13 research outputs found

    A Logical Foundation for Environment Classifiers

    Full text link
    Taha and Nielsen have developed a multi-stage calculus {\lambda}{\alpha} with a sound type system using the notion of environment classifiers. They are special identifiers, with which code fragments and variable declarations are annotated, and their scoping mechanism is used to ensure statically that certain code fragments are closed and safely runnable. In this paper, we investigate the Curry-Howard isomorphism for environment classifiers by developing a typed {\lambda}-calculus {\lambda}|>. It corresponds to multi-modal logic that allows quantification by transition variables---a counterpart of classifiers---which range over (possibly empty) sequences of labeled transitions between possible worlds. This interpretation will reduce the "run" construct---which has a special typing rule in {\lambda}{\alpha}---and embedding of closed code into other code fragments of different stages---which would be only realized by the cross-stage persistence operator in {\lambda}{\alpha}---to merely a special case of classifier application. {\lambda}|> enjoys not only basic properties including subject reduction, confluence, and strong normalization but also an important property as a multi-stage calculus: time-ordered normalization of full reduction. Then, we develop a big-step evaluation semantics for an ML-like language based on {\lambda}|> with its type system and prove that the evaluation of a well-typed {\lambda}|> program is properly staged. We also identify a fragment of the language, where erasure evaluation is possible. Finally, we show that the proof system augmented with a classical axiom is sound and complete with respect to a Kripke semantics of the logic

    Tracking Data-Flow with Open Closure Types

    Get PDF
    Type systems hide data that is captured by function closures in function types. In most cases this is a beneficial design that favors simplicity and compositionality. However, some applications require explicit information about the data that is captured in closures. This paper introduces open closure types, that is, function types that are decorated with type contexts. They are used to track data-flow from the environment into the function closure. A simply-typed lambda calculus is used to study the properties of the type theory of open closure types. A distinctive feature of this type theory is that an open closure type of a function can vary in different type contexts. To present an application of the type theory, it is shown that a type derivation establishes a simple non-interference property in the sense of information-flow theory. A publicly available prototype implementation of the system can be used to experiment with type derivations for example programs.Comment: Logic for Programming Artificial Intelligence and Reasoning (2013

    A dependently typed multi-stage calculus

    Get PDF
    Programming Languages and Systems: 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1–4, 2019. Part of the Lecture Notes in Computer Science book series (LNCS, volume 11893). Also part of the Programming and Software Engineering book sub series (LNPSE, volume 11893).We study a dependently typed extension of a multi-stage programming language Ă  la MetaOCaml, which supports quasi-quotation and cross-stage persistence for manipulation of code fragments as first-class values and an evaluation construct for execution of programs dynamically generated by this code manipulation. Dependent types are expected to bring to multi-stage programming enforcement of strong invariant—beyond simple type safety—on the behavior of dynamically generated code. An extension is, however, not trivial because such a type system would have to take stages of types—roughly speaking, the number of surrounding quotations—into account. To rigorously study properties of such an extension, we develop λMD, which is an extension of Hanada and Igarashi’s typed calculus λâ–č% with dependent types, and prove its properties including preservation, confluence, strong normalization for full reduction, and progress for staged reduction. Motivated by code generators that generate code whose type depends on a value from outside of the quotations, we argue the significance of cross-stage persistence in dependently typed multi-stage programming and certain type equivalences that are not directly derived from reduction rules

    Dual-Context Calculi for Modal Logic

    Get PDF

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor

    Reasoning About Multi-stage Programs

    Get PDF
    Multi-stage programming (MSP) is a style of writing program generators---programs which generate programs---supported by special annotations that direct construction, combination, and execution of object programs. Various researchers have shown MSP to be effective in writing efficient programs without sacrificing genericity. However, correctness proofs of such programs have so far received limited attention, and approaches and challenges for that task have been largely unexplored. In this thesis, I establish formal equational properties of the multi-stage lambda calculus and related proof techniques, as well as results that delineate the intricacies of multi-stage languages that one must be aware of. In particular, I settle three basic questions that naturally arise when verifying multi-stage functional programs. Firstly, can adding staging MSP to a language compromise the interchangeability of terms that held in the original language? Unfortunately it can, and more care is needed to reason about terms with free variables. Secondly, staging annotations, as the term ``annotations'' suggests, are often thought to be orthogonal to the behavior of a program, but when is this formally guaranteed to be the case? I give termination conditions that characterize when this guarantee holds. Finally, do multi-stage languages satisfy extensional facts, for example that functions agreeing on all arguments are equivalent? I develop a sound and complete notion of applicative bisimulation, which can establish not only extensionality but, in principle, any other valid program equivalence as well. These results improve our general understanding of staging and enable us to prove the correctness of complicated multi-stage programs
    corecore