
A Logical Framework for XML Reference
Specification

C. Combi, A. Masini, B. Oliboni, and M. Zorzi(B)

Department of Computer Science – University of Verona,
Cà Vignal 2, Strada le Grazie 15, 37134 Verona, Italy

{carlo.combi,andrea.masini,barbara.oliboni,margherita.zorzi}@univr.it

Abstract. In this paper we focus on a (as much as possible) simple
logic, called XHyb, expressive enough to allow the specification of the
most common integrity constraints in XML documents. In particular
we will deal with constraints on ID and IDREF(S) attributes, which
are the common way of logically connecting parts of XML documents,
besides the usual containment relation of XML elements.

1 Introduction

XML (eXtensible Markup Language) is the main mark up language used for rep-
resenting data to exchange on the Web and for data integration. XML allows one
to represent structured and semistructured data through a hierarchical organiza-
tion of mark up elements. An XML document is typically endowed with a DTD
(Data TypeDefinition). DTDs allow the specification in a simple and compact
way of the main structural features of XML documents. DTDs easily express
hierarchies, order between elements, and several types of element attributes.
In particular, the ID/IDREF mechanism of DTDs describes identifiers and ref-
erences in a similar (but not equivalent) way to keys and foreign keys in a
relational setting. The value of an attribute of type ID uniquely identifies an
element among all the elements of the entire document; the value of an attribute
of type IDREF(S) allows the reference to element(s) on the base of their ID val-
ues. DTD simplicity is paid in terms of expressiveness: a DTD efficiently models
the structure of XML documents (it is able to provide a “syntactical” control
such as context-free grammar), but it is not powerful enough for capturing sub-
tle, semantic features. As an example, (unique) values of ID attributes have the
overall document as a scope. Consequently, attributes of type IDREF(S) cannot
be constrained to refer to only a subset of elements. Complex specification lan-
guages such as XML Schema [9] represent a powerful alternative to DTD: XML
Schema supports the specification of a very rich set of constraints (in terms of
XPath expressions) and seems to overcome DTD issues and limitations. Unfor-
tunately, as observed in [3,4], XML Schema is too complicate and not compact
at all in the specification of even simple integrity constraints.

In this paper we focus on the issue of retaining in a logical framework
the simplicity of DTDs with the capability of expressing meaningful integrity
c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): DEXA 2015, Part II, LNCS 9262, pp. 258–267, 2015.
DOI: 10.1007/978-3-319-22852-5 22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217546754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Logical Framework for XML Reference Specification 259

constraints. In this context, some interesting theoretical solutions have been pro-
posed [3,4]. With respect to previous proposals, the novelty of our work is that
we look specifically for a very simple formal language which is able to model
constraints with respect to XML reference specification. In this direction, we
propose a logical language, called XHyb, able to express in a direct and explicit
way constraints on XML documents.

2 Motivating Example

In this paper we will use the DTD shown in Fig. 1 as a running example. The con-
sidered DTD describes a subset of information related to the university domain.
It represents the fact that a university is composed of many students, professors,
courses, and examinations; a student may have a supervisor, when she starts her
thesis work; a professor may act as both thesis supervisor and thesis reviewer.

<!ELEMENT university (student*,professor*,course*,examination*)>
<!ELEMENT student (name,surname,supervisor?)>
<!ELEMENT professor (name,surname,thesis_stud?,thesis_reviewer?)>
<!ELEMENT course (title)>
<!ELEMENT examination (mark)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT mark (#PCDATA)>
<!ELEMENT supervisor EMPTY>
<!ELEMENT thesis_stud EMPTY>
<!ELEMENT thesis_reviewer EMPTY>

<!ATTLIST student stud_id ID #REQUIRED>
<!ATTLIST professor prof_id ID #REQUIRED>
<!ATTLIST course cour_id ID #REQUIRED

prof_ref IDREF #REQUIRED>
<!ATTLIST examination stud_ref IDREF #REQUIRED

cour_ref IDREF #REQUIRED>
<!ATTLIST supervisor prof_ref IDREF #REQUIRED>
<!ATTLIST thesis_stud stud_refs IDREFS #REQUIRED>
<!ATTLIST thesis_reviewer prof_ref IDREFS #REQUIRED>

Fig. 1. An example of DTD for XML documents.

The link between a student and her supervisor is modeled by using attribute
prof ref of type IDREF within element supervisor (which is contained in ele-
ment student). On the other side, the corresponding link between a profes-
sor and her thesis students is modeled by means of attribute stud refs of
type IDREFS within element thesis stud. Both attributes supervisor and
stud refs refer to elements identified by a suitable attribute of type ID. It
is worth noting that the DTD grammar does not allow us, for example, to con-
strain the value of a prof ref to correspond to the value of attribute prof id
of some element professor.

In general, DTD grammar allows us only to validate containment relations
(restriction on the element structure of the document [5]) and links between

260 C. Combi et al.

IDREF/IDREFS values and ID values within the whole document. Thus, many
domain-related constraints cannot be explicitly modeled and some XML doc-
uments could be valid according to the given DTD but provide meaningless
information (such as, for example, that a thesis reviewer is a course).

In Fig. 2 we report an example of XML document valid against DTD in Fig. 1.
Let us consider in the following some examples of requirements we would like to
represent and verify in XML documents related to the university domain.

– The supervisor of a student must be a professor.
– A professor may be the supervisor of one or more students.
– A student can be evaluated only once for a given course.

These constraints are clearly not expressible by DTD, as well as more complex
constraints such us the following ones, which require to linguistically express the
interplay between containment relation and reference constraints specification:

– A professor cannot be both supervisor and reviewer of the same student.
– A professor can be supervisor only for students that attended and passed a
course she taught.

In the following section we will introduce the referential logic XHyb. In XHyb
it is possible to encode constraints in terms of (as much as possible) simple
modal formulas. Moreover, the Kripke-style XHyb models naturally fit the shape
of XML documents, representing explicitly and distinctly both containment
relation and reference specification. The formal description of the relationship
XML-documents/XHyb and the encoding in XHyb of the constraints above are
in Sects. 4 and 5 respectively.

3 XHyb: Hybrid Logic for XML Reference Constraints

Logic XHyb is an extension of a fragment of hybrid logic [1,2], obtained by adding
to the syntax the operator @a (where a ranges over a particular set of variables,
called nominal variables): @a is the hybrid at operator and it provides a direct
access to the state (uniquely) named by a. The peculiar feature of XHyb is the
extension of quantified hybrid logic by means of a new modal operator ∗c, which
explicitly captures the presence of ID/IDREF(S) relation between elements of
XML documents.

3.1 Syntax

The alphabet of XHyb is built out of some sets of symbols for constants and
variables. We define three distinct sets of constants:
E = e0, . . . , ek is a finite set of element names; R = r0, . . . , rp: a finite set of
reference names; C = c0, . . . , cm is a finite set of colors.

In the following we will use symbols e, f for element names, r, s for reference
names, and c, d for color names, possibly in their indexed version. We assume
C,E,R are pairwise disjoint.

A Logical Framework for XML Reference Specification 261

Fig. 2. An XML document valid against the DTD in Fig. 1 and its graphical repre-
sentation (reference colors are represented through lines with both colors and different
dashes) (Color figure online).

Set PROP of propositional symbols is the union of the above sets, i.e. PROP =
C ∪ E ∪ R.

Moreover, we define the following sets of variables for nominals and sequences
of nominals:

262 C. Combi et al.

N = i0, i1, . . . is a denumerable set of nominals; Γ = γ0, γ1, . . . is a denumerable
set of variables for finite sequences of nominals. We assume that Γ ∩ N = ∅ and
Δ = N ∪ Γ .

In the following we will use symbols i, j, l for nominals, γ, δ for sequences
of nominals, and x, y for nominals/nominal sequences, possibly in their indexed
version.

Set Θ of terms τ is the smallest set Y defined by stipulating that:
N ⊆ Y ; Γ ⊆ Y ; if τ ′, τ ′′ ∈ Y then τ ′τ ′′ ∈ Y .

We equip the language of XHyb with logical connectives →,⊥,∀,∈, ∗c,@a,�
and ©∀. Formulas are built out of the set of terms by means of logical connec-
tives. Formally, the set Z of well-formed formulas (only formulas in the following,
ranged by A,B,C possibly indexed), is the smallest set Y such that:
N ⊆ Y ; PROP ⊆ Y ; if i ∈ N and A ∈ Y then (@i.A) ∈ Y ; if i ∈ N and τ ∈ Θ
then (i ∈ τ) ∈ Y ; if τ ∈ Θ and c ∈ C then ∗c(τ) ∈ Y ; if i ∈ N and A ∈ Y
then (∀i.A) ∈ Y ; if γ ∈ Γ and A ∈ Y then(∀γ.A) ∈ Y ; if A,B ∈ Y then
(A → B) ∈ Y ; ⊥ ∈ Y ; if A ∈ Y then �A,©∀A ∈ Y .

Connectives →,⊥,∀ are defined in the usual way. The intuition about the
other connectives is as follows:

– @iA means that formula A holds at state i. Following hybrid logic tradition,
equality between two worlds i and j is represented as @ij;
– �A means that A holds at the current state and at all the descendant states;
– ©∀A means that A holds in each children of the current state;
– ∗c is the reference operator : if ∗c(i) holds in a given state, then there exists a
reference, labelled by c, to state i.

Notation 1. In the rest of the paper, we will use the following (quite standard)
abbreviations: ¬A stands for A → ⊥; A∨B stands for (¬A) → B); A∧B stands
for ¬(A∨B);

∧
k A(k) stands for A(c0)∧(A(c1)∧(· · ·∧A(ck))));

∨
k A(k) stands

for A(c0)∨ (A(c1)∨ (· · · ∨A(ck)))); ∃i.A stands for ¬(∀i.(¬A)); ∃γ.A stands for
¬(∀γ.(¬A)); ©∃A stands for ¬ ©∀ ¬A; �A stands for ¬�¬A.

In the following, given γ and γ′ sequences of nominals, we will write γ ⊆ γ′

for ∀i.(i ∈ γ → i ∈ γ′). We will always omit the most external parentheses in
formulas. Moreover we will adopt useful precedence between operators in order to
simplify the readings of formulas, in particular we stipulate that ¬,∀,@,�,©∀

have the higher priority.
The only binder for variables is ∀. Therefore, the definition of the set of free

variables in terms and formulas is standard.

Definition 1 (Free and Bound Variables). The set FV of names of free
variables for terms and formulas is inductively defined as follows:
FV [i] = {i}; FV [τ ′τ ′′] = FV [τ ′] ∪ FV [τ ′′]; FV [@i.A] = {i} ∪ FV [A]; FV [i ∈
τ] = {i} ∪ FV [τ]; FV [∗c(τ)] = FV [τ]; FV [γ] = {γ}; FV [∀i.A] = FV [A] − {i};
FV [∀γ.A] = FV [A]−{γ}; FV [A → B] = FV [A]∪FV [B]; FV [⊥] = ∅; FV [p] =
∅ for p ∈ PROP; FV [�A] = FV [A]; FV [©∀A] = FV [A].

An occurrence of i (of γ) in a formula A is bound iff there is a sub-formula
of A of the kind C = ∀i.B (C = ∀γ.B). In this case we say also that B is the

A Logical Framework for XML Reference Specification 263

scope of i (of γ). We say that an occurrence of i (of γ) in a formula A is free
iff it is not bound.

3.2 Semantics

Definition 2 (Frames). A structure is a tuple S = 〈W,VE , VC , VR,�,N〉
where:|W | < ℵ0 is a set of worlds; VE : E → 2W , VC : C → 2W , VR : R → 2W

and V : PROP → 2W is defined as V = VE ∪ VC ∪ VR; �: W → 2W is the
reference relation. N ⊆ W × W is the relation father-son.

An interpretation is a tuple I = 〈S, g, h, w〉 where S is a structure, g :
N → W , h : Γ → 2W , and w ∈ W .

Informally, the reference relation maps a world w into the sets of worlds the
state w “points to”. As usual, we will denote by N ∗ the transitive and reflexive
closure of N .

Definition 3 (Satisfaction). The satisfiability relation I |= A is defined in the
following way:

1. S, g, h, w �|= ⊥
2. S, g, h, w |= p ⇔ w ∈ V (p) with p ∈ PROP
3. S, g, h, w |= i ⇔ w = g(i)
4. S, g, h, w |= ∗c(x1 . . . xn) ⇔

V = {v|v ∈ (g ∪ h)(x1) ∪ . . . ∪ (g ∪ h)(xn)} ⊆� (w),
∀v ∈ V, S, g, h, v |= c;

5. S, g, h, w |= @i.A ⇔ S, g, h, g(i) |= A
6. S, g, h, w |= ∀i.A ⇔ ∀v ∈ W,S, g[i �→ v], h, w |= A
7. S, g, h, w |= ∀γ.A ⇔ ∀M ∈ 2W , S, g, h[γ �→ M], w |= A
8. S, g, h, w |= A → B ⇔ S, g, h, w �|= A or S, g, h, w |= B
9. S, g, h, w |= �A ⇔ ∀v ∈ W (wN ∗v ⇒ S, g, h, v |= A);

10. S, g, h, w |= ©∀A ⇔ ∀v ∈ W (wN v ⇒ S, g, h, v |= A);

If S, g, w |= A we say that 〈S, g, h, w〉 satisfies A.

We say that: A is satisfiable if there exists I s.t. I |= A; S is a model
of A](S |= A) if for each g, h, w, S, g, h, w |= A; A is valid (|= A) if for each
S, S |= A; A is semantical consequence of a finite set Σ of formulas
(Σ |= A) if ∀I((∀B ∈ Σ.I |= B) ⇒ I |= A).

Let us now briefly focus on the semantics of XHyb particular connectives. The
meaning of a formula @iA is defined by stipulating that A holds in a world w if
and only if w = g(i), i.e. the interpretation by g of the nominal i is exactly w. The
meaning of a formula ∗c(x1 . . . xn) is defined upon the relation �. ∗c(x1 . . . xn)
holds in a world w if and only if the interpretation by g or h of variable xi

(i = 1, . . . , n) (for nominals or sequences of nominals) belongs to the set of
worlds w points to according to �. Moreover, the proposition c ∈ C holds in
each v = (g ∪ h)(xi) for some i = 1, . . . , n.

264 C. Combi et al.

Table 1. From XHyb to XML

XHyb constructs XML interpretation

C (Colors) IDREF(S) attribute declared in the DTD

E (Element names) Tag names declared in the DTD

R (Identifier Names) ID attributes declared in the DTD

W (Worlds) Values of ID attributes in the XML document

VE : E → 2W Each element name e is mapped to the set of ID values
identifying occurrences of e

VC : C → 2W Each attribute name of type IDREF(S) is mapped to the set
of ID values referenced by values of the given attribute

VR : R → 2W Each attribute name of type ID is mapped to the set of
corresponding ID values in the document

N : W → 2W Containment relation (parent-child relation)

�: W → 2W Each attribute name of type ID is mapped to the set of
corresponding ID values in the document

4 From XML to XHyb

In this section we describe the relationship between the XHyb logic and XML
documents. In Table 1 we summarize the XML interpretation of XHyb, by pro-
viding a simple mapping between XHyb syntactical and semantic objects and
the corresponding meaning in the XML document.

It is mandatory to say that the tree-like structure of XML documents nat-
urally fits the shape of (most) modal/temporal logic Kripke models. This has
been observed and exploited in [6,7]. In this paper we start from the same obser-
vation, maintaining a slightly different viewpoint. Given an XML document, we
will adopt the (quite) standard graph-representation (see e.g. [3]), but we choose
a bit more informative graphical depiction:

– we represent XML elements as nodes, labeled with the element name and,
when explicitly required, the ID attribute;
– black edges represent the containment relation;
– colored edges represent the presence of an ID/IDREF(S) link;
– nodes pointed by colored edges are colored accordingly.

More formally, the overall structure of an XML document may be represented
as in the following.

Definition 4 (Colored XGraph, Xtree and colored Xstructure). A col-
ored XGraph is a tuple CG = {P,E, r, Col, ECol, lv} such that: P is a set of
nodes and r is a particular node called root; E is a set of ordered pairs of nodes
where, for all v ∈ P − {r}, there exists a node u ∈ P such that (u, v) ∈ E and
if (u1, v) ∈ E and (u2, v) ∈ E then u1 = u2; Col is a set of color labels; le is a
labeling function le : P → Col. ECol is a set of pairs ((u, v), c) where (u,w) is
an ordered pair of nodes, c ∈ Col and if ((u,w), c) ∈ ECol then lv(w) = c.

A Logical Framework for XML Reference Specification 265

Table 2. XHyb overall picture

Connectives ∗c ��,©∀ ∗c + ��,©∀

Relations/constraints References Containment References + Containment

Shape of the models colored Xstructure Xtree colored Xgraph

– Xtree is the substructure {P,E};
– colored Xstructure is the substructure {P,ECol, Col, l}.

The introduction of colored Xgraphs allows us to represent at the same
time both the containment relation and the accessibility relation (through ref-
erences) between nodes. This is possible since in XHyb IDREF(s) attributes are
explicitly denotable (thanks to the reference operator ∗c) and their linguistic
treatment is completely independent from the denotation of the containment
relation (Table 2). Our graphical representation reflects the way the syntax and
the semantics of XHyb are defined. In particular, we can stipulate a bijection
between the set of color labels Col and the IDREF(s) declaration in the DTD
and so with the set of constant C.

Let us now sketch the translation of the DTD University Record and the XML
documents proposed in Fig. 2 into the Referential Logic XHyb. We will actually
build a concrete alphabet for the XHyb language and a related semantical model
by processing the content of the DTD and the XML instance. Intuitively, this
can be achieved by reading right-left Table 1 and building step-by-step proposi-
tional symbols (the constants of the logic) and a semantical structure (actually
a colored Xgraph: a set of nodes equipped with two distinct accessibility rela-
tions). Notice that we need both the DTD and the XML instances, since names
of elements and attributes (in particular ID and IDREF(S) attributes) can be
“statically” determined from the DTD, whereas element occurrences, ID values,
and IDREF(s) values can be only “dynamically” extracted from to the XML
instance.

In Fig. 2.(b) we propose the graphical representation of the XML document
reported in Fig. 2.(a), which is valid against the DTD in Fig. 1. We assume that
red, blue, green and pink represent the attributes prof ref, stud ref, cour ref
and stud refs respectively. As an example, consider a node professor. It is
red (i.e., it has the same color of link prof ref), since it is pointed by a node
supervisor through a (red) IDREF prof ref. Any attribute IDREF corre-
sponds, in XHyb, to a propositional symbol: in the example, prof ref belongs
to set C of colors and thus to set PROP. By Definition 3, it is possible to see where
propositional symbol/color prof ref holds. The presence of the IDREF relation
between supervisor and professor can be easily encoded as ∗prof ref(professor).
This formula clearly holds in a node (a world) supervisor, i.e., we can state
(forgetting about interpretation) supervisor |= ∗prof ref(professor). Following
Definition 3, Case 4, clearly professor |= prof ref.

Summing up, the way the logic has been defined allows: (i) to express
reference constraints in terms of (simple) XHyb formulae, overcoming DTDs

266 C. Combi et al.

expressive limitations. Some interesting examples related to the university
domain are provided in Sect. 5, and (ii) to map an XML document into an
XHyb (Kripke-like) model. This does not only confirm that XHyb is a suitable
formalism to reason about XML, but it also represents the first step toward the
static automated verification of XML constraints.

5 Expressing XML Constraints by XHyb

We provide now an XHyb encoding of some interesting constraints (non-
expressible by DTD) that must hold for the XML document reported in Fig. 2.
In the following, i, j, k,m, n are variables for nominals and γ is a variable for a
finite sequence of nominals.

1. The supervisor of a student must be a professor.
Attribute prof ref of element supervisor must refer to an element professor .

∀i((supervisor ∧ ∗prof ref(i)) → @iprofessor)

2. A professor may be the supervisor of one or more students.
When thesis stud appears, its attribute stud refs must refer to at least
one student element.

thesis stud → ∃γ.(∗stud refs(γ) ∧ ∀i.(i ∈ γ → @istudent))

3. A course must be taught by a professor.
Attribute prof ref of element course must refer to an element professor .

course → ∃k(∗proof ref(k) ∧ @kprofessor)

4. An examination must be related to a student.
Attribute stud ref of element examination must refer to an element student .

examination → ∃k(∗stud ref(k) ∧ @kstudent)

5. A student can be evaluated only once for a given course.
Attributes stud ref and cour ref of an element examination cannot have
the same values (couple of values) in different examination elements.

∀i.∀j.((@istudent ∧ @jcourse) →
∀m.∀n(@m(examination ∧ ∗stud ref(i) ∧ ∗cour ref(j))
∧@n(examination ∧ ∗stud ref(i) ∧ ∗cour ref(j)) → @mn)

6. A professor cannot be both supervisor and reviewer of the same student.
Attribute stud refs of element thesis stud and attribute stud refs of ele-
ment thesis reviewer , when thesis stud thesis reviewer are
in the same element professor , refer to two different and disjoint sets of
elements student .

¬∃k.j.γ(@k(professor ∧ ©∃(thesis reviewer ∧ ∗stud refs(γ) ∧ j ∈ γ))∧
@j(student ∧ ©∃(supervisor ∧ ∗proof ref(k))))

A Logical Framework for XML Reference Specification 267

7. A professor can be supervisor only for students that attended and passed a
course she taught. Attribute stud refs of a given element thesis studmust
have values among those of attribute stud ref of an element examination ,
where its attribute cour ref refers to an element course having attribute
prof ref referring to the element professor containing the given element
thesis stud .

∀i(@iprofessor → ∀k(@k(student ∧ ©∃(supervisor ∧ ∗proof ref(i))) →
∃m(@m(course ∧ ∗proof ref(i)∧

∃n(@n(examination ∧ ∗cour ref(m) ∧ ∗stud ref(k)))))))

6 Conclusions

In this paper we proposed a simple extension of hybrid logic with a reference
operator ∗c. We show how this logic, called XHyb, is suitable to express ref-
erences specification, overcoming, in an feasible way, some limitations of DTD
expressiveness.

References

1. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL 8(3), 339–365 (2000)

2. Blackburn, P., Tzakova, M.: Hybridizing concept languages. Ann. Math. Artif. Intell.
24(1–4), 23–49 (1998)

3. Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. J. ACM
49(3), 368–406 (2002)

4. Fan, W., Siméon, J.: Integrity constraints for XML. J. Comput. Syst. Sci. 66(1),
254–291 (2003). Special Issue on PODS 2000

5. Fan, W.: Xml constraints: specification, analysis, and applications. In: Proceedings,
DEXA, pp. 805–809 (2005)

6. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application to
semistructured data). J. Appl. Logic 4(3), 279–304 (2006)

7. Marx, M.: Xpath and modal logics of finite dag’s. In: Proceedings of Automated
Reasoning with Analytic Tableaux and Related Methods, International Conference,
TABLEAUX 2003, Rome, Italy, 9–12 September 2003, pp. 150–164 (2003)

8. Rodrigues, K.R., dos Santos Mello, R.: A faceted taxonomy of semantic integrity
constraints for the XML data model. In: Wagner, R., Revell, N., Pernul, G. (eds.)
DEXA 2007. LNCS, vol. 4653, pp. 65–74. Springer, Heidelberg (2007)

9. van der Vlist, E.: XML Schema - The W3C’s Object-oriented Descriptions for XML.
O’Reilly, Sebastopol (2002)

	A Logical Framework for XML Reference Specification
	1 Introduction
	2 Motivating Example
	3 XHyb: Hybrid Logic for XML Reference Constraints
	3.1 Syntax
	3.2 Semantics

	4 From XML to XHyb
	5 Expressing XML Constraints by XHyb
	6 Conclusions
	References

