21,057 research outputs found

    A Logical Framework for XML Reference Specification

    Get PDF
    XML emerged as the (meta) mark-up language for representing, exchanging, or storing semistructured data. The structure of an XML document may be specified through DTD (Document Type Definition) language or through the specific XML language XSchema. While the expressiveness of XML Schema allows one to specify both the structure and constraints for XML documents, DTD does not allow the specification of integrity constraints for XML documents. On the other side, DTD has a very compact notation opposed to the complex notation and syntax of XML Schema. According to this scenario, in this paper we focus on a (as much as possible) simple logic, called XHyb, expressive enough to allow the specification of the most common integrity constraints in XML documents. In particular we will deal with constraints on ID and IDREF(S) attributes, which are the common way of logically connecting parts of XML documents, besides the usual containment relation of XML elements

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Creating Structured PDF Files Using XML Templates

    Get PDF
    This paper describes a tool for recombining the logical structure from an XML document with the typeset appearance of the corresponding PDF document. The tool uses the XML representation as a template for the insertion of the logical structure into the existing PDF document, thereby creating a Structured/Tagged PDF. The addition of logical structure adds value to the PDF in three ways: the accessibility is improved (PDF screen readers for visually impaired users perform better), media options are enhanced (the ability to reflow PDF documents, using structure as a guide, makes PDF viable for use on hand-held devices) and the re-usability of the PDF documents benefits greatly from the presence of an XML-like structure tree to guide the process of text retrieval in reading order (e.g. when interfacing to XML applications and databases)

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically
    • ā€¦
    corecore