1,498 research outputs found

    System architecture study of an orbital GPS user terminal

    Get PDF
    The generic RF and applications processing requirements for a GPS orbital navigator are considered. A line of demarcation between dedicated analog hardware, and software/processor implementation, maximizing the latter is discussed. A modular approach to R/PA design which permits several varieties of receiver to be constructed from basic components is described. It is a basic conclusion that software signal processing of the output of the baseband correlator is the best choice of transition from analog to digital signal processing. High performance sets requiring multiple channels are developed from a generic design by replicating the RF processing segment, and modifying the applications software to provide enhanced state propagation and estimation

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Economic Galileo E5 Receiver

    Get PDF
    The Galileo system introduces an extremely wideband civil E5 signal for high precision navigation. The structure of the receiver for the E5 signal is complicated due to the signal complexity and the large bandwidth. It is possible to process the whole E5 signal or process separately E5a and E5b parts combining obtained results afterwards (we call here such method as piece-wise processing). The second procedure has three times worse standard deviation of the pseudorange then first one. The main goal of the paper is to present a design of an E5 receiver which we will call the economic E5 receiver (ecoE5). It is built from jointly controlled correlators for the processing of the E5a and E5b signals which are parts of the E5 signal. Control of these partial E5a and E5b correlators is realized by only one delay and one phase lock loops. The performance, i.e. the pseudorange noise and multipath errors, of the receiver equipped with the ecoE5, is only slightly worse (the standard deviation of the pseudorange noise is 10 - 20% larger) than the performance of the optimal E5 receiver and it is much better than the performance of the receiver combining the piecewise (E5a and E5b) measurements. The ecoE5 receiver hardware demands are about one quarter of the hardware demands of the classical E5 receiver

    Investigation and analysis of time codes Final report

    Get PDF
    Optimal time code system using correlation detection technique

    Novel low cost synchronisation network for spread spectrum systems

    Get PDF
    Spread Spectrum systems are found in many flavours, used in many applications and have existed since the early days of radio communications. The properties of spread spectrum do however place restrictions on the design, and often make the implementation expensive and complex. When using spread spectrum to provide a basic communications infrastructure, many factors need to be considered. These include supplying the appropriate technology at the right cost. To achieve this a trade-off against performance is often required. One of the more difficult aspects of Spread Spectrum design is the synchronisation of the spreading waveform. The primary characteristic of pseudonoise sequence synchronisation is the need for two levels of synchronisation namely acquisition (course synchronisation) and tracking (fine synchronisation). In these networks (the term network is used to describe a circuit or system throughout the thesis.) a decision is required to switch between the two synchronisation modes. The two layer structure of the typical pseudonoise sequence synchronisation network can increase the overall cost of spread spectrum systems. The objective of the research was therefore to find solutions to reduce the overall cost and complexity of the synchronisation network. The synchronisation structure should perform acquisition and tracking in a single structure, and thereby be low cost. To achieve the primary objective of this dissertation a. mixture of theory, simulations and practical implementation was used. The basis of the investigation was a time-variant spectral evaluation of pseudonoise sequences. It is shown that by multiplying a differentiated pseudonoise sequence with another pseudonoise sequence, useful information is obtained that can form the basis of a synchronisation network

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    Adaptive multibeam phased array design for a Spacelab experiment

    Get PDF
    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature

    Signal Quality Monitoring of GNSS Signals Using a Chip Shape Deformation Metric

    Get PDF
    The Global Navigation Satellite System continues to become deeply em-bedded within modern civilization, and is depended on for confident, accurate navigation information. High precision position and timing accuracy is typically achieved using differential processing, however these systems provide limited compensation for distortions caused by multi-path or faulty satellite hardware. Signal Quality Monitoring (SQM) aims to provide confidence in a receivers Position, Navigation, and Timing solution and to offer timely warnings in the event that signal conditions degrade to unsafe levels. The methods presented in this document focus on implementing effective SQM using low-cost Commercial Off-the-Shelf equipment, a Software Defined Radio, and a typical software receiver architecture that tracks the Galileo E1C signals and the Global Positioning System L1 Coarse-Acquisition signals. Techniques are centered on acquiring and discriminating signal chip shapes with a goal of identifying both 1) clean and 2) deformed signals. The demonstrated identification method is relevant to the growing significance of SQM for SoL applications while providing benefit for confidently monitoring received GNSS signal integrity without requiring specialized receiver hardware
    • 

    corecore