXGPON 

Test 

network 

10G DS / 

2.5G US 

SXGPON 

Number of ONUs 16 16 16 4 

     

Total DS overhead 

(MCI) 
1.71 % 1.74 % 2.42 % 2,07 % 

Total DS overhead 

(CATVd) 
1.55 % 1.58 % 1.87 % 1.87 % 

     

Total US overhead 

(MCI) 
2.63 % 2.63 % 10.78 % 5.21 % 

Total US overhead 

(CATVu) 
2.63 % 2.63 % 15.88 % 5.37 % 
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Contrary to the DS, Table 14 demonstrates that in the US there is a clear difference in the 

overheads. The US SXGPON protocol overhead of the reference system is approximately 

six times higher compared to the GPON reference system overhead with the CATVu 

packets. According to Table 15, the US SXGPON overhead would be only 2.5 times higher 

if frame fragmentation was utilized. The lack of frame fragmentation in the US hence 

significantly affects the SXGPON reference system overhead. 

 

The amount of the US overhead was initially estimated to be around 30 %. The US 

overhead is expected to be high because the US SXGTC frame is 4 times shorter than the 

DS SXGTC frame. Furthermore, the US SXGTC frame is divided into the bursts that all are 

likely to have a portion of unused bandwidth when frame fragmentation is not used. With 

16 ONUs, each US data T-CONT allocation was calculated to have a length of 2318 bytes 

(Table 9). The data T-CONT is in this case only around 1.5 times longer than the maximum 

length Ethernet user frame. The worst case for bandwidth loss results from the situation 

where there are 1517 bytes of free space at the end of the data T-CONT allocation and an 

SXGEM encapsulated maximum length Ethernet frame waiting to be transmitted. This 

situation results approximately in an overhead of 

 

 

SXGEM header 8 bytes + Ethernet packet 1518 bytes + 2 zero pad bytes
SXGPON upstream overhead = 

burst payload length 2318 bytes

1528 bytes
  0.659  66 %

2318 bytes

. (25) 

 

Table 15. Total SXGPON overhead with frame fragmentation. 

 
Reference 

10G DS / 2.5G US 

SXGPON 

Test network 

10G DS / 2.5G US 

SXGPON 

Number of ONUs 16 4 

   

Total DS overhead with 

fragmentation (MCI) 
1.80 % 1.56 % 

Total DS overhead with 

fragmentation (CATVd) 
1.56 % 1.31 % 

   

Total US overhead with 

fragmentation (MCI) 
6.26 % 2.63 % 

Total US overhead with 

fragmentation (CATVu) 
6.26 % 2.72 % 

 

 

If SXGPON was aimed to support 64 ONUs in the SARDANA network, the lack of user 

frame fragmentation in the US would completely destroy the system performance. The 
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SXGPON protocol will however be used only in the SARDANA test and demonstration 

network with at maximum 4 ONUs and the US protocol overhead for this case is estimated 

to be around 5,5 % without frame fragmentation (Table 14). This justifies the US burst and 

GEM frame modifications and the omission of frame fragmentation in the US. 

 

7.5 Expected throughput of SXGPON 

 

The BER of optical budgets in GPON should be no worse than 10
-10

 [ITU03]. The 

SARDANA network does not have a strict Bit Error Rate (BER) requirement since 

different optical link budgets and transmission schemes are studied. However, it is 

reasonable to assume that BER in the SARDANA network should be less or equal to the 

standard GPON BER. Consequently, the throughput analysis in this section is limited to 

10
-10 

BER. 

 

Both the DS and the US SXGTC frames are dropped only if the DS SXGTC frame Plend 

field is received erroneously. In SXGPON, the Plend field is a part of the PLOAMd-Plend 

field which is protected by CRC-32 (Figure 39). However, the actual PLOAMd-Plend field 

region that is vulnerable to bit errors consists of the first 20 bytes only. The 4 last bytes are 

padded with zeroes and are not protected by CRC-32. The probability of receiving an 

erroneous 20-byte PLOAMd-Plend region with 10
-10

 BER is 

 
(20 bytes  8 bits)

Errored PLOAMd-Plend SXGTC drop rate
1 (1 BER) .P R

                          
(26) 

 

The SXGEM frame is dropped if its header is received erroneously. Furthermore, the 

following SXGEM frame is also dropped. Synchronization is restored after two dropped 

SXGEM frames. This is a direct consequence of the SXGEM synchronization state 

machine shown in Figure 47. The exception is the last SXGEM frame of the SXGTC 

payload partition. If the header of the last SXGEM frame is received incorrectly, then only 

this frame is dropped. This is due to the fact that SXGEM synchronization is automatically 

restored at the beginning of the next SXGTC payload partition. The probability of receiving 

an erroneous SXGEM header is 

 

Errored SXGEM header 1 or 2 dropped SXGEM frames SXGEM drop rate 1

(8 bytes  8 bits)

1 (1 BER) .P P R
           

(27) 

 

The drop rate of SXGEM frames according to Figure 47 synchronization state machine is 

 

SXGEM drop rate 2 SXGEM drop rate 1
2 .RR

                                            
(28) 

 
The expected value of correctly received SXGEM frames in an SXGTC frame is obtained 

using Equation (29), where nSXGEM frames is the number of the SXGEM frames that are dropped 
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according to Figure 47 synchronization state machine and mSXGEM frames is the number of the 

SXGEM frames that are dropped according to the erroneous header only. 

 

SXGEM frames in SXGTC frame SXGEM drop rate 2 SXGEM frames SXGEM drop rate 1 SXGEM frames
(1 (1) )R n R mE

      
(29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47. SXGEM synchronization state machine. 

Adopted and modified from [ITU08, p. 42, Fig. 8-12]. 

 
The expected value of correctly received user frame bytes in one SXGTC frame is 

 

user frame bytes in SXGTC frame SXGTC drop rate SXGEM frames in SXGTC frame expected user frame length in bytes
(1 ) .E R E L

      
(30) 

 

Table 16. Expected throughput of SXGPON. 

 

Throughput in  

10G DS / 2.5G US 

SXGPON test 

network with 

BER=10
-10

 

Throughput in 

10G DS / 2.5G US 

SXGPON test 

network with 

BER=0 

Throughput 

difference between 

an ideal channel 

and a channel 

with BER=10
-10

 

Number of ONUs 4 4 4 

    

Total DS overhead 

(MCI) 
9 747 327 720 bps 9 747 328 000 bps 2.88∙10

-8
 

Total DS overhead 

(CATVd) 
9 767 359 719 bps 9 767 360 000 bps 2,88∙10

-8
 

    

Total US overhead 

(MCI) 
2 358 783 933 bps 2 358 784 000 bps 2.84∙10

-8
 

Total US overhead 

(CATVu) 
2 354 687 933 bps 2 354 688 000 bps 2.84∙10

-8
 

 

Pre-Sync 

state 

Sync 

state 

Hunt 

state 

One incorrect 

SXGEM header 

One correct 

SXGEM header 

One incorrect 

SXGEM header 

One correct 

SXGEM header 
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The expected throughput is 

 

user frame bytes in SXGTC frame

Throughput

8 bits

SXGTC frame duration
.

E
E

                                      
(31) 

 

Table 16 summarizes the throughput results obtained for the US and the DS in SXGPON 

with an error-free channel and a channel having 10
-10 

BER using Equations (26-31) and 

reference values from Table 9, Table 10 and Table 11. The expected throughput results 

presented in Table 16 indicate that a channel with 10
-10

 BER is estimated to decrease the 

throughput by a magnitude of 10
-8

 compared to the ideal channel throughput. The results 

are considered acceptable for the SXGPON system thus justifying the PLOAMd-Plend 

field and GEM header modifications. 

 

7.6 Summary of SXGPON bandwidth efficiency and throughput 

analysis 

 

This chapter presented a detailed comparison of the GPON and SXGPON protocol 

overheads. The results of the comparison show that the modifications made to the DS GTC 

frame, US burst and GEM frames had very little impact on the bandwidth efficiency of the 

SXGPON system. The SXGPON protocol bandwidth efficiency suffers mostly from the 

lack of frame fragmentation in the US. 

 

However, due to the utilization of SXGPON system only in the SARDANA test and 

demonstration network with 4 ONUs, the lack of frame fragmentation imposes no real 

issue. SXGPON is still able to deliver very high bandwidth efficiency, around 98 % in the 

DS and around 94.5 % in the US for the demonstration and test network.  

 

Furthermore, a channel with 10
-10

 BER is estimated to have only minor effect on the 

SXGPON system throughput in both the DS and the US. A channel with 10
-10

 BER is 

estimated to lower the throughput by a factor of 10
-8

 relative to the ideal channel 

throughput justifying the PLOAMd-Plend field and the GEM header modification. The 

trade-off between the protocol overhead and the targeted straightforward implementation of 

the protocol is hence considered welcome.  

 

The GPON overhead results obtained in this chapter are very similar to those obtained in 

[HSM06]. The SXGPON overhead and bandwidth efficiency were computed using similar 

formulas applied to SXGPON case and hence is the presented results are considered 

reliable. The expected throughput results are also considered reliable as they are of the 

expected magnitude. 
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8 SARDANA 10 Gigabit-capable Passive Optical Network 

Transmission Convergence Layer: Implementation for 

Optical Network Unit 
 

In this chapter, the first ONU SXGTC layer implementation version is described in terms of 

functional blocks. The ONU SXGTC layer system was implemented in Verilog HDL 

according to system description and specifications presented in chapters 5 and 6 based on 

the 64-bit wide data path approach. Sections 8.1 and 8.2 focus on describing the structural 

and functional implementation. Section 8.3 presents simulation environment and simulation 

results. Section 8.4 gives a short overview of the implementation results. 

 

8.1 ONU SXGTC implementation environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. ONU SXGTC layer FPGA implementation environment. 

 

The FPGA implementation environment of the ONU SXGTC layer is depicted in Figure 

48. The ONU_SXGTC_LAYER module implements the ONU SXGTC layer. Furthermore, 

Figure 48 reflects the fact that the SXGPON ONU has three 10/100/1000 Mbps Ethernet 

ONU SXGTC layer module ONU_SXGTC_LAYER 

OMCI 

client 
PLOAM 

client 

10/100/1000 

Mbps 

Ethernet MAC 

client 1 

9.95328 Gbps 

optical receiver 

2.48832 Gbps 

optical transmitter 

10/100/1000 

Mbps 

Ethernet MAC 

client 2 

10/100/1000 

Mbps 

Ethernet MAC 

client 3 

FPGA 

10/100/1000 

Mbps 

Ethernet PHY 

client 1 

10/100/1000 

Mbps 

Ethernet PHY 

10/100/1000 

Mbps 

Ethernet PHY 

 

16-to-64 deserializer 64-to-16 serializer 

1-to-16 deserializer 16-to-1 serializer 

SXGPON ONU 
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connections on the UNI. The Ethernet MAC functions are implemented in the FPGA 

whereas the Ethernet Physical layer (PHY) blocks are external to the FPGA.  

 

As of December 2009, ONU_SXGTC_LAYER is able to operate on: 

 

 9.95328 Gbps in the DS, 

 2.48832 Gbps in the US. 

 

On the receive side of the PON section interface the ONU_SXGTC_LAYER module is 

connected to the 9.95328 GHz optical receiver via the 1-to-16 and 16-to-64 deserializers. 

On the transmit side of the PON section interface the ONU_SXGTC_LAYER module is 

connected to the 2.48832 GHz optical transmitter using the 64-to-16 and 16-to-1 serializers, 

respectively. The serialization and deserialization are performed in two steps because the 

interfaces of the FPGA used for implementation cannot support 9.95328 Gbps rate. 
 

8.2 ONU SXGTC layer Verilog HDL modules 

8.2.1 ONU_SXGTC_LAYER module 

 

ONU_SXGTC_LAYER is a top level structural HDL module that defines the SXGTC 

protocol interfaces shown in Figure 48 and binds the following lower level architectural 

HDL modules together: 

 

 ONU_SYNC, 

 ONU_DESCRAM, 

 SXGTC_FRM_PARSER, 

 USBWMAP_PROCESSOR, 

 SXGEM_DELINEATOR, 

 SXGEM_PORT_ID_MUX, 

 OMCI_ADAPTER_DS, 

 ETH_ADAPTER_DS, 

 OMCI_ADAPTER_US, 

 ETH_ADAPTER_US, 

 BURST_TX, 

 ONU_SCRAM, 

 ONU_REGS. 

 

The following sections describe the functionality of each Verilog HDL module. The input 

and the output relationships between all modules are demonstrated in Figure 49. 
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 Figure 49. ONU_SXGTC_LAYER functional block diagram. 

 

8.2.2 ONU_SYNC module 

 

Main input:  
 

 The DS signal received from the optical receiver. 

 

Functionality: ONU_SYNC is the DS SXGTC frame and the US burst synchronization 

module that has the following functions:  

 

 DS synchronization is performed based on the SXGTC frame PCBd PSync field 

and a synchronization state machine described in the G.984.3 recommendation 

[ITU08] that is also shown in Figure 50.  

 The DS SXGTC frame is aligned to the 8-byte data path. 
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 US synchronization is performed based on the DS SXGTC frame PCBd PSync field 

and the equalization delay communicated by the OLT in accordance with the 

G.984.3 recommendation [ITU08]. 

 
Figure 50. GPON and SXGPON DS synchronization state machine. 

Copied from [ITU08, p. 32, Fig. 8-4]. 

 

Main outputs:  

 

 Aligned and scrambled DS SXGTC frames to the ONU_DESCRAM module. 

 US burst synchronization pulse to the BURST_TX module. 

 

8.2.3 ONU_DESCRAM module 

 

Main input:  

 

 Scrambled DS SXGTC frames from the ONU_SYNC module. 

 

Functionality: ONU_DESCRAM implements the DS SXGTC frame descrambler. 

 

 ONU_DESCRAM takes advantage of 8-bit scrambler implementation of scrambling 

polynomial described in the G.984.3 recommendation [ITU08]. This 8-bit scrambler 

is used to provide the same 8-bit scrambling pattern for each byte of the 8-byte-

word. 

 

Main output:  

 

 Descrambled DS SXGTC frames to the SXGTC_FRM_PARSER module. 
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8.2.4 SXGTC_FRM_PARSER module 

 

Main input:  

 

 Descrambled DS SXGTC frames from the ONU_DESCRAM module. 

 

Functionality: SXGTC_FRM_PARSER is the DS SXGTC frame parsing module that 

incorporates the following functions: 

 

 Parsing of the DS SXGTC frame into the BIP-64, Blen, PLOAMd, US BW map and 

SXGTC payload partitions. 

 Verification of the Plend-PLOAMd CRC-32 field. 

 Processing of the BIP-64 field. 

 

Main outputs:  
 

 PLOAMd messages that are written into the PLOAMd FIFO that serves as a DS 

interface to the PLOAM entity found outside the SXGTC layer. 

 US BW map partitions that are forwarded to the USBWMAP_PROCESSOR module. 

 SXGTC payload partitions that are forwarded to the SXGEM_DELINEATOR 

module. 

 

8.2.5 USBWMAP_PROCESSOR module 

 

Main input:  
 

 US BW map partitions from the SXGTC_FRM_PARSER module. 

 

Functionality: USBWMAP_PROCESSOR is the US bandwidth map processing module 

that implements the following functions: 

 

 Verification of the correctness of each bandwidth map in the US BW map partition 

using CRC-32 and discarding of erroneous maps. If either or both of data and 

OMCI T-CONT bandwidth maps are erroneous the complete allocation structure is 

discarded. 

 Filtering of the bandwidth maps based on the Alloc-IDs. Implementation chooses 

valid bandwidth maps associated with the data T-CONT and the OMCI T-CONT 

intended for the particular ONU and discards the irrelevant bandwidth maps.  
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Main outputs:  

 

 Start time for the OMCI T-CONT to the BURST_TX module. 

 End time for the OMCI T-CONT to the BURST_TX module. 

 Start time for the data T-CONT to the BURST_TX module. 

 End time for the data T-CONT to the BURST_TX module. 

 

8.2.6 SXGEM_DELINEATOR module 

 

Main input:  
 

 SXGTC payload partitions from the SXGTC_FRM_PARSER module. 

 

Functionality: SXGEM_DELINEATOR is the DS SXGEM frame delineation module that 

implements the following functions:  

 

 The SXGEM frames are parsed from the SXGTC payload partition based on the 

SXGEM header PLIs and a synchronization state machine described in the G.984.3 

recommendation [ITU08]. The correctness of the SXGEM header is verified based 

on CRC-32 instead of standard GEM HEC [ITU08]. The SXGEM frames with 

erroneous SXGEM headers are discarded. The adopted state machine is shown in 

Figure 47. 

 The idle SXGEM frames are recognized and discarded. 

 

Main output:  

 

 SXGEM frames to the SXGEM_PORT_ID_MUX module. 

 

8.2.7 SXGEM_PORT_ID_MUX module 

 

Main input:  
 

 SXGEM frames from the SXGEM_DELINEATOR module. 

 

Functionality: SXGEM_PORT_ID_MUX is the DS SXGEM frame filtering module that 

incorporates the following functions:  

 

 Only the OMCI frames intended for the particular ONU are passed through to the 

OMCI_ADAPTER_DS module. Filtering is based on the SXGEM Port-ID. 
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 Only the data SXGEM frames intended for the particular ONU are passed through 

to the ETH_ADAPTER_DS module. Filtering is based on the SXGEM Port-ID. 

 All the other SXGEM frames are discarded.  

 The physical Ethernet client port number is generated based on the SXGEM Port-

ID. 

 

Main outputs: 

 

 OMCI SXGEM frames to the OMCI_ADAPTER_DS module. 

 Data SXGEM frames to the ETH_ADAPTER_DS module. 

 Physical Ethernet port number to the ETH_ADAPTER_DS module. 

 

8.2.8 OMCI_ADAPTER_DS module 

 

Main input:  
 

 OMCI SXGEM frames from the SXGEM_PORT_ID_MUX module. 

 

Functionality: OMCI_ADAPTER_DS is the DS OMCI SXGEM frame adaptation module 

that implements the following functions: 

 

 OMCI frame is de-encapsulated from the SXGEM frame. 

 OMCI frame is re-arranged into the format required by the OMCI entity. 

 

Main output:  

 

 OMCI frames to the OMCI client outside the SXGTC layer. 

 

8.2.9 ETH_ADAPTER_DS module  

 

Main inputs: 

  

 Data SXGEM frames from the SXGEM_PORT_ID_MUX module. 

 Physical Ethernet port number from the SXGEM_PORT_ID_MUX module. 

 

Functionality: ETH_ADAPTER_DS is the DS data SXGEM frame adaptation module that 

implements the following functions: 

 

 Ethernet frames are de-encapsulated from the SXGEM frame. 
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 Ethernet frame are re-arranged into the format required by the 10/100/1000 Mbps 

Ethernet client. 

 De-encapsulated Ethernet frames are routed to the correct Ethernet client based on 

the physical Ethernet port number. 

 

Main outputs:  
 

 Ethernet frames to the 10/100/1000 Mbps Ethernet client 1 outside the SXGTC 

layer. 

 Ethernet frames to the 10/100/1000 Mbps Ethernet client 2 outside the SXGTC 

layer. 

 Ethernet frames to the 10/100/1000 Mbps Ethernet client 3 outside the SXGTC 

layer. 

 

8.2.10 OMCI_ADAPTER_US module 

 

Main input:  

 

 OMCI frames from the OMCI client outside the SXGTC layer. 

 

Functionality: OMCI_ADAPTER_US is the US OMCI frame adaptation and encapsulation 

module that implements the following functions: 

 

 OMCI frames are acquired from the OMCI client. 

 OMCI frames are re-arranged to fit into the SXGPON 8-byte wide data path. 

 OMCI frames are encapsulated with the SXGEM header. The SXGEM Port-ID is 

generated based on the information found inside the OMCI frame. 

 OMCI SXGEM frames are written into the OMCI T-CONT FIFO. 

 

Main output:  

 

 OMCI SXGEM frames into the OMCI T-CONT FIFO. 

 

8.2.11 ETH_ADAPTER_US module 

 

Main inputs:  

 

 Ethernet frames from the 10/100/1000 Mbps Ethernet client 1 outside the SXGTC 

layer. 
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 Ethernet frames from the 10/100/1000 Mbps Ethernet client 2 outside the SXGTC 

layer. 

 Ethernet frames from the 10/100/1000 Mbps Ethernet client 3 outside the SXGTC 

layer. 

 

Functionality: ETH_ADAPTER_US is the US Ethernet frame adaptation and encapsulation 

module that implements the following functions: 

 

 Ethernet frames are acquired from the 10/100/1000 Mbps Ethernet client based on 

the physical Ethernet port number assigned by the round robin scheduler. 

 Ethernet frames are re-arranged to fit into the SXGPON 8-byte wide data path. 

 The length of the Ethernet frame is computed. 

 Ethernet frames are encapsulated with the SXGEM frames. The SXGEM Port-ID is 

based on the physical Ethernet port number and the ONU-ID. The SXGEM PLI is 

based on the computed Ethernet frame length. 

 The resulting data SXGEM frame is written into the DATA T-CONT FIFO. 

 

Main output:  
 

 Data SXGEM frames into the DATA T-CONT FIFO. 

 

8.2.12 BURST_TX module 

 

Main inputs: 

 

 US burst synchronization pulse from the ONU_SYNC module. 

 Start time for the OMCI T-CONT from the USBWMAP_PROCESSOR module. 

 End time for the OMCI T-CONT from the USBWMAP_PROCESSOR module. 

 Start time for the data T-CONT from the USBWMAP_PROCESSOR module. 

 End time for the data T-CONT from the USBWMAP_PROCESSOR module. 

 PLOAMu messages from the PLOAMu FIFO that serves as the US interface from 

the PLOAM client found outside the SXGTC layer. 

 OMCI SXGEM frames from the OMCI T-CONT FIFO. 

 Data SXGEM frames from the DATA T-CONT FIFO. 

 

Functionality: BURST_TX is the US burst building and transmitting module that: 

 

 Computes and controls the US burst transmission time. 

 Builds the burst overhead consisting of the preamble, delimiter, embedded OAM 

and PLOAMu partitions. 
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 Builds the burst OMCI T-CONT allocation partition based on the OMCI T-CONT 

allocation start and end times provided by the USBWMAP_PROCESSOR and the 

OMCI SXGEM frames found in the OMCI T-CONT FIFO. 

 Builds the burst data T-CONT allocation partition based on the data T-CONT 

allocation start and end times provided by the USBWMAP_PROCESSOR and the 

data SXGEM frames found in the DATA T-CONT FIFO. 

 Fills the OMCI and data T-CONT allocation partitions with the idle SXGEM 

frames if needed. 

 

Main outputs: 

  

 The US bursts to the ONU_SCRAM module. 

 Transmit enable/disable signal to the optical transmitter. 

 

8.2.13 ONU_SCRAM module 

 

Main input:  

 

 The US bursts from the BURST_TX module. 

 

Functionality: ONU_SCRAM implements the US burst scrambler. 

 

 ONU_SCRAM takes advantage of 8-bit scrambler implementation of scrambling 

polynomial described in the G.984.3 recommendation [ITU08]. This 8-bit scrambler 

is used to provide the same 8-bit scrambling pattern for each byte of the 8-byte-

word. 

 

Main output:  

 

 Scrambled US bursts to the optical transmitter. 

 

8.2.14 ONU_REGS module 

 

ONU_REGS is a module that consists of memory mapped global registers used for the 

ONU control and statistics functions. The registers are accessible via the register read and 

write interface. This configuration interface is not a part of the SXGTC layer and hence the 

related details are not discussed in this work. The configuration registers themselves 

however are an essential part of the ONU_SXGTC_LAYER. The following SXGTC layer 

related registers are accessible: 
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 preamble registers (read/write), 

 delimiter registers (read/write). 

 ONU-ID register (read/write), 

 BIP-64 register (read). 

 

8.2.15 ONU activation state machine module 

 

The ONU activation state machine exchanges PLOAM messages with the OLT. The 

PLOAM processing entity is implemented in software. For this reason, the activation state 

machine of the SXGPON ONU is also implemented in software. Furthermore, in 

commercial GPON, the activation state machine provides the ONU state related 

information for the network management software. The software implementation of this 

state machine can hence be considered more adequate than the HDL-based approach. The 

ONU activation state machine is beyond the scope this thesis due to its software 

implementation. 

 

8.3 ONU SXGTC layer simulation and implementation verification  

 

ONU_SXGTC_LAYER design process was performed according to the FPGA design flow 

described in section 4.5 and shown in Figure 14. The test bench used for the RTL design 

simulations is a combination of SXGTC, SXGEM, Ethernet, OMCI and PLOAM frame 

generator. The verification in simulations was performed by observing the 

ONU_SXGTC_LAYER module outputs for specific input patterns designed to reveal as 

many potential functionality errors as possible. The simulations were successfully passed 

implying the correctness of logical functions. The test bench simulation environment is 

demonstrated in Figure 51. 

 

As a result of synthesis and place-and–route implementation process described in section 

4.5 the design was fitted in the FPGA. The static timing analysis was successfully passed 

indicating that the ONU SXGTC layer is implementable with 8-byte wide data path 

approach running at 155.52 MHz in the DS and at 38.88 MHz in the US. Hence, all the 

design flow verification stages except for the final in-FPGA verification step (Figure 14) 

were successfully passed for the ONU SXGTC layer HDL implementation. 

 

The in-FPGA verification and the final verification of the SXGTC system will be 

conducted when all the SARDANA network components are integrated. Verification of 

complex digital systems is a continuous process and functional problems are yet expected 

to be encountered in the ONU SXGTC layer implementation. 
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Figure 51. ONU_SXGTC_LAYER module simulation environment. 

 

8.4 Summary of ONU SXGTC layer implementation results 

 

This chapter described functional implementation of SXGTC layer in SARDANA ONU. A 

full set of ONU SXGTC layer implementing Verilog HDL modules and their 

interconnections were presented. Furthermore, design simulation and testing environment 

along with the latest results were discussed. As a result, the first ONU SXGTC layer 

implementation version supports for: 

 

 9.95328 Gbps transmission rate in the DS, 

 2.48832 Gbps transmission rate in the US. 

 

ONU SXGTC layer modules were successfully implemented in Verilog HDL, simulated 

with a test bench, placed-and-routed and analyzed for timing but in-FPGA testing was not 

yet performed due to the lack of some SXGPON OLT and ONU hardware and software 

components. The successful implementation of the ONU SXGTC layer indicates that 8-

byte data path optimized SXGTC protocol developed in this work is indeed implementable 

in the chosen FPGA. 
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9 Results and future considerations 

9.1 SXGTC layer design and implementation results 

 

The next-generation FTTH/B access network project SARDANA aims to research and test 

the latest access network technologies with the help of the SARDANA test and 

demonstration network. SARDANA is a Hybrid WDM/TDM-PON. This thesis presented a 

MAC protocol solution for the SARDANA test and demonstration network. This MAC 

protocol is based on the ITU-T G.984.3 GTC layer recommendation [ITU08] that describes 

the GPON MAC method for up to 2.48832 Gbps. The modified GTC layer was named 

SXGTC layer, and the complete system was named SXGPON in accordance with ITU-T 

and FSAN terminology. As a result, the SXGTC protocol is able to support logically for the 

following transmission rates: 

 

 9.95328 Gbps in the DS, 

 2.48832 Gbps, 4.97664 Gbps and 9.95328 Gbps in the US.  

 

To achieve the required transmission rates and the targeted reduction in implementation 

effort, the original DS GTC frame, US GTC burst and GEM frame structures defined by the 

G.984.3 GTC recommendation [ITU08] were all modified. The resulting new frame 

structures were named DS SXGTC frame, US SXGTC burst and SXGEM frame, 

respectively. Moreover, some of the G.984.3 recommendation [ITU08] functionalities 

considered unnecessary for the SARDANA test and demonstration network were not 

included in the SXGTC protocol in order to simplify its implementation. The principle of 

the GPON MAC protocol operation was however left untouched.  

 

The approach used for frame structure modifications was based on the estimation of a 

suitable clock frequency for the SXGTC protocol implementation in FPGA and a 

corresponding data path width. The data path was defined to be 8-byte wide. All the 

modifications of all frame structures were aimed to make the processing of the frames as 

straightforward as possible on the 8-byte data path. The SXGTC protocol is thus optimized 

especially for the 8-byte data path processing. The changes and the optimizations were 

analyzed in this thesis according to the data processing mechanisms of the ONU because 

the implementation of the ONU SXGTC protocol was assigned to the writer. The OLT 

incorporates mostly the same functions as the ONU, and hence the reduction of the 

implementation effort in the OLT is expected to be close to that of the ONU. 

 

The functional implementation of the ONU SXGTC layer presented in this thesis is able to 

support operation on: 

 

 9.95328 Gbps in the DS,  

 2.48832 Gbps in the US.  
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These transmission rates constitute to the first milestone of the SXGPON system 

development plan [Soi08]. The ONU SXGTC layer was designed and tested according to 

the FPGA design and verification methodology described in section 4.5 The ONU SXGTC 

layer was implemented in Verilog HDL, simulated with a test bench designed for the ONU 

SXGTC layer simulations, synthesized, placed-and-routed and run through static timing 

analysis successfully. The in-FPGA verification i.e. the final step of the FPGA design and 

verification flow was not yet possible to perform due to the lack of some SXGPON OLT 

and ONU hardware and software components. Verification of complex digital systems is a 

continuous process and functional problems are yet expected to be encountered in the ONU 

SXGTC layer implementation. 

 

In addition, the SXGPON protocol overhead analysis was carried out for the implemented 

transmission rate configuration. SXGPON is estimated to have in case of the SARDANA 

demonstration and test network assembly and configuration approximately 98 % bandwidth 

efficiency in the DS and 94.5 % in the US, respectively. A channel with 10
-10

 BER is 

estimated to decrease the throughput by a factor of 10
-8

 compared to the ideal channel 

throughput. The trade-off between the protocol overhead and the targeted straightforward 

implementation appears to be very reasonable.  

 

The theoretical SXGPON bandwidth efficiency results are considered very reliable. The 

bandwidth efficiency was first calculated for a GPON reference system described in 

[HSM06]. The calculated results are similar to those presented in [HSM06]. The SXGPON 

bandwidth efficiency was calculated using the same approach as in the case of the reference 

GPON system. Thus, the bandwidth efficiency results obtained for SXGPON are 

comparable to the results presented in [HSM06]. The SXGPON bandwidth efficiency with 

the real traffic may however differ from the theoretical results because the bandwidth 

efficiency is highly dependent on the PSD. The expected throughput results are also 

considered reliable as they appear to be of the expected magnitude. In overall, all the 

requirements and goals imposed for this thesis were successfully achieved. 

 

9.2 SXGPON future development and considerations 

 

The next step of the ONU SXGTC layer verification is to integrate the OLT and the ONU 

SXGTC layers with the required software components and simulate the combined OLT-

ONU SXGTC layer system on the RTL. This simulation step can be followed by the 

integration of the hardware components and in-FPGA verification. Furthermore, during the 

project life, the SXGPON implementation is considered to be extended to support: 

 

 4.97664 Gbps and 9.95328 Gbps transmission rates in the US, 

 FEC, 

 user and OMCI frame fragmentation. 
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The implementation of FEC is considered very important in further SXGPON 

development, as it can help to extend physical reach of the SARDANA network. User and 

OMCI frame fragmentation in the US is seen desirable for SXGPON if used with more than 

4 ONUs. In the SARDANA test and demonstration network there will be only 4 ONUs and 

hence SXGEM fragmentation can be either implemented as the last feature or completely 

left out based on the SXGPON bandwidth efficiency results. As such, the SXGTC layer 

system is not expected to yield any particular value outside the SARDANA project. The 

protocol cannot be used in a commercial system due to the lack of several vital functions 

such as encryption and DBA.  

 

9.3 Commercial XGPON future development and considerations 

 

Most of the changes made in SXGPON are not expected to have significance outside the 

SARDANA project as they were made only to reduce the workload associated with the 

SXGTC layer implementation and are not expected to affect the future XGPON standard 

directly. All the GPON functionalities that were not included in SXGPON are expected to 

be implemented in future commercial XGPON. DBA is considered very important for the 

next-generation networks. Traffic encryption is a must in TDM-PON systems. For the 

commercial case with 8-64 ONUs each burst will be shorter with respect to the increasing 

number of ONUs and hence implementation of user frame fragmentation in the US is 

expected to be critical to system performance.  

 

Valuable lessons learned in SXGPON protocol development are the 8-byte-word-based 

data processing approach for the DS SXGTC frame and the US burst, and a new 8-byte-

word-based SXGEM encapsulation format that considerably simplifies the implementation 

effort on the 8-byte data path. It is likely that due to technological limitations and 

complexity, the future XGPON standard will be optimized towards more convenient 

implementation rather than bandwidth efficiency [Eff09], and hence incorporate similar to 

the SXGTC protocol frame changes. The latest XGPON recommendation draft [FSAN10] 

seems to imply optimization with respect to the 4-byte-based data processing. The base 

SXGTC layer HDL descriptions developed as a part of this thesis are hence considered 

very useful for the future commercial XGPON development. 
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