
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/15222060?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Reasoning About Multi-stage Programs

by

Jun Inoue

Multi-stage programming (MSP) is a style of writing program generators—programs

which generate programs—supported by special annotations that direct construction,

combination, and execution of object programs. Various researchers have shown MSP

to be effective in writing efficient programs without sacrificing genericity. However,

correctness proofs of such programs have so far received limited attention, and ap-

proaches and challenges for that task have been largely unexplored. In this thesis,

I establish formal equational properties of the multi-stage lambda calculus and re-

lated proof techniques, as well as results that delineate the intricacies of multi-stage

languages that one must be aware of.

In particular, I settle three basic questions that naturally arise when verifying

multi-stage functional programs. Firstly, can adding staging MSP to a language

compromise the interchangeability of terms that held in the original language? Un-

fortunately it can, and more care is needed to reason about terms with free variables.

Secondly, staging annotations, as the term “annotations” suggests, are often thought

to be orthogonal to the behavior of a program, but when is this formally guaranteed

to be the case? I give termination conditions that characterize when this guarantee

holds. Finally, do multi-stage languages satisfy extensional facts, for example that

functions agreeing on all arguments are equivalent? I develop a sound and complete

notion of applicative bisimulation, which can establish not only extensionality but, in

principle, any other valid program equivalence as well. These results improve our gen-

eral understanding of staging and enable us to prove the correctness of complicated

multi-stage programs.

iv

Acknowledgments

I would like to thank my advisor Walid Taha for introducing me to this thesis topic,

for his support throughout the work, for the numerous opportunities he gave me to

meet respected people in the field, and most of all for his enthusiasm for my work. He

has always taken as much pride in my work as I have. I thank my thesis committee

members, Robert Cartwright, Vivek Sarkar, and Marcia O’Malley. I thank Robert

Cartwright for his advice on specific matters relating to this thesis. I thank Vivek

Sarkar for his time and his support for this work. I thank Edwin Westbrook for his

direct contributions to this work. I thank Gregory Malecha for the hints he has left me

with, which turned out to be essential for this work. I thank Mathias Ricken for his

feedback that sharpened some of the results. I thank Ronald Garcia for their valuable

comments on the papers that I have written on precursors for this thesis. I thank

Yun “Angela” Zhu for her kind support for this work, and relaxing conversations that

helped me move on.

Parts of this thesis was completed during my stay at Halmstad University, Sweden,

where I was greeted with such hospitality. I thank Bertil Svensson and Eva Nestius

for their assistance in vagary of concerns during my stay. Inputs from Paul Brauner,

Bertil Svensson, Tony Larsson, and Veronica Gaspes have helped me improve the

presentation of this material continually. This thesis would not have materialized

without the help of Jan and Adam Duracz. I am humbled by the sheer amount of

help I have received over the years from so many different people.

This research was supported in part by NSF grants CCF-0747431 and EHS-

0720857. Completing this work would have not been possible without the support of

Dr. Helen Gill of the National Science Foundation.

Contents

Abstract ii

Acknowledgments iv

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Contributions . 4

2 Multi-stage Programming 7

2.1 Staging Annotations . 7

2.2 Example: Power . 9

3 The λU Calculus: Syntax, Semantics, and Equational

Theory 12

3.1 Syntax and Operational Semantics 13

3.2 Equational Theory . 18

3.3 Further Generalization of Axioms is Unsound 25

3.4 Closing Substitutions Compromise Validity 30

4 Effects of Staging on Correctness 33

4.1 Theorem Statement . 34

4.2 Example: Erasing Staged Power . 37

4.3 Why CBN Facts are Necessary for CBV Reasoning 40

vi

5 Extensional Reasoning for λV 45

5.1 Proof by Bisimulation . 45

5.2 Example: Tying Loose Ends on Staged Power 48

5.3 Soundess and Completeness of Applicative Bisimulation 50

5.3.1 Overview . 50

5.3.2 The Proof . 52

6 Case Study: Longest Common Subsequence 1

6.1 The Code . 1

6.2 Purpose of Monadic Translation . 2

6.3 Correctness Proof . 5

7 Related Works 18

8 Conclusion and Future Work 20

Bibliography 22

A OCaml 25

B Coinduction 28

C Proof Details 31

C.1 Substitution . 31

C.2 Proofs for Operational Semantics . 32

C.2.1 Evaluation Contexts Compose 32

C.2.2 Determinism, Irreducibility of Values, and Focus 32

C.2.3 Equivalence of Open- and Closed-Term Observation 34

C.3 Proofs for Equational Theory . 38

C.3.1 Confluence . 38

vii

C.3.2 Standardization . 43

C.4 Proofs for Generalized Axioms . 53

C.5 Proofs for Extensionality . 54

C.6 Proofs for Soundness and Completeness of Applicative Bisimulation . 56

D Summary of Notations 66

Figures

3.1 Syntax of λU , parametrized in a set of constants Const. 13

3.2 Operational semantics of λU , parametrized in an interpretation

(partial) map δ : Const× Const ⇀ {v ∈ V 0
cl : v ≡ ‖v‖}. 14

3.3 Parallel reduction. 21

3.4 Complete development. 22

4.1 Visualizations of the Erasure Theorem and the derived correctness

lemma. 36

6.1 Unstaged longest common subsequence with helper functions. 16

6.2 Staged, memoized longest common subsequence. 17

Tables

3.1 Unsound generalizations of our axioms. Ω is some divergent level-0

term. The generalizations of β suppose CBN, generalizations of βv

suppose CBV, and the generalization of RU is meant for both. . . . 27

D.1 Summary of notations. 66

1

Chapter 1

Introduction

Generic programming style is a key to improving programmer productivity. Modern

programming languages are often designed to help write generic code, but the rele-

vant language features come with performance costs. For example, most languages

can express a matrix multiplication function that works for matrices of integers as

well as matrices of floating point numbers. This function need not be rewritten for

every desired matrix element type, thus reducing development time if several different

matrix types must be handled. But as a downside, the generic function is usually

much slower than a specialized implementation that handles, say, only matrices of

floating points. Thus, getting both genericity and good performance is difficult.

Multi-stage programming (MSP) solves this dilemma by allowing programmers

to write code generators—programs which generate programs—which are themselves

generic but produce specialized, efficient code. In the foregoing example, a multi-stage

programmer can write a generator that takes a function for adding matrix elements

(say, integer addition) and another for multiplying, and then returns specialized ma-

trix multiplication code that has those functions inlined. The resulting code will

perform as if the matrix element operations had been hard-coded.

Thus MSP delivers genericity and performance at the same time, which has been

demonstrated in numerous studies [8, 6, 17, 11, 9]. However, few formal studies have

considered how to prove, whether informally or rigorously, that generators written

with MSP produce code that computes what it is supposed to compute. Instead,

2

much of the theoretical investigation has been on type systems [33, 21, 38, 20, 35, 36],

which are primarily for ensuring basic safety properties, such as ensuring that the

generated code does not crash.

This situation is somewhat of a paradox, because a key assumption behind the use

of MSP is that it enhances performance while preserving the structure of the code, and

that it therefore does not interfere much with reasoning [22, 6]. The power function is

a good example of MSP preserving structure, presented here in MetaOCaml syntax.

This function will be used as a running example in this thesis, for it is much simpler

than the matrix multiplication example but still shows the essence.

let rec power n x = if n = 1 then x else x * power (n-1) x

let rec genpow n x = if n = 1 then x else .<.~x * .~(genpow (n-1) x)>.

let stpow n = .!.<fun z → .~(genpow n .<z>.)>.

The power function takes integers n and x, and returns x raised to the power of

n, i.e. xn. The stpow function is a staged replacement for power that takes n and

produces a version of power specialized for that n. The genpow is a helper function

that generates the body of the function that stpow produces.

To elaborate, the power function subsumes all functions that have the form

fun x → x*x*...*x but incurs recursive calls each time it is called. There are

three constructs called staging annotations used in genpow to eliminate this over-

head by unrolling the recursion. Brackets .<e>. delay an expression e. An escape

.~e must occur within brackets and causes e to be evaluated without delay. The e

should return a code value .<e′>., and e′ replaces .~e. For example if n = 2, the

genpow n .<z>. in stpow returns a delayed multiplication .<z*z>.. This is an open

term, containing the unbound (or undefined) variable z, but MetaOCaml allows ma-

nipulation of open terms while executing escaped expressions. Run .!e compiles and

3

runs the code generated by e, so stpow 2 evaluates to the function fun z → z*z,

which has no recursion. These annotations in MetaOCaml are hygienic (i.e., preserve

static scoping [12]), but are otherwise like LISP’s quasiquote, unquote, and eval [25].

(See chapter 2 for a step-by-step introduction to staging.)

This example is typical of MSP usage, where a staged program stpow is meant as

a drop-in replacement for the unstaged program power. Note that if we are given only

stpow, we can reconstruct the unstaged program power by erasing the staging anno-

tations from stpow—we say that power is the erasure of stpow. Given the similarity

of these programs, if we are to verify stpow, we naturally expect stpow ≈ power

to hold for a suitable notion of program equivalence (≈) and hope to get away with

proving that power satisfies whatever specifications it has, in lieu of stpow. We expect

power to be easier to tackle, since it has no staging annotations and should therefore

be amenable to conventional reasoning techniques designed for single-stage programs.

But three key questions must be addressed before we can apply this strategy confi-

dently:

Conservativity. Do all reasoning principles valid in a single-stage language carry over

to its multi-stage extension?

Conditions for Sound Erasure. In the power example, staging seems to preserve

semantics, but clearly this is not always the case: if Ω is non-terminating, then

.<Ω>. 6≈ Ω for any sensible (≈). When do we know that erasing annotations preserves

semantics?

Extensional Reasoning. How, in general, do we prove equivalences of the form e ≈ t?

It is known that hygienic, purely functional MSP satisfies intensional equalities like β

[32], but those equalities are too weak to prove such properties as extensionality (i.e.,

4

functions agreeing on all inputs are equivalent). Extensional facts are indispensable

for reasoning about functions, like stpow and power.

This thesis settles these questions, focusing on the untyped, purely functional case

with hygiene. Types are not included, so as to avoid committing to the particulars

of any specific type system, since there are multiple useful type systems for MSP

[33, 35, 36]. This also ensures that the results apply to dynamically typed languages

in which MSP is as interesting as in statically typed languages [12]. Hygiene is a

widely accepted safety feature, and it ensures many of the nice theoretical properties

of MSP, which makes it easy to reason about programs, and which we exploit in this

study. Imperative MSP does not yet appear to be ready for an investigation like this.

Types are essential for having a sane operational semantics without scope extrusion

[20], but there is no decisive solution to this problem, and the jury is still out on the

trade-offs involved in their designs.

1.1 Contributions

This thesis extends previous work on the call-by-name (CBN) multi-stage λ calculus,

λU [32], to cover call-by-value (CBV) as well (chapter 3). In this calculus, we show

the following results.

Unsoundness of Reasoning Under Substitutions. Unfortunately, the answer to the

conservativity question is “no.” When one compares terms with free variables, it is

customary to compare their values under various substitutions—e.g. we know 0 * x

is equivalent to (i.e. interchangeable with) 0 * (x + 1) because substituting any

value for x yields 0 on both sides (or type error, if we substitute a non-number for

x). However, because λU can express open term manipulation as seen in genpow

5

above, equivalences proved under closing substitutions are not always valid without

substitution, for such a proof implicitly assumes that only closed terms are interesting.

We illustrate clearly how this pathology occurs using the surprising fact (λ .0) x 6≈ 0,

and explain what can be done about it (Chapter 3.4). The rest of the paper will show

that a lot can be achieved despite this drawback.

Conditions for Sound Erasure. We show that reductions of a staged term are sim-

ulated by equational rewrites of the term’s erasure. This gives simple termination

conditions that guarantee erasure to be semantics-preserving (chapter 4). Consid-

ering CBV in isolation turns out to be unsatisfactory, and borrowing CBN facts is

essential in establishing the termination conditions for CBV. Intuitively, this happens

because annotations change the evaluation strategy, and the CBN equational theory

subsumes reductions in all other strategies whereas the CBV theory does not.

Soundness of Extensional Properties. We give a sound and complete notion of ap-

plicative bisimulation [1, 15] for λU . Bisimulation gives a general extensional proof

principle that, in particular, proves extensionality of λ abstractions. It also justi-

fies reasoning under substitutions in some cases, limiting the impact of the non-

conservativity result (chapter 5).

This thesis emphasizes general results about MSP, and the insights about seman-

tics that can be gleaned from them. The ability to verify staged programs fall out

from general principles, which will be demonstrated using the power function as a

running example. As a substantial case study, chapter 6 presents a correctness proof

of the longest common subsequence (LCS) algorithm. This is a sophisticated code

generator that uses let-insertion coupled with continuation-passing style (CPS) and

monadic memoization [31]. These features make an exact description of the generated

6

code hard to pin down, but our result on erasure makes such details irrelevant, and

as the appendix shows, its proof is quite similar to that of the power example.

These results, in particular the correctness proof of LCS, demonstrate the core

thesis of this study, namely: multi-stage programming makes it easier to achieve,

simultaneously, not only genericity and performance, but also correctness.

7

Chapter 2

Multi-stage Programming

This chapter informally introduces multi-stage programming using the MSP language

MetaOCaml [7]. This language extends the functional language OCaml with three

annotation constructs, brackets, escape, and run, which direct how to split up a

program’s execution into multiple stages. Their semantics is illustrated with minimal

examples, and the behavior of the staged power function given in the introduction is

followed in greater detail.

2.1 Staging Annotations

MetaOCaml is an extension of OCaml with three language constructs: brackets

(.<_>.), escape (.~), and run (.!). MetaOCaml is impurely functional, but the

focus of this thesis is the purely functional subset. Appendix A contains a brief sum-

mary of OCaml’s basic syntax and semantics that are required to navigate through

the power example.

Brackets generate code. For example,

.<(fun x → x * x) 2>.

evaluates to a code value, in other words a parse tree, representing the expression

((fun x → x*x) 2), and not to the integer value 4. The type of this code value

is <int>, read “code of int”.∗ Just like most languages allow programmers to write

∗Actually, MetaOCaml assigns it the type (’a, int) code where ’a is an environment classifier

8

string literals by enclosing the string in double quotes (e.g. "Hello World"), and just

like quasiquotation in LISP-like languages, .<>. gives a syntax for writing down code

as a literal value.

Escapes allow parts of code values to be computed dynamically, similarly to string

interpolation or unquote in LISP. For example:

let double x = .<.~x * 2>. in

double .<1 + 3>.

When the second line calls the double function, .<1+3>. gets substituted for x to

produce the intermediate term .<.~(.<1+3>.) * 2>.. Then .~ merges the code

value .<1+3>. into the surrounding, which results in the code value .<(1+3) * 2>.

being returned. The x inside .~ can be any other expression that returns a code value

of the right type. An .~ can only appear (lexically) inside .<_>.. The .<_>. and

.~ can be nested, but .~ cannot be nested deeper than .<_>.. The depth of .<_>.

minus the depth of .~ is called the level. Execution of escaped code is deferred like

its surrounding if the nesting of .<_>. is strictly deeper (i.e. level > 0).

Finally, we have an analogue of LISP’s eval function, which is run (.!). This

construct takes a code value, compiles it into machine code (or byte code, depending

upon the flavor of MetaOCaml being used), and immediately executes the machine

(or byte) code. For example,

.! .<(fun x → x * x) 2>.

returns 4.

Informally, resolving escapes and generating a code value is called stage 0, while

executing the generated code with .! is called stage 1. Stage 1 code may also create

[33]. Classifiers are orthogonal to the results presented here and are therefore omitted in all types.

9

and run another code value, which constitutes stage 2, but stages 2 and later are

rarely useful.

Staging supports cross-stage persistence (CSP), which allows a value created at

one stage to be used in any subsequent stage. For example, the following is a valid

MetaOCaml program.

let two = 2 in

let double x = x * two in

.<double 5>.

This program returns the code value .<(fun x → x * 2) 5>. which captures a

user-defined value double. In the formal calculus, this capturing is expressed by

substitution, as I just showed. In the implementation, the code value is represented

as .<2 5>. where 2 is a pointer to a function object.

MSP has some important features that distinguish it from most other metapro-

gramming systems. Unlike its LISP counterparts, staging annotations guarantee that

the generated code is well-formed, whereas a LISP macro can generate nonsensi-

cal code fragments such as (lambda 1). Staging also offers automatic hygiene like

Scheme macros [12] but unlike traditional LISP macros. Staging also guarantees type

safety for purely functional programs, including safety of the generated code [33].

2.2 Example: Power

Let us examine the power example from the introduction in more detail.

let rec power n x = if n = 1 then x else x * power (n-1) x

let rec genpow n x = if n = 1 then x else .<.~x * .~(genpow (n-1) x)>.

let stpow n = .!.<fun z → .~(genpow n .<z>.)>.

10

The power function is an (unstaged) implementation of exponentiation xn. Adding

staging annotations to power gives the code generator genpow. An invocation of the

form

genpow n .<z>.

where n is some positive integer, produces a code value representing the computa-

tion that power n z performs, except with all the recursion unrolled and branching

eliminated. For example:

• genpow 1 .<z>. just returns .<z>..

• genpow 2 .<z>. produces the intermediate term .<.~.<z>. * .~.<z>.>.. The

left .<z>. comes from substituting the argument .<z>. for its placeholder x in

the else branch of genpow, and the right .<z>. arose by executing the re-

cursive call genpow 1 .<z>.. The intermediate form evaluates to .<z * z>.,

since escapes and brackets cancel out.

• genpow 3 .<z>. gives the intermediate term .<.~.<z>. * .~(.<z * z>.)>.

and eventually returns .<z * (z * z)>..

The stpow function is a wrapper to genpow that takes just the index n of the se-

quence element to compute and creates a function that maps x to xn. The function call

stpow n (for n ∈ Z+) produces the intermediate term .!.<fun x → x*x*. . .*x>.

where n copies of x are multiplied. This intermediate form then evaluates to the (com-

piled) function (fun x → x*x*. . .*x). This generated function no longer wastes

time resolving if-then-else or decrementing n; it performs multiplication and noth-

ing else, thereby being more efficient than power.

Staging thus enables programmers to write generic code without sacrificing per-

formance. The staged function stpow is generic, in that it is able to handle all

11

positive-integer powers, but unlike power, the code that stpow generates does not

pay a performance penalty every time it is called. Code generation costs are paid

once and for all, and genericity no longer weighs us down thereafter.

The big uncertainty at this point is that, by adding staging annotations, we have

modified the behavior of power in rather unconventional ways. How do we know that

we have not broken the program in the course of applying staging? As a case in point,

consider these declarations:

let rec loop () = loop () (* infinite loop *)

let f x = (let _ = loop () in 0)

let g x = (let _ = .<loop ()>. in 0)

Although f and g differ only by staging annotations—just like stpow and power—,

they are not interchangeable: whereas f is nowhere defined, g is everywhere defined

as 0.

The crux of this thesis the identification of a bound on the impact that staging

can have on a program’s semantics, with a rigorous theoretical underpinning. With

the metatheory developed in this thesis, the mathematically inclined reader should be

able to prove the correctness of not just stpow but the more complex, staged longest

common subsequence algorithm (discussed in chapter 6). The metatheory will also

benefit the more pragmatically inclined reader by giving general rules of thumb that

ensure correctness while writing a multi-stage program or while reasoning about the

behavior of such a program.

12

Chapter 3

The λU Calculus: Syntax, Semantics, and

Equational Theory

This section presents the multi-stage λ calculus λU . This is a simple but expressive

formal language that models all possible uses of brackets, escape, and run in MetaO-

Caml’s purely functional core, sans types. In this calculus, MetaOCaml’s abstraction

construct fun x → e is modeled by λx.e, local binding let x = e in t is mod-

eled by function application (λx.t) e, and recursive definition let rec f x = e is

modeled by a fixed point combinator. The mapping of other constructs should be

self-explanatory. The syntax and operational semantics of λU for both CBN and CBV

are minor extensions of previous work [32] to allow arbitrary constants, which include

first-order data like integers, booleans, and arrays thereof. The CBN equational the-

ory is more or less as in [32], but the CBV equational theory is new.

Notation. A set S may be marked as CBV (Sv) or CBN (Sn) if its definition varies

by evaluation strategy. The subscript is dropped in assertions and definitions that

apply to both evaluation strategies. Syntactic equality (α equivalence) is written

(≡). As usual, [e/x]t denotes the result of substituting e for x in an expression t in

a capture-avoiding manner, while the set of free variables in e is written FV(e). For

a set S, we write Scl to mean {e ∈ S : FV(e) = ∅}.

13

Levels `,m ∈ N Variables x, y ∈ Var Constants c, d ∈ Const

Expressions e, t, s ∈ E ::= c | x | λx.e | e e | 〈e〉 | ˜e | ! e

Exact Level lv : E → N where

lv x
def
= 0 lv c

def
= 0

lv(λx.e)
def
= lv e

lv(e1 e2)
def
= max(lv e1, lv e2)

lv〈e〉 def
= max(lv e− 1, 0)

lv(˜e)
def
= lv e+ 1

lv(! e)
def
= lv e

Stratification e`, t`, s` ∈ E` def
= {e : lv e ≤ `}

Values u0, v0, w0 ∈ V 0 ::= c | λx.e0 | 〈e0〉

u`+1, v`+1, w`+1 ∈ V `+1 ::= e`

Programs p ∈ Prog
def
= {e0 : FV(e0) = ∅}

Contexts C ∈ Ctx ::= • | λx.C | C e | e C | 〈C〉 | ˜C | !C

Figure 3.1 : Syntax of λU , parametrized in a set of constants Const.

3.1 Syntax and Operational Semantics

The syntax of λU is shown in Figure 3.1. A term is delayed when more brackets

enclose it than do escapes, and a program must not have an escape in any non-

delayed region. We track levels to model this behavior. A term’s exact level lv e

is its nesting depth of escapes minus brackets, and a program is a closed, exactly

level-0 term. A level-0 value (i.e., a value in a non-delayed region) is a constant, an

abstraction, or a code value with no un-delayed region. At level ` > 0 (i.e., inside `

pairs of brackets), a value is any lower-level term. Throughout the thesis, “the set of

terms with exact level at most `”, written E`, is a much more useful concept than

“the set of terms with exact level equal to `”. When we say “e has level `” we mean

e ∈ E`, whereas “e has exact level `” means lv e = `. A context C is a term with

exactly one subterm replaced by a hole •, and C[e] is the term obtained by replacing

14

Evaluation Contexts (Productions marked [φ] apply only if the guard φ is true.)

(CBN) E `,m ∈ ECtx`,mn ::= •[m = `] | λx.E `,m[` > 0] | 〈E `+1,m〉 | ˜E `−1,m[` > 0]

| ! E `,m | E `,m e` | v` E `,m[` > 0] | c E `,m[` = 0]

(CBV) E `,m ∈ ECtx`,mv ::= •[m = `] | λx.E `,m[` > 0] | 〈E `+1,m〉 | ˜E `−1,m[` > 0]

| ! E `,m | E `,m e` | v` E `,m

Substitutable Arguments a, b ∈ Arg ::= v0 (CBV) a, b ∈ Arg ::= e0 (CBN)

Small-steps e` ;
`
t` where:

SS-β

(CBN)

(λx.e0) t0 ;
0

[t0/x]e0

SS-βv

(CBV)

(λx.e0) v0 ;
0

[v0/x]e0

SS-δ

(c, d) ∈ dom δ

c d;
0
δ(c, d)

SS-E

˜〈e0〉;
1
e0

SS-R

! 〈e0〉;
0
e0

SS-Ctx

em ;m tm

E `,m[em] ;
`
E `,m[tm]

Figure 3.2 : Operational semantics of λU , parametrized in an interpretation (partial)
map δ : Const× Const ⇀ {v ∈ V 0

cl : v ≡ ‖v‖}.

the hole with e, with variable capture. Staging annotations use the same nesting rules

as LISP’s quasiquote and unquote [12], but we stress that they preserve scoping: e.g.,

〈λx.˜(λx.〈x〉)〉 ≡ 〈λx.˜(λy.〈y〉)〉 6≡ 〈λy.˜(λx.〈y〉)〉.

A term is unstaged if its annotations are erased in the following sense; it is staged

otherwise. The power function is the erasure of stpow modulo η reduction.

Definition 1 (Erasure). Define the erasure ‖e‖ by

‖x‖ def≡ x ‖c‖ def≡ c

‖e1 e2‖
def≡ ‖e1‖ ‖e2‖

‖λx.e‖ def≡ λx.‖e‖

‖〈e〉‖ def≡ ‖e‖

‖˜e‖ def≡ ‖e‖

‖! e‖ def≡ ‖e‖

15

The operational semantics is given in Figure 3.2; examples are provided be-

low. Square brackets denote guards on grammatical production rules; for instance,

ECtx`,mn ::= •[m = `] | . . . means • ∈ ECtx`,mn iff m = `. An `,m-evaluation con-

text E `,m takes a level-m redex and yields a level-` term. Redex contractions are: β

reduction at level 0, δ reduction at level 0, run-bracket elimination (SS-R) at level

0, and escape-bracket elimination at level 1 (SS-E). CBN uses SS-β and CBV uses

SS-βv. All other rules are common to both evaluation strategies. The δ reductions

are specified by a partial map δ : Const × Const ⇀ {v ∈ V 0
cl : v ≡ ‖v‖}, which is

chosen according to what data types we would like to model in the calculus. This

δ should be undefined on ill-formed pairs like δ(not, 5). Constant applications are

assumed not to return staged terms.

Small-steps specify the behavior of deterministic evaluators. Every term decom-

poses in at most one way (see Appendix C.2.2 for a proof) as E `,m[t] where the redex

(reducible expression) t is a level-m term that must match the left-hand side of the

bottom row of one of the rules SS-β (for CBN), SS-βv (for CBV), SS-δ, SS-E, and

SS-R. Replacing t by the right-hand side of the matching rule constitutes a small-

step reduction (or just small-step). The small-step reduct so produced is unique if it

exists. Intuitively, given a program p, an implementation of λU rewrites p by a series

of small-steps until it is no longer possible to small-step. If the series of small-steps

continues forever, them p is non-terminating; if the resulting term is a value, then

that is the return value of p; and if the resulting term is not a value, p is said to be

stuck at that point and is considered to have died by an error.

Evaluation strategies—CBV vs. CBN—refer to the rules by which the redex to

contract is chosen from any given expression. Basically, the rules for λU are: pick

the outermost, leftmost, non-delayed redex. However, given a non-delayed function

16

application (λx.e) t, CBN semantics chooses the whole application as the redex,

whereas CBV semantics chooses the redex from t by recursively applying the same

outermost-leftmost rule to t. Hence CBN immediately substitutes t for x without

evaluating t, while CBV insists on evaluating t first. This difference is reflected in

CBV and CBN evaluation contexts as follows. CBV evaluation contexts can place

the hole inside the argument of a level-0 application, but CBN can do so only if the

operator is a constant. At level > 0, both evaluation strategies simply walk over the

syntax tree of the delayed term to look for escapes, including ones that occur inside

the arguments of applications, hence both strategies’ evaluation contexts can place

holes in argument positions at level > 0.

Notation. We write λUn ` e;` t for a CBN small-step judgment and λUv ` e;` t for

CBV. We use similar notation for (⇓), (⇑), and (≈) defined below. For any relation

R, let R+ be its transitive closure and R∗ its reflexive-transitive closure; let R0 be

equality and let xRny mean ∃{zi}ni=0 such that x = z0, zn = y, and ∀i. xiRxi+1 . The

metavariables a, b ∈ Arg will range over substitutable arguments, i.e., e0 for CBN and

v0 for CBV.

For example, p1 ≡ (λy.〈40 + y〉) (1 + 1) is a program. Its value is determined by

(;
0

), which works like in conventional calculi. In CBN, λUn ` p1 ;
0
〈40 + (1 + 1)〉.

The redex (1 + 1) is not selected for contraction because (λy.〈40 + y〉) • 6∈ ECtx0,0
n .

In CBV, (λy.〈40 + y〉) • ∈ ECtx0,0, so (1 + 1) is selected for contraction: λUv ` p1 ;
0

(λy.〈40 + y〉) 2 ;
0
〈40 + 2〉.

Let p2 ≡ 〈λz.z (˜[(λ .〈z〉) 1])〉, where we used square brackets [] as parentheses to

improve readability. Let e0 be the subterm inside square brackets. In both CBN and

CBV, p2 decomposes as E [e0], where E ≡ 〈λz.z (˜•)〉 ∈ ECtx0,0, and e0 is a level-0

redex. Note the hole of E is under a binder and the redex e0 is open, though p2 is

17

closed. The hole is also in argument position in the application z (˜•) even for CBN.

This application is delayed by brackets, so the CBN/CBV distinction is irrelevant

until the delay is canceled by !. Hence, p2 ;0 〈λz.z (˜〈z〉)〉;
0
〈λz.z z〉.

As usual, this “untyped” formalism can be seen as dynamically typed. In this

view, ˜ and ! take code-type arguments, where code is a distinct type from functions

and base types. Thus 〈λx.x〉 1, 〈˜0〉, and ! 5 are all stuck. Stuckness on variables

like x 5 does not arise in programs for conventional languages because programs are

closed, but in λU evaluation contexts can pick redexes under binders so this type of

stuckness does become a concern. We will come back to this point in Chapter 3.4.

Remark. Binary operations on constants are modeled by including their partially

applied variants. For example, to model addition we take Const ⊇ Z ∪ {+} ∪

{+k : k ∈ Z} and set δ(+, k) = +k, δ(+k, k
′) = (the sum of k and k′). For ex-

ample, in prefix notation, (+ 3 5) ;
0

(+3 5) ;
0

8. Conditionals are modeled by

taking Const ⊇ {(), true, false, if} and setting δ(if, true) = λa.λb.a () and

δ(if, false) = λa.λb.b (). Then, for example, we have if true (λ .1) (λ .0) ;
0

(λa.λb.a ()) (λ .1) (λ .0) ;
0
∗ 1. Note that the rest of the thesis uses infix notation and

displays conditionals as if e1 then e2 else e3 rather than if e1 (λ .e2) (λ .e3).

Definition 2 (Termination and Divergence). An e ∈ E` terminates to v ∈ V ` at

level ` iff e ;
`
∗ v, written e ⇓` v. We write e ⇓` to mean ∃v. e ⇓` v. If no such v

exists, then e diverges (e ⇑`). Note that divergence includes stuckness.

The operational semantics induces the usual notion of observational equivalence—

a pair of terms are observationally equivalent precisely when replacing one by the

other in any program is guaranteed not to change the observable outcome of the

overall program. The “observable” outcome here consists of a) whether the program

18

terminates, and b) if the program terminates and returns a constant, which one is

returned. Note that if the program returns a function, which function is returned is

not observed.

Definition 3 (Observational Equivalence). e ≈ t iff for every C such that C[e], C[t] ∈

Prog, C[e] ⇓0⇐⇒ C[t] ⇓0 holds and whenever one of them terminates to a constant,

the other also terminates to the same constant.

Taha [32] used C[e], C[t] ∈ E0 in place of C[e], C[t] ∈ Prog, thus requiring eq-

uitermination under non-closing contexts (i.e. those which may not bind some free

variables in e and t). Intuitively, Prog is more accurate as we are interested only

in executing programs, not terms. This does not represent any shift in semantics

however, as these definitions coincide in MSP (see Appendix C.2.3).

The following lemma is useful for proving that certain terms diverge.

Lemma 4. If e` ≡ E `,m[tm] ;
`
n v ∈ V `, then tm ;m

n′
u ∈ V m where n′ ≤ n. In

particular, if tm ⇑m then E `,m[tm] ⇑`.

3.2 Equational Theory

The equational theory of λU is a proof system containing four inference rules: com-

patible extension (e = t =⇒ C[e] = C[t]), reflexivity, symmetry, and transitivity. The

CBN axioms are λUn
def
= {β,EU , RU , δ}, while CBV axioms are λUv

def
= {βv, EU , RU , δ}.

Each axiom is shown below. If e = t can be proved from a set of axioms Φ, then e

and t are provably equal (under Φ), written Φ ` e = t. We often omit the Φ ` in

definitions and assertions that apply uniformly to both CBV and CBN. Reduction is

a term rewrite induced by the axioms: Φ ` e −→ t iff e = t is derivable from the

axioms by compatible extension alone.

19

Name Axiom Side Condition

β (λx.e0) t0 = [t0/x]e0

βv (λx.e0) v0 = [v0/x]e0

EU ˜〈e〉 = e

RU ! 〈e0〉 = e0

δ c d = δ(c, d) (c, d) ∈ dom δ

For example, axiom βv gives λUv ` (λ .0) 1 = 0. By compatible extension under

〈•〉, we have 〈(λ .0) 1〉 = 〈0〉, in fact 〈(λ .0) 1〉 −→ 〈0〉. Note 〈(λ .0) 1〉 6;
0
〈0〉 because

brackets delay the application, but reduction allows all left-to-right rewrites by the

axioms, so 〈(λ .0) 1〉 −→ 〈0〉 nonetheless. Intuitively, 〈(λ .0) 1〉 6;
0
〈0〉 because an

evaluator does not perform this rewrite, but 〈(λ .0) 1〉 −→ 〈0〉 because this rewrite

is semantics-preserving and an optimizer is allowed to perform it.

Just like the plain λ calculus, λU satisfies the Church-Rosser property, so every

term has at most one normal form (irreducible reduct) [32]. Terms are hence not

provably equal when they have distinct normal forms. Church-Rosser also ensures

that reduction and provable equality are more or less interchangeable, and when we

investigate the properties of provable equality, we usually do not lose generality by

restricting our attention to the simpler notion of reduction. This result had been

known for CBN λU without constants, but a subsidiary contribution of this thesis is

that this result extends to both CBN and CBV with constants and δ reduction.

Theorem 5 (Church-Rosser Property). e = e′ ⇐⇒ ∃t. e −→∗ t←−∗ e′.

Provable equality (=) is an approximation of observational equivalence. The con-

tainment (=) ⊂ (≈) is proper because (≈) is not semi-decidable (since λU is Turing-

complete) whereas (=) clearly is. There are several useful equivalences in (≈) \ (=),

20

which we will prove by applicative bisimulation. Provable equality is nonetheless

strong enough to discover the value of any term that has one, so the assertion “e

terminates (at level `)” is interchangeable with “e reduces to a (level-`) value”.

Theorem 6 (Soundness). (=) ⊂ (≈).

Theorem 7. If e ∈ E`, v ∈ V `, then e ⇓` v =⇒ (e −→∗ v ∧ e = v) and e = v ∈

V ` =⇒ (∃u ∈ V `.u = v ∧ e −→∗ u ∧ e ⇓` u).

The rest of this section is devoted to describing the proofs of these properties.

Readers who are not interested in the proofs should skip to Chapter 3.3. The Church-

Rosser property has an equivalent formulation, confluence, which is more amenable

to proof. Proofs that confluence and Church-Rosser imply each other can be found

in standard textbooks on rewrite systems and programming language metatheory

[24, 2].

Theorem 8 (Confluence). t1 ←−∗ e −→∗ t2 =⇒ ∃e′. t1 −→∗ e′ ←−∗ t2.

Confluence can be proved by the well-known Tait–Martin-Löf method. The styl-

ized formulation used here is due to Takahashi [34] and is the same as the one used

in Taha’s dissertation [32]. The method uses parallel reduction, written e →−→ t,

which is like ordinary reduction but allows any number of independent redexes in e

to be contracted at once. The main insight from Takahashi is that there is a maxi-

mal parallel reduction, the complete development e∗, which contracts all independent

redexes in e. Because e →−→ t contracts a subset of those redexes, contracting the

complement of that subset takes t to e∗, which does not depend on t (Takahashi’s

property). Thus (→−→) is strongly confluent, i.e. every t1 ←←− e →−→ t2 meets in one

step, t1 →−→ e∗ ←←− t2. Strong confluence is easily seen to imply confluence.

21

c →−→
0
c

[PR-Const]

x →−→
0
x

[PR-Var]
e →−→n t

λx.e →−→n λx.t

[PR-Abs]

e1 →−→n1
t1 e2 →−→n2

t2

e1 e2 →−→n1+n2
t1 t2

[PR-App]
(c, d) ∈ dom δ

c d →−→
1
δ(c, d)

[PR-δ]

e0 →−→n1
t0 a →−→n2

b

(λx.e0) a →−→
n1+n2#(x,t0)+1

[b/x]t0
[PR-β]

e →−→n t

〈e〉 →−→n 〈t〉
[PR-Brk]

e →−→n t

˜e →−→n ˜t

[PR-Esc]
e →−→n t

˜〈e〉 →−→
n+1

t

[PR-E]
e →−→n t

! e →−→n ! t

[PR-Run]

e0 →−→n t0

! 〈e0〉 →−→
n+1

t0
[PR-R]

(→−→)
def
=
⋃
n

(→−→n)

#(x, e) is the number of occurrences of x in e.

Figure 3.3 : Parallel reduction.

Parallel reduction is defined in Figure 3.3. The subscript on (→−→n) is complexity,

which shows the number of ordinary, leftmost-outermost–first reductions it would

take to mimic the parallel reduction. Complexity is used later to prove soundness,

but for proving confluence it is dead weight, so we discard the complexity annotation

and work with (→−→) for the time being.

As parallel reduction is just ordinary reduction with a different convention for

counting the number of steps, its reflexive-transitive closure coincides with that of

22

c∗
def≡ c x∗

def≡ x

(λx.e)∗
def≡ λx.e∗ 〈e〉∗ def≡ 〈e∗〉

(˜〈e〉)∗ def≡ e∗ (˜e)∗
def≡ ˜(e∗) [if e 6≡ 〈e′〉]

(! 〈e0〉)∗ def≡ (e0)∗ (! e)∗
def≡ ! e∗ [if e 6≡ 〈e0〉]

((λx.e0) a)∗
def≡ [a∗/x](e0)∗ c d

def≡ δ(c, d) [if (c, d) ∈ dom δ]

(e1 e2)∗
def≡ e∗1 e

∗
2 [if e1 e2 6≡ (λx.e0) a and e1 e2 ≡ c d =⇒ (c, d) 6∈ dom δ]

e∗ is the complete development of e.

Figure 3.4 : Complete development.

ordinary reduction:

Lemma 9. (→−→∗) = (−→∗).

Proof. Derivation rules for (→−→∗) subsume all reduction axioms and e →−→ t =⇒

C[e] →−→ C[t], so (−→∗) ⊆ (→−→∗). For the reverse containment, e →−→ t =⇒

e −→∗ t by straightforward induction on the parallel reduction judgment. There-

fore, ∀n. e →−→n t =⇒ e −→∗ t by induction on n.

Thus for Theorem 8 it suffices to prove that (→−→) is confluent. As mentioned

above, λU ’s parallel reduction satisfies Takahashi’s property, which ensures its con-

fluence.

Lemma 10 (Takahashi’s Property). e →−→ t =⇒ t →−→ e∗.

Proof. Induction on e. See Appendix C.3.1 for details.

Proposition 11. (→−→∗) is confluent.

23

Proof. This assertion reduces to Takahashi’s property by lexicographical induction

on the lengths of the departing parallel reductions (i.e., given t1 ←←−n e →−→m t2, we

induct on (n,m)). See Appendix C.3.1 for details.

Let us now consider soundness (Theorem 6). To prove soundness, we first prove

correspondence between the values discovered by provable equality and by small-steps

(i.e. Theorem 7), using reduction as a stepping stone.

Proposition 12. If e ∈ E` and v ∈ V ` then e = v ⇐⇒ ∃u ∈ V `. e −→∗ u = v.

Proof. For the forward direction, the Church-Rosser property guarantees that e −→∗

v =⇒ ∃t ∈ E`. e −→∗ t ←−∗ v hence e −→∗ t = v. The only remaining question

is whether t ∈ V `, but t is a reduct of a value so it must be a value as well (see

Lemma 102). The converse follows from (−→∗) ⊆ (=).

Lemma 13 (Compatibility of Reduction and Small-step Semantics). If e ∈ E` and

v ∈ V ` then e −→∗ v ⇐⇒ ∃u ∈ V `. e;
`
∗ u −→∗ v.

The (⇐=) direction of this lemma is trivial. The (=⇒) direction is proved via

three lemmas that convert a parallel-reduction sequence

e`0 →−→ e1 →−→ · · · →−→ en ≡ v`

to a small-step sequence

e`0 ;` t1 ;` t2 ;` · · ·;` tm ≡ u` →−→ v`.

The proofs of these lemma require the complexity annotations of (→−→) as an induction

measure.

Lemma 14 (Transition). If e ∈ E` and v ∈ V ` then e →−→n v =⇒ ∃u ∈ V `. e ;
`
∗

u →−→ v.

24

Proof. If e ∈ V n, then just take u
def≡ e. Otherwise, induct on (n, e) under the

lexicographical ordering with case analysis on the last rule used to derive the parallel

reduction. See Appendix C.3.2 for details.

Lemma 15 (Permutation). If e, t, d ∈ E` then e →−→n t ;
`
d =⇒ ∃t′ ∈ E`. e ;

`
+

t′ →−→ d.

Proof. Induction on n with case analysis on the last rule used to derive the parallel

reduction. See Appendix C.3.2 for details.

Lemma 16 (Push Back). If e, t ∈ E` and v ∈ V ` then e →−→ t ;
`

+ v =⇒ ∃u ∈

V `. e;
`

+ u →−→ v.

Proof. Let the length of the small-step sequence be n. Induct on n.

[If n = 1] By Permutation ∃t′ ∈ E`. e ;
`

+ t′ →−→ v, so by Transition, ∃u ∈ V `. t′ ;
`
∗

u →−→ v. Putting them together, e;
`

+ t′ ;
`
∗ u →−→ v.

[If n > 1] By hypothesis, ∃d. e →−→ t;
`
d;

`
(n−1) v. Permutation gives ∃t′. e;

`
t′ →−→

d;
`

(n−1) v. Then by IH ∃u ∈ V `. t′ ;
`

+ u →−→ v, so e;
`
t′ ;

`
+ u →−→ v.

Proof of Lemma 13.

(=⇒) If e −→∗ v then e →−→n v for some n by Lemma 9. We wish to show ∃u ∈

V `. ∃m ≥ 0. e;
`
m u →−→ v by induction on n. If n = 0 then u

def≡ v. If n > 0 then

∃t ∈ E`. e →−→ t →−→n−1 v so by IH ∃u ∈ V `. ∃m′ ≥ 0. e →−→ t;
`
m′
u →−→∗ v. Then

the conclusion follows from Transition if m′ = 0, or from Push Back if m′ > 0.

(⇐=) Follows from (;
`

) ⊆ (−→).

Combining Lemma 13 with Proposition 12, we see that provable equality and

small-steps are compatible as well.

25

Lemma 17 (Compatibility of Equational Theory and Small-step Semantics). If e ∈

E` and v ∈ V ` then e = v ⇐⇒ ∃u ∈ V `. e;
`
∗ u = v.

Proof. First suppose e = v. Then by Proposition 12, ∃w ∈ V ` such that e −→∗ w = v.

By Lemma 13, ∃u ∈ V `. e;
`
∗ u −→∗ w so e;

`
∗ u = w = v. For the converse, suppose

e;
`
∗ u = v. Then e = u = v because (;

`
) ⊆ (−→) ⊆ (=).

Theorem 7 is immediate from Lemma 13 and Lemma 17. The soundness theorem

is also straightforward given Lemma 17.

Proof of Soundness. Let e, t, C be given such that e = t and C[e], C[t] ∈ Prog. Let

us suppose that one of the plugged expressions terminates, say C[e] ⇓0, and prove

that the other also does. By definition, ∃v ∈ V 0. C[e] ;
0
∗ v so using Lemma 17 and

EQ-Ctx, v = C[e] = C[t]. Then by Lemma 17 again, C[t] ⇓0 u = v for some u ∈ V 0.

Then since u = v ≡ c, by the Church-Rosser property u and c have a common reduct,

which must be c itself. One can easily see that a reduct of a non-constant value is

always non-constant (see Lemma 102), so u ≡ c is forced.

3.3 Further Generalization of Axioms is Unsound

The equational theory presented above is not identical to Taha’s [32], but general-

izes rule EU from ˜〈e0〉 = e0 to ˜〈e〉 = e. In this section we discuss the utility of

this generalization and explain why other axioms cannot be generalized in the same

manner.

The main use of the new, generalized EU is to show that substitution preserves

(≈). Thus, an equivalence proved on open terms hold for any closed instance. This

fact plays an important role in the completeness proof of applicative bisimulation to

26

be presented later. This proposition is also somewhat surprising, considering that its

converse fails in CBV—we will examine that issue in more detail in Chapter 3.4.

Proposition 18. If e ≈ t, then [a/x]e ≈ [a/x]t for any a, x.

Proof. Take ` = max(lv e, lv t). Then

(λx.〈〈· · · 〈e〉 · · ·〉〉) a ≈ (λx.〈〈· · · 〈t〉 · · ·〉〉) a

where e and t are each enclosed in ` pairs of brackets. Both sides are level 0, so the

βv rule applies and

〈〈· · · 〈[a/x]e〉 · · ·〉〉 ≈ 〈〈· · · 〈[a/x]t〉 · · ·〉〉.

Escaping both sides ` times gives

˜˜· · · ˜〈〈· · · 〈[a/x]e〉 · · ·〉〉 ≈ ˜˜· · · ˜〈〈· · · 〈[a/x]t〉 · · ·〉〉.

Then applying the EU rule ` times gives [a/x]e ≈ [a/x]t. The old EU rule ˜〈e0〉 = e0

would apply only once here because the level of the 〈〈· · · 〈[a/x]e〉 · · ·〉〉 part increases—

and that is why we need the generalized rule.

It is natural to wonder why the other rules, β/βv and RU , cannot be generalized

to arbitrary levels, and why EU is special. The reason is that generalizations of β/βv

and RU involve level change—moving a term from one level to another. Generally,

moving a lower-level term to a higher level is benign, but the opposite direction, called

demotion, is not. MSP type system researchers have long observed that unrestricted

demotion is a type-unsafe operation [33, 36]. We show here that it is also unsound

as an equational rule.

Table 3.1 shows generalized rules along with counterexamples that show their

unsoundness. The left column names the rule that was generalized, the middle column

shows the generalization, and the right column refutes it. Simply dropping level

27

Rule Generalization Counterexample

RU ! 〈e〉 = e 〈! 〈˜Ω〉〉 6= 〈˜Ω〉 (∗1)

β (λx.e0) t = [t/x]e0 〈(λx.〈x〉) (λy.˜Ω)〉 6= 〈〈λy.˜Ω〉〉 (∗2)

βv (λx.e0) v` = [v`/x]e0 same as (∗2) (∗3)

βv (λx.e0) (λy.t) = [(λy.t)/x]e0 same as (∗2) (∗4)

βv (λx.e0) 〈t〉 = [〈t〉/x]e0 〈(λx.〈〈x〉〉) 〈˜˜Ω〉〉 6= 〈〈〈˜˜Ω〉〉〉 (∗5)

β (λx.e) t0 = [t0/x]e 〈(λx.˜x) 〈e0〉〉 6= 〈˜〈e0〉〉 (∗6)

βv (λx.e) v0 = [v0/x]e same as (∗6) (∗7)

Table 3.1 : Unsound generalizations of our axioms. Ω is some divergent level-0 term.
The generalizations of β suppose CBN, generalizations of βv suppose CBV, and the
generalization of RU is meant for both.

constraints from RU gives (∗1). In CBN β, relaxing the argument’s level gives (∗2).

In CBV βv, simply removing the argument’s constraint produces (λx.e0) v` = [v`/x]e0,

which is absurd; it subsumes CBN reduction (note V 1 = E0). More sensible attempts

are (∗4) and (∗5), which keep the constraints on head term constructors. Generalizing

the function in β and βv gives (∗6) and (∗7), respectively.

Generalizations (∗1) through (∗5) fail because they involve demotion, which moves

a term from one level to another. For example, the generalized rule in (∗1) puts e

inside more brackets on the left-hand side than on the right-hand side. The coun-

terexample exploits this mismatch by choosing an e that contains a divergent term

enclosed in just enough escapes so that the divergence is forced on one side but not

the other. More concretely, on the left-hand side ! 〈˜Ω〉 ∈ E0 so 〈! 〈˜Ω〉〉 ∈ V 0. How-

ever on the right-hand side the Ω is enclosed in fewer brackets and has lv ˜Ω = 1,

28

so 〈˜Ω〉 6∈ V 0; in fact 〈˜•〉 ∈ ECtx0,0 so assuming Ω ;
0

Ω1 ;
0

Ω2 ;
0
· · · we have

〈˜Ω〉;
0
〈˜Ω1〉;0 〈˜Ω2〉;0 · · · . We can formalize this general insight as follows.

Definition 19 (Level Function). Define ∆ : Ctx→ Z as follows.

∆• def
= 0

∆(λx.C)
def
= ∆C

∆(C e)
def
= ∆C

∆(e C)
def
= ∆C

∆〈C〉 def
= ∆C − 1

∆(˜C)
def
= ∆C + 1

∆(!C)
def
= ∆C

Proposition 20. ∀C. ∃L(C) ∈ N. lv e ≥ L(C) =⇒ lvC[e] = lv e+ ∆C.

Proof. Induction on C. See Appendix C.4 for details.

Intuitively, ∆C is the limiting value of lvC[e]− lv e as lv e→∞. This difference

converges to a constant ∆C because when e is sufficiently high-level, the deepest

nesting of escapes in C[e] occurs within e. Then lvC[e] − lv e depends only on the

number of brackets and escapes surrounding the hole of C.

Theorem 21. Any rewrite rule that has the form or subsumes a rule of the form

C[e] −→ C ′[e] with ∆C 6= ∆C ′ is unsound (∃e. C[e] 6≈ C ′[e]).

The proof of this theorem relies on the fact that if e has enough escapes, the escapes

dominate all the staging annotations in C and the term they enclose is given top pri-

ority during program execution. In more technical terms, lvC[e] grows unboundedly

with lv e because of Proposition 20, and beyond a certain threshold C ∈ ECtx`,`−∆C .

Hence if, say, ∆C > ∆C ′ then by Lemma 94 e is evaluated first under C ′ but not un-

der C. Notice that this proof fails, as expected, if the e in C[e] −→ C ′[e] is restricted

to e0.

Lemma 22 (Context Domination). size(C) < ` =⇒ ∃m. C ∈ ECtx`,m.

Proof. Induction on C. See Appendix C.4 for details.

29

Lemma 23. ∆E `,m = `−m.

Proof. Straightforward induction on E `,m.

Proof of Theorem 21. Take `
def
= max(L(C), L(C ′), size(C) + 1, size(C ′) + 1) and e ≡

˜˜ · · · ˜︸ ︷︷ ︸
` times

Ω, where Ω ∈ E0 and Ω ⇑0. Then lv e = `, e ⇑`, lvC[e] = ` + ∆C, and

lvC ′[e] = ` + ∆C ′. Without loss of generality, ∆C > ∆C ′. By Lemma 22, C ∈

ECtx`+∆C,` where the second superscript is known by Lemma 23. Then taking C〈···〉
def≡

〈〈· · · 〈•〉 · · ·〉〉 with ` + ∆C pairs of brackets, C〈···〉[C] ∈ ECtx0,`, so Lemma 94 forces

C〈···〉[C[e]] ⇑0. By contrast, lvC ′[e] < `+ ∆C, so C〈···〉[C
′[e]] is of the form 〈d0〉, hence

C〈···〉[C
′[e]] ⇓0.

Theorem 21 provides a quick sanity check for all equational rewrites. In particular,

(∗1) through (∗5) above fail this test. Note that a sound rule can rewrite between

contexts C and C ′ such that lvC[e] − lv e and lvC ′[e] − lv e disagree for some e, as

long as those e are all low-level. For example, EU states ˜〈e〉 = e, but if e ∈ E0

then lv ˜〈e〉 − lv e = 1 6= lv e − lv e. However, the differences of exact levels agree

whenever lv e ≥ 1, which is why Theorem 21 does not apply to EU . Restricting the

level of expressions that can plug level-mismatching holes may also ensure soundness;

non-generalized RU does this.

The entries (∗6) and (∗7) in Table 3.1 happen to pass the level function test. These

rules have in a sense a dual problem: the substitutions in (∗6) and (∗7) inject extra

brackets to locations that were previously stuck on a variable, whereas Theorem 21

injects extra escapes.

30

3.4 Closing Substitutions Compromise Validity

Here is a striking example of how reasoning in λU differs from reasoning in single-stage

languages. Traditionally, CBV calculi admit the equational rule

(βx) (λy.e0) x = [x/y]e0 .

Plotkin’s seminal λV [27], for example, does so implicitly by taking variables to be

values, defining x ∈ V where V is the set of values for λV . But βx is not admissible

in λUv . For example, the terms (λ .0) x and 0 may seem interchangeable, but in λUv

they are distinguished by the program context E def≡ 〈λx.˜[(λ .〈1〉) •]〉:

〈λx.˜[(λ .〈1〉) ((λ .0) x)]〉 ⇑0 but 〈λx.˜[(λ .〈1〉) 0]〉 ⇓0 〈λx.1〉 . (1)

(Once again, we are using [] as parentheses to enhance readability.) The term on the

left is stuck because x 6∈ V 0 and x 6;
0

. Intuitively, the value of x is demanded before

anything is substituted for it. If we apply a substitution σ that replaces x by a value,

then σ((λ .0) x) = σ0, so the standard technique of reasoning under closing substi-

tutions is unsound. Note the βx redex itself need not contain staging annotations;

thus, adding staging to a language can compromise some existing equivalences, i.e.,

staging is a non-conservative language extension.

The problem here is that λUv can evaluate open terms. Some readers may recall

that λV reduces open terms just fine while admitting βx, but the crucial difference

is that λU evaluates (small-steps) open terms under program contexts whereas λV

never does. Small-steps are the specification for implementations, so if they can

rewrite an open subterm of a program, implementations must be able to perform

that rewrite as well. By contrast, reduction is just a semantics-preserving rewrite, so

implementations may or may not be able to perform it.

Implementations of λUv including MetaOCaml have no runtime values, or data

31

structures, representing the variable x—they implement x 6∈ V 0. They never perform

(λ .0) x ;
0

0, for if they were forced to evaluate (λ .0) x, then they would try to

evaluate the x as required for CBV and throw an error. Some program contexts in

λU do force the evaluation of open terms, e.g., the E given above. We must then

define a small-step semantics with (λ .0) x 6;
0

0, or else we would not model actual

implementations, hence we must reject βx, for it is unsound for (≈) in such a small-

step semantics. In other words, lack of βx is an inevitable consequence of the way

practical implementations behave.

Even in λV , setting x ∈ V is technically a mistake because λV implementations

typically do not have runtime representations for variables either. But in λV , whether

a given evaluator implements x ∈ V or x 6∈ V is unobservable. Small-steps on

a λV program (which is closed by definition) never contract open redexes because

evaluation contexts cannot contain binders. Submitting programs to an evaluator

will never tell if it implements x ∈ V or x 6∈ V . Therefore, in λV , there is always no

harm in pretending x ∈ V . A small-step semantics with x ∈ V gives the same (≈) as

one with x 6∈ V , and βx is sound for this (≈).

Now, the general, more important, problem is that reasoning under substitutions

is unsound, i.e., ∀σ. σe ≈ σt =⇒6 e ≈ t. The lack of βx is just an example of how

this problem shows up in reasoning. We stress that the real challenge is this more

general problem with substitutions because, unfortunately, βx is not only an illustra-

tive example but also a tempting straw man. Seeing βx alone, one may think that its

unsoundness is some idiosyncrasy that can be fixed by modifying the calculus. For

example, type systems can easily recover βx by banishing all stuck terms including βx

redexes. But this little victory over βx does not justify reasoning under substitutions,

and how or whether we can achieve the latter is a much more difficult question. It is

32

unclear if any type systems justify reasoning under substitutions in general, and it is

even less clear how to prove that.

Surveying which refinements (including, but not limited to the addition of type

systems) for λU let us reason under substitutions and why is an important topic for

future study, but it is beyond the scope of this work. Here, we focus instead on

showing that we can achieve a lot without committing to anything more complicated

than λU . In particular, we will show with applicative bisimulation (chapter 5) that

the lack of βx is not a large drawback after all, as a refined form of βx can be used

instead:

(Cβx) λx.C[(λy.e0) x] = λx.C[[x/y]e0] ,

with the side conditions that C[(λy.e0) x], C[[x/y]e0] ∈ E0 and that C does not

shadow the binding of x. Intuitively, given just the term (λy.e0) x, we cannot tell if x

is well-leveled, i.e., bound at a lower level than its use, so that a value is substituted

for x before evaluation can reach it. Cβx remedies this problem by demanding a

well-leveled binder. As a special case, βx is sound for any subterm in the erasure of

a closed term—that is, the erasure of any self-contained generator.

33

Chapter 4

Effects of Staging on Correctness

This chapter presents the Erasure Theorem and its utility in proving e ≈ ‖e‖, i.e. that

staging annotations in a given term are irrelevant to what it computes. This theorem

shows that, in essence, the only aspect of a term’s meaning that staging annotations

can alter is termination. Hence the main question for the correctness of staging is

whether the staged term and its erasure agree on termination behavior. This insight

provides termination conditions that guarantee e ≈ ‖e‖.

The theorem also demonstrates that the effects of erasure are more subtle in

CBV than in CBN. In CBV, β reduction is invalid and only its restriction to βv is

sound, but staging can ostensibly make any CBN β reduction (λx.e0) t0 −→ [t0/x]e0

appear as CBV by forcing the argument to be a value, like (λx.e0) 〈t0〉 −→ [〈t0〉/x]e0.

Erasing annotations could invalidate such reductions in CBV; by contrast, CBN’s β

reduction is robust against erasure. For this reason, CBN is easier to reason about,

and we derive a simpler correctness condition for CBN. In this respect, this result

shows that MSP is a particularly good match for lazy languages like Haskell.

Uses of a very similar theorem was pioneered by Yang [37] for languages that

omit run, but his version would make guarantees only if the code generated by a

staged program is used in a context that has no further staging. For this reason,

Yang’s result had limited applicability to reasoning about multi-stage programs used

in multi-stage languages. By recasting his ideas in terms of the equational theory,

this thesis makes them work with arbitrary contexts in λU .

34

4.1 Theorem Statement

The theorem statement differs for CBN and CBV, with CBV being more subtle. We

will present CBN first. Intuitively, all that staging annotations do is to describe and

enforce an evaluation strategy—they may enforce CBN, CBV, or some other strategy

that the programmer wants. But CBN reduction can simulate any strategy because

it allows the redex to be chosen from anywhere.∗ Thus, erasure commutes with CBN

reductions (Figure 4.1(a)). The same holds for provable equalities.

Lemma 24. e ∈ E` =⇒ ‖e‖ ∈ E`.

Proof. Straightforward induction on e.

Lemma 25. [‖t‖/x]‖e‖ ≡ ‖[t/x]e‖.

Proof. Straightforward induction on e.

Lemma 26. If ‖e‖ −→ t then t ≡ ‖t‖.

Proof. Straightforward induction on the reduction judgment using Lemma 25.

Theorem 27 (CBN Erasure). If λUn ` e −→∗ t then λUn ` ‖e‖ −→∗ ‖t‖. Also, if

λUn ` e = t then λUn ` ‖e‖ = ‖t‖.

Proof. By induction on the length of the reduction, we only need to prove this the-

orem for one-step reduction e −→ t. Decomposing this reduction as C[r] −→ C[d]

where r is a redex, all that needs to be shown is ‖r‖ −→∗ ‖d‖. For then ‖C[r]‖ ≡

∗This only means that reductions under exotic evaluation strategies are semantics-preserving

rewrites under CBN semantics. CBN evaluators may not actually perform such reductions unless

forced by staging annotations.

35

(‖C‖)[‖r‖] −→∗ (‖C‖)[‖d‖] ≡ ‖C[d]‖, where ‖C‖ is defined by adding ‖ • ‖ ≡ • to

the rules for erasing terms.

[If r ≡ ˜〈d〉 or ! 〈d〉] ‖r‖ ≡ ‖d‖.

[If r ≡ (λx.e1) e2 for some e1, e2 ∈ E0] ‖r‖ ≡ (λx.‖e1‖) ‖e2‖ −→ [‖e2‖/x]‖e1‖ ≡

[e1/x]e2 ≡ ‖d‖, where the reduction holds by Lemma 24 and the syntactic equality

following the reduction is by Lemma 25.

[If r ≡ c d for some (c, d) ∈ dom δ] Recall the assumption that ‖δ(c, d)‖ ≡ δ(c, d).

Thus erasure commutes with CBN reduction. The statement involving (=) follows

by the Church-Rosser property.

This theorem gives useful insights on what staging annotations can or cannot do

in CBN. For example, staging preserves return values up to erasure if those values

exist, while any term has a more terminating erasure unless the former’s external

interface (i.e., set of possible return values) contains staging.

Corollary 28. If u, v ∈ V 0 and (λUn ` e −→∗ u ∧ λUn ` ‖e‖ −→∗ v), then v ≡ ‖v‖

and λUn ` ‖u‖ = v.

Corollary 29. If λUn ` e ⇓` ‖v‖, then λUn ` ‖e‖ ⇓` ‖v‖.

How does Theorem 27 help prove equivalences of the form e ≈ ‖e‖? The theorem

gives a simulation of reductions from e by reductions from ‖e‖. If e reduces to an

unstaged term ‖t‖, then simulating that reduction from ‖e‖ gets us to ‖‖t‖‖, which

is just ‖t‖; thus e −→∗ ‖t‖ ←−∗ ‖e‖ and e = ‖e‖. Amazingly, this witness ‖t‖ can

be any reduct of e, as long as it is unstaged! In fact, by Church-Rosser, any t with

e = ‖t‖ will do. So staging is correct (i.e., semantics-preserving, or e ≈ ‖e‖) if we can

find this ‖t‖. As we will show in Chapter 4.2, this search boils down to a termination

check on the generator.

36

λUn ` e −−−→∗ t

‖−‖
y y‖−‖

λUn ` ‖e‖ −−−→∗ ‖t‖
(a) CBN erasure.

λUv ` e −−−→∗ t

‖−‖
y y‖−‖

λUn ` ‖e‖ −−−→∗ ‖t‖
(b) CBV erasure.

λUv `

λUn
>
e c∥∥∥

λUv ` ‖e‖ d

(c) CBV correctness lemma.

Figure 4.1 : Visualizations of the Erasure Theorem and the derived correctness lemma.

Lemma 30 (CBN Correctness). (∃t. λUn ` e = ‖t‖) =⇒ λUn ` e = ‖e‖.

CBV satisfies a property similar to Theorem 27, but the situation is more subtle.

Staging modifies the evaluation strategy in CBV as well, but not all of them can be

simulated in the erasure by CBV reductions, for βv reduces only a subset of β redexes.

For example, if Ω ∈ E0 is divergent, then (λ .0) 〈Ω〉 −→ 0 in CBV, but the erasure

(λ .0) Ω does not CBV-reduce to 0 since Ω is not a value. However, it is the case

that λUn ` (λ .0) Ω −→ 0 in CBN. In general, erasing CBV reductions gives CBN

reductions (Figure 4.1(b)).

Theorem 31 (CBV Erasure). If λUv ` e −→∗ t then λUn ` ‖e‖ −→∗ ‖t‖. Also, if

λUv ` e = t then λUn ` ‖e‖ = ‖t‖.

This theorem has similar ramifications as the CBN Erasure Theorem, but with

the caveat that they conclude in CBN despite having premises in CBV. In particular,

if e is CBV-equal to an erased term, then e = ‖e‖ in CBN.

Corollary 32. (∃t. λUv ` e = ‖t‖) =⇒ λUn ` e = ‖e‖.

CBN equalities given by this corollary may at first seem irrelevant to CBV pro-

grams, but in fact if we show that e and ‖e‖ CBV-reduce to constants, then the CBN

equality can be safely cast to CBV equality. Figure 4.1(c) summarizes this reasoning.

Given e, suppose we found some c, d that satisfy the two horizontal CBV equalities.

37

Then from the top equality, Corollary 32 gives the left vertical one in CBN. As CBN

equality subsumes CBV equality, tracing the diagram counterclockwise from the top

right corner gives λUn ` c = d in CBN. Then the right vertical equality c ≡ d follows

by the Church-Rosser property in CBN. Tracing the diagram clockwise from the top

left corner gives λUv ` e = ‖e‖.

Lemma 33 (CBV Correctness). If λUv ` e = c and λUv ` ‖e‖ = d, then λUv ` e = ‖e‖.

Thus, we can prove e = ‖e‖ in CBV by showing that each side terminates to some

constant, in CBV. Though we borrowed CBN facts to derive this lemma, the lemma

itself leaves no trace of CBN reasoning.

4.2 Example: Erasing Staged Power

This section demonstrates how to apply the Erasure Theorem to stpow. First,

some technicalities: MetaOCaml’s constructs are interpreted in λU in the standard

manner, e.g., let x = e in t stands for (λx.t) e and let rec f x = e stands for

let f = Θ(λf.λx.e) where Θ is some fixed-point combinator. We assume the Const

set in λU has integers and booleans, with a suitable definition of δ. For conciseness,

we treat top-level bindings genpow and stpow like macros, so ‖stpow‖ is the erasure

of the recursive function to which stpow is bound with genpow inlined, not the erasure

of a variable named stpow.

As a caveat, we might want to prove stpow ≈ power but this goal is not quite

right. The whole point of stpow is to process the first argument without waiting for

the second, so it can disagree with power when partially applied, e.g., stpow 0 ⇑0 but

power 0 ⇓0. We sidestep this issue for now by concentrating on positive arguments,

and discuss divergent cases in Chapter 5.2.

38

To prove k > 0 =⇒ stpow k = power k for CBN, we only need to check that

the code generator genpow k terminates to some .<‖e‖>.; then the .! in stpow

will take out the brackets and we have the witness required for Lemma 30. To say

that something terminates to .<‖e‖>. roughly means that it is a two-stage program,

which is true for almost all uses of MSP that we are aware of. This use of the Erasure

Theorem is augmented by the observation ‖stpow‖ = power—these functions are not

syntactically equal, the former containing an η redex.

Lemma 34. λUn ` ‖stpow‖ = power

Proof. Contract the η expansion by (CBN) β.

Proposition 35 (Erasing CBN Power). ∀k ∈ Z+. λUn ` stpow k = power k.

Proof. Induction on k gives some e s.t. genpow k .<x>. = .<‖e‖>., so

stpow k = .!.<fun x → .~(genpow k .<x>.)>.

= .!.<fun x → .~.<‖e‖>.>.

= .!.<fun x → ‖e‖>.

= fun x → ‖e‖

hence stpow k = ‖stpow‖ k = power k by Lemmas 30 and 34.

The proof for CBV is similar, but we need to fully apply both stpow and its

erasure to confirm that they both reach some constant. The beauty of Lemma 33 is

that we do not have to know what those constants are. Just as in CBN, the erasure

‖stpow‖ is equivalent to power, but note this part of the proof uses Cβx.

Lemma 36. λUn ` ‖stpow‖ ≈ power

Proof. Contract the η expansion by Cβx.

39

Proposition 37 (Erasing CBV Power). For k ∈ Z+ and m ∈ Z, λUv ` stpow k m ≈

power k m.

Proof. We stress that this proof works entirely with CBV equalities; we have no need

to deal with CBN once Lemma 33 is established. By induction on k, we prove that

∃e. genpow k .<x>. = .<‖e‖>. and [m/x]‖e‖ ⇓0 m′ for some m′ ∈ Z. We can do

so without explicitly figuring out what ‖e‖ looks like. The case k = 1 is easy; for

k > 1, the returned code is .<x * ‖e′‖>.where [m/x]‖e′‖ terminates to an integer by

inductive hypothesis, so this property is preserved. Then

stpow k m = .!.<fun x → .~(genpow k .<x>.)>. m

= .!.<fun x → ‖e‖>. m

= [m/x]‖e‖ = m′ ∈ Const.

Clearly power k m terminates to a constant. By Lemma 36, ‖stpow‖ k m also yields

a constant, so by Lemma 33, stpow k m = ‖stpow‖ k m ≈ power k m.

These proofs illustrate our answer to the erasure question in the introduction.

Erasure is semantics-preserving if the generator terminates to 〈‖e‖〉 in CBN, or if

the staged and unstaged terms terminate to constants in CBV. Showing the latter

requires propagating type information and a termination assertion for the generated

code. Type information would come for free in a typed system, but it can be easily

emulated in an untyped setting. Hence we see that correctness of staging generally

reduces to termination not just in CBN but also in CBV—in fact, the correctness

proof is essentially a modification of the termination proof.

40

4.3 Why CBN Facts are Necessary for CBV Reasoning

So far, we have let erasure map CBV equalities to the superset of CBN equalities and

performed extra work to show that the particular CBN equalities we derived hold in

CBV as well. One might instead try to find a subset of CBV reductions that erase

to CBV reductions, which is essentially how Yang [37] handled CBV erasure. In this

section we will show that this alternative approach does work, but only in simple

cases.

As discussed before, the problem with erasing CBV reductions is that the argu-

ment in a βv redex may have a divergent erasure. To eliminate this case, we might

restrict βv to a “careful” variant with a side condition, like

(βv⇓) (λx.e0) v0 = [v0/x]e0 provided λUv ` ‖v0‖ ⇓0 .

If we define a new set of axioms λUv⇓
def
= {βv⇓, EU , RU , δ} then reductions (hence

equalities) under this axiom set erase to CBV reductions. But βv⇓ is much too

crude. It prohibits contracting redexes of the form (λy.e0) 〈x〉 (note x ⇑0), which are

ubiquitous—a function as simple as stpow already contains one.

Observe that the erasure x of the argument in a βx redex would terminate under

a substitution. As discussed in Chapter 3.4, introducing a substitution to equalities

can be a point of no return, but let us plow ahead and worry about that problem

later. Allowing substitutions in the check ‖v0‖ ⇓0 for βv⇓ gives a refined λUv⇓:

Definition 38 (Careful Equality). Let σ : Var ⇀
fin

V 0 be a substitution by not

necessarily closed values. A CBV provable equality is careful modulo σ, written

λUv⇓/σ ` e = t, iff it can be deduced from the axioms EU , RU , δ, and

(βv⇓/σ) (λx.e0) v0 = [v0/x]e0 provided λUv ` σ‖v0‖ ⇓0

through the inference rules of reflexivity, symmetry, transitivity, and constrained com-

41

patible extension: C[e] = C[t] can be deduced from e = t iff all variables captured

(bound) by C are fresh for σ. A careful equality is a careful reduction iff its derivation

uses only constrained compatible extension.

Careful reductions erase to λUv -equality, albeit under substitutions. The conclusion

is equality and not reduction because the simulation of βv⇓ reduction on (λx.e0) v0

needs reverse reductions: we have ‖v0‖ ⇓0 u0 for some u0, so (λx.‖e0‖) ‖v0‖ −→∗

(λx.‖e0‖) u0 −→ [u0/x]‖e0‖ ←−∗ [‖v0‖/x]‖e0‖.
λUv⇓/σ ` e −−−→∗ t

σ‖−‖
y yσ‖−‖

λUv ` σ‖e‖ σ‖t‖

Theorem 39 (Careful Erasure). λUv⇓/σ ` e −→∗ t =⇒ λUv ` σe = σt and λUv⇓/σ `

e = t =⇒ λUv ` σ‖e‖ = σ‖t‖.

Proof. By induction on the length of the reduction, it suffices to prove λUv⇓/σ ` e −→

t =⇒ λUv ` σe = σt. First consider primitive reductions, i.e. those which derive from

an axiom directly and without applying any inference rule.

If e −→ t is an EU , RU , or δ reduction, then λUv ` e −→ t by the same argument

as Theorem 27. Then repeating the argument in Proposition 18 gives λUv ` σe −→ σt.

The interesting case is βv⇓/σ reduction, where we have (λx.e0) v0 −→ [v0/x]e0

and λUv ` σ‖v0‖ ⇓0 u0, and we must show λUv ` σ((λx.‖e0‖) ‖v0‖) = σ[‖v0‖/x]‖e0‖.

By Theorem 7 we get λUv ` σ‖v0‖ = u0, so

λUv ` σ((λx.‖e0‖) ‖v0‖) = (λx.σ‖e0‖) u0

= [u0/x](σ‖e0‖)

= [σ‖v0‖/x](σ‖e0‖)

≡ σ([‖v0‖/x]‖e0‖)

42

where we used the fact that by Barendregt’s variable convention [3], x is fresh for σ, so

we can freely commute σ with the binder λx. The rightmost term is just σ‖[v0/x]e0‖

by Lemma 25.

For a careful equality derived by constrained compatible extension λUv⇓/σ ` C[e] −→

C[t], note

σ(‖C[e]‖) ≡ σ(‖C‖[‖e‖]) ≡ (σ‖C‖)[σ‖e‖]

and likewise for C[t], using the constraint that all bindings in C are fresh for σ. Since

we have already shown λUv ` σ‖e‖ = σ‖t‖, we have

λUv ` (σ‖C‖)[σ‖e‖] = (σ‖C‖)[σ‖t‖]

by (unconstrained) compatible extension.

Now, can we justify the substitution in careful equalities? In the power example,

the expected way to use the generator is stpow n k, where n, k ∈ Z ⊆ Const. This

application reduces to

.!.<fun x → .~(genpow n .<x>.)>. k

Note two things: genpow n .<x>. reduces carefully for [k/x], and there is a k waiting

outside the .!.<. . .>. to be substituted. All that it takes to justify reasoning under

[k/x] is to show that k is eventually pulled into the body of the fun x → . . . by βv.

Lemma 40. The following implication holds, as well as its evident generalization to

n values and variables.

λUv⇓/[v/x] ` e = 〈‖t‖〉 =⇒ λUv ` ! 〈λx.˜e〉 v = (λx.‖e‖) v.

Proof. Let σ ≡ [v/x]. The premise λUv⇓/σ ` e = 〈‖t‖〉 separately implies two halves of

the desired equality. Firstly, it implies λUv ` e = 〈‖t‖〉 because λUv⇓/σ is a restriction

43

of λUv . Therefore

λUv ` ! 〈λx.˜e〉 v = ! 〈λx.˜〈‖t‖〉〉 v = (λx.‖t‖) v = [v/x]‖t‖.

Secondly, the same premise implies by Theorem 39 that

λUv ` [v/x]‖t‖ = [v/x]‖e‖ = (λx.‖e‖) v.

Pasting together these chains of equalities proves the lemma.

Alternative Proof of Proposition 37. By induction on k, there exists some e such that

λUv⇓/[m/x] ` genpow k.<x>. = .<‖e‖>.; apply Lemma 40.

When it works, careful erasure is more convenient than the approach that exploits

CBN; but careful erasure does not handle nested binders well and is unsuitable for

certain generators, including the longest common subsequence example in chapter 6.

Writing let x = e in t as a shorthand for (λx.t) e as usual,

.!.<let y = 0 in let x = y in .~((λz.z) .<x+y>.)>.

is clearly equivalent to its erasure. To prove this fact, we might observe that

λUv ` [0/y](let x = y in (λz.z) (x+y)) = [0/y](let x = y in x+y)

and expect

λUv⇓/[0/y] ` let x = y in .~((λz.z) .<x+y>.) = let x = y in x+y

but this does not hold. For (λz.z) .<x+y>. to reduce carefully, we need [0, 0/x, y]

and not [0/y]; however,

λUv⇓/[0, 0/x, y] ` let x = y in .~((λz.z) .<x+y>.) = . . .

is incorrect. The x in the proof system λUv⇓/[0, 0/x, y] must be distinct from the x

bound in the object term, or else the proof system would violate α equivalence.

The problem here is that we must reason under different substitutions in different

44

scopes, and it is tricky to propagate the results obtained under λUv⇓/σ to an outer

context where some variables in σ may have gone out of scope. While it may not be

possible to pull off the bookkeeping, we find ourselves fighting against hygiene rather

than exploiting it. For this reason restricting CBV reductions is unsatisfactory, and

appealing to CBN reasoning results in a much simpler approach to handling nested

binders.

45

Chapter 5

Extensional Reasoning for λV

This section presents applicative bisimulation [1, 15], a well-established tool for an-

alyzing higher-order functional programs. Bisimulation is sound and complete for

(≈), and justifies Cβx (Chapter 3.4) and extensionality, allowing us to handle the

divergence issues ignored in Chapter 4.2.

5.1 Proof by Bisimulation

Intuitively, for a pair of terms to applicatively bisimulate, they must both terminate

or both diverge, and if they terminate, their values must bisimulate again under

experiments that examine their behavior. In an experiment, functions are called, code

values are run, and constants are left untouched. Effectively, this is a bisimulation

under the transition system consisting of evaluation (⇓) and experiments. If eRt

implies that either e ≈ t or e,t bisimulate, then R ⊆ (≈).

Definition 41 (Relation Under Experiment). Given a relation R ⊆ E × E, let

R̃
def
= R ∪ (≈). For ` > 0 set u R`

† v iff uR̃v. For ` = 0 set u R0
† v iff either:

• u ≡ v ∈ Const,

• u ≡ λx.e and v ≡ λx.t for some e, t s.t. ∀a.([a/x]e)R̃([a/x]t), or

• u ≡ 〈e〉 and v ≡ 〈t〉 for some e, t s.t. eR̃t.

Definition 42 (Applicative Bisimulation). An R ⊆ E×E is an applicative bisimula-

tion iff every pair (e, t) ∈ R satisfies the following: let ` = max(lv e, lv t); then for any

46

finite substitution σ : Var ⇀
fin

Arg we have σe ⇓`⇐⇒ σt ⇓`, and if σe ⇓` u ∧ σt ⇓` v

then u R`
† v.

Theorem 43. Given R ⊂ E × E, define R•
def
= {(σe, σt) : eRt, (σ : Var ⇀

fin
Arg)}.

Then R ⊆ (≈) iff R• is an applicative bisimulation.

This is our answer to the extensional reasoning question in the introduction: this

theorem shows that bisimulation can in principle derive all valid equivalences, includ-

ing all extensional facts. Unlike in single-stage languages [1, 18, 15], σ ranges over

non-closing substitutions, which may not substitute for all variables or may substitute

open terms. Closing substitutions are unsafe since λU has open-term evaluation. But

for CBV, bisimulation gives a condition under which substitution is safe, i.e., when

the binder is at level 0 (in the definition of λx.e R0
† λx.t). In CBN this is not an

advantage as ∀a.[a/x]eR̃[a/x]t entails [x/x]eR̃[x/x]t, but bisimulation is still a more

approachable alternative to (≈).

The importance of the substitution in λx.e R0
† λx.t for CBV is best illustrated by

the proof of extensionality, from which we get Cβx introduced in Chapter 3.4.

Proposition 44. If e, t ∈ E0 and ∀a. (λx.e) a ≈ (λx.t) a, then λx.e ≈ λx.t.

Proof. Take R
def
= {(λx.e, λx.t)}•. To see that R is a bisimulation, fix σ, and note that

σλx.e, σλx.t terminate to themselves at level 0. By Barendregt’s variable convention

[3], x is fresh for σ, thus σλx.e ≡ λx.σe and σλx.t ≡ λx.σt. We must check [a/x]σe ≈

[a/x]σt: by assumption and by Proposition 18 we get σ[a/x]e ≈ σ[a/x]t, and one

can show that σ and [a/x] commute modulo (≈) (see Appendix C.5). Hence by

Theorem 43, λx.e ≈ λx.t.

Corollary 45 (Soundness of Cβx). If C[(λy.e0) x], C[[x/y]e0] ∈ E0 and C does not

bind x, then λx.C[(λy.e0) x] ≈ λx.C[[x/y]e0].

47

Proof. Apply both sides to an arbitrary a and use Proposition 44 with β/βv.

The proof of Proposition 44 would have failed in CBV had we defined λx.e R0
†

λx.t ⇐⇒ eR̃t, without the substitution. For when e ≡ (λ .0) x and t ≡ 0, the

premise ∀a.[a/x]e ≈ [a/x]t is satisfied but e 6≈ t, so λx.e and λx.t do not bisimulate

with this weaker definition. The binding in λx.e ∈ E0 is guaranteed to be well-leveled,

and exploiting it by inserting [a/x] in the comparison is strictly necessary to get a

complete (as in “sound and complete”) notion of bisimulation.

Howe’s method [18] is used to prove Theorem 43, but adapting this method to λU

is surprisingly tricky because λU ’s bisimulation must handle substitutions inconsis-

tently: in Definition 42 we cannot restrict our attention to σ’s that substitute away

any particular variable, but in Definition 41, for λx.e R0
† λx.t, we must restrict our

attention to the case where substitution eliminates x. Proving Theorem 43 entails

coinduction on a self-referential definition of bisimulation; however, Definition 41

refers not to the bisimulation whose definition it is a part of, but to a different bisim-

ulation that holds only under substitutions that eliminate x. To solve this problem,

we recast bisimulation to a family of relations indexed by a set of variables to be

eliminated, so that the analogue of Definition 41 can refer to a different member of

the family. Theorem 43 is then proved by mutual coinduction.

Remark. Extensionality is a common addition to the equational theory for the plain

λ calculus, usually called the ω rule [26, 19]. But unlike ω in the plain λ calculus,

λU functions must agree on open-term arguments as well. This is no surprise since

λU functions do receive open arguments during program execution. However, we

know of no specific functions that fail to be equivalent because of open arguments.

Whether extensionality can be strengthened to require equivalence only under closed

arguments is an interesting open question.

48

Remark. The only difference between Definition 42 and applicative bisimulation in

the plain λ calculus is that Definition 42 avoids applying closing substitutions. Given

that completeness can be proved for this bisimulation, it seems plausible that the

problem with reasoning under substitutions is the only thing that makes conserva-

tivity fail. Hence it seems that for closed unstaged terms, λU ’s (≈) could actually

coincide with that of the plain λ calculus. Such a result would make a perfect com-

plement to the Erasure Theorem, for it lets us completely forget about staging when

reasoning about an erased program. We do not have a proof of this conjecture,

however. Conservativity is usually proved through a denotational semantics, which

is notoriously difficult to devise for hygienic MSP. It will at least deserve separate

treatment from this paper.

5.2 Example: Tying Loose Ends on Staged Power

In Chapter 4.2, we sidestepped issues arising from the fact that stpow 0 ⇑0 whereas

power 0 ⇓0. If we are allowed to modify the code, this problem is usually easy to

avoid, for example by making power and genpow terminate on non-positive arguments.

If not, we can still persevere by finessing the statement of correctness. The problem

is partial application, so we can force stpow to be fully applied before it executes by

stating power ≈ λn.λx.stpow n x.

Lemma 46. Let e′ ≈⇑ t′ mean e′ ≈ t′ ∨ (σe′⇑` ∧ σt′⇑`) where ` = max(lv e′, lv t′).

For a fixed e, t, if for every σ : Var ⇀
fin

Arg we have σe ≈⇑ σt, then e ≈ t.

Proof. Notice that {(e, t)}• is an applicative bisimulation.

Proposition 47 (CBN stpow is Correct). λUn ` power ≈ λn.λx.stpow n x.

49

Proof. We just need to show ∀e, t ∈ E0. power e t ≈⇑ stpow e t, because then ∀e, t ∈

E0. ∀σ : Var ⇀
fin

Arg. σ(power e t) ≈⇑ σ(stpow e t), whence power ≈ λn.λx.stpow n x

by Lemma 46 and extensionality. So fix arbitrary, potentially open, e, t ∈ E0, and split

cases on the behavior of e. As evident from the following argument, the possibility

that e, t contain free variables is not a problem here.

[If e ⇑0 or e ⇓0 u 6∈ Z+] Both power e t and stpow e t diverge.

[If e ⇓0 m ∈ Z+] Using Proposition 35, power e = power m ≈ stpow m = stpow e,

so power e t ≈ stpow e t.

Proposition 48 (CBV stpow is Correct). λUv ` power ≈ λn.λx.stpow n x.

Proof. By the same argument as in CBN, we just need to show power u v ≈⇑

stpow u v for arbitrary u, v ∈ V 0.

[If u 6∈ Z+] Both power u v and stpow u v get stuck at if n = 0.

[If u ∈ Z+] If u ≡ 1, then power 1 v = v = stpow 1 v. If u > 1, we show that

the generated code is strict in a subexpression that requires v ∈ Z. Observe that

genpow u .<x>. ⇓0 .<e>. where e has the form .<x * t>.. For [v/x]e ⇓0 it is

necessary that v ∈ Z. It is clear that power u v ⇓0 requires v ∈ Z. So either v 6∈ Z

and power u v ⇑0 and stpow u v ⇑0, in which case we are done, or v ∈ Z in which

case Proposition 37 applies.

Remark. Real code should not use λn.λx.stpow n x, as it re-generates and recompiles

code upon every invocation. Application programs should always use stpow, and one

must check (outside of the scope of verifying the function itself) that stpow is always

eventually fully applied so that the η expansion is benign.

50

5.3 Soundess and Completeness of Applicative Bisimulation

In this section, we will prove Theorem 43. As noted above, the soundness proof of

applicative bisimulation (the harder half of Theorem 43) is an adaptation of Howe’s

[18], and the main issue is to remove the original method’s reliance on being able

to substitute away free variables. We begin with an overview to motivate the main

difference from Howe’s formulation, namely our choice to index the bisimilarity rela-

tion by sets of variables. This overview will be more technical than the Remark in

Chapter 5.1.

5.3.1 Overview

We focus on CBV in this informal overview. In single-stage calculi, observational

equivalence is typically the greatest (under inclusion) consistent congruence, i.e., the

greatest context-respecting (e ∼ t =⇒ C[e] ∼ C[t]) equivalence that is a strict

subset of E × E. Howe [18] gives a framework for showing that the union of all

bisimulations (∼) is a nontrivial congruence, from which it follows that (∼) ⊆ (≈). It

is easy to prove that (∼) is an equivalence, but not that it is context respecting. For

this harder step, Howe defines an auxiliary relation e ∼̂ t, called the precongruence

candidate, which holds iff e can be transformed into t by one bottom-up pass of

replacing successively larger subterms e′ of e by some t′ such that e′ ∼ t′:

x ∼ t

x ∼̂ t

c ∼ t

c ∼̂ t

e1 ∼̂ s1 e2 ∼̂ s2 s1 s2 ∼ t

e1 e2 ∼̂ t

e ∼̂ s λx.s ∼ t

λx.e ∼̂ t

e ∼̂ s 〈s〉 ∼ t

〈e〉 ∼̂ t

e ∼̂ s ˜s ∼ t

˜e ∼̂ t

e ∼̂ s ! s ∼ t

! e ∼̂ t

51

where s ranges over E. A deep understanding of how e ∼̂ t works is unnecessary for

now. The point is that it is derived by repeatedly replacing subterms e′ of e with t

such that e′ ∼ t, in a way that makes (∼̂) a context-respecting superset of (∼). Howe

proves that (∼̂) is also a bisimulation, and concludes that (∼̂) = (∼) as (∼) contains

all bisimulations, hence that (∼) respects contexts.

As a part of showing that (∼̂) is a bisimulation, we need to prove that (λx.e) ea ∼̂

(λx.t) ta and (λx.e) ea ⇓0 u implies ∃v. (λx.t) ta ⇓0 v and u ∼̂0
† v, where all terms

and values are level 0. Inducting on the number of steps (λx.e) ea takes to terminate,

we can get the inductive hypothesis

ea ⇓0 u′ ta ⇓0 v′ u′ ∼̂0
† v
′

and (λx.e) u′ ;
0

[u′/x]e ⇓0 u, where [u′/x]e terminates in fewer steps than (λx.e) u′. If

we could show [u′/x]e ∼̂ [v′/x]t then the conclusion follows from inductive hypothesis.

To prove [u′/x]e ∼̂ [v′/x]t, we seem to need u′ ∼̂ v′. After all, assuming x ∈ FV(e),

if rewriting subterms of [u′/x]e by (∼) gets us [v′/x]t, then rewriting subterms of u′

by (∼) should get us v′.

But herein lies the problem. What if u′, v′ are λ’s, say λx.e′, λx.t′ respectively?

Because we must exploit well-leveled bindings as discussed above, from u′ ∼̂0
† v
′ we

get only∗ ∀a. [a/x]e′ ∼̂ [a/x]t′. This cannot possibly imply e′ ∼̂ t′ if (∼̂) = (∼) = (≈)

really holds, for then we have the counterexample e′ ≡ (λ .0) x, t′ ≡ 0. If we had

e′ ∼̂ t′ then λx.e′ ∼̂ λx.t′ would follow since (∼̂) respects contexts, but not having

e′ ∼̂ t′, we cannot seem to extract u′ ∼̂ v′ from u′ ∼̂0
† v
′ alone.

In Howe’s setting, which prohibits open-term evaluation, this problem does not

arise because everything is compared under closing substitutions. He defines e ∼̂ t to

∗We can ignore the tilde in Definition 41 here since we are expecting (∼̂) = (∼) = (≈).

52

hold iff ∀closing σ the σe and σt satisfy certain conditions, so the conditional assertion

∀a. [a/x]e′ ∼̂ [a/x]t′ that only assures (∼̂) under [a/x] coincides with e′ ∼̂ t′. In such a

setting defining λx.e′ ∼̂† λx.t′ as e′ ∼̂ t′ works fine, whereas in λU it is unsatisfactory

because ∀a. [a/x]e′ ≈ [a/x]t′ =⇒6 e′ ≈ t′.

To solve this problem, we generalize bisimilarity to a family of relations e ∼X t

indexed by sets of variables X, which hold iff σe ∼ σt under all substitutions with

domσ ⊇ X. Then relations under experiment are redefined to λx.e′ ∼̂0
†X λx.t′ ⇐⇒

e′ ∼X∪x t′, and λx.e′ ∼̂X λx.t′ is refined to

e0 ∼̂X s λx.s ∼X\{x} t

λx.e0 ∼̂X\{x} t

Then the family (∼̂X) respects contexts with diminishing indices, i.e., e ∼̂X t =⇒

∀C. ∃Y ⊆ X. C[e] ∼̂Y C[t]. In particular, u′ ∼̂0
†X v′ gives e′ ∼̂X∪{x} t′, which implies

λx.e′ ∼̂X λx.t′ i.e. u′ ∼̂X v′, and the rest of the proof goes smoothly.

5.3.2 The Proof

We now move on to the formal presentation of the proof. The following applies to

both CBV and CBN. To simplify the proof, we will mostly use observational order

rather than the full observational equivalence.

Definition 49 (Observational Order). e / t iff for every C such that C[e], C[t] ∈

Prog, C[e] ⇓0=⇒ C[t] ⇓0 holds and whenever C[e] terminates to a constant, then

other terminates to the same constant.

Remark. Note (≈) = (/) ∩ (').

We define indexed applicative bisimilarity coinductively using νRX .f RX , which

denotes the greatest fixed point of a monotonic function f from families of relations

53

to families of relations. The basis for the existence of such a fixed point and the

associated coinduction principle (∀S. S ⊆ f S =⇒ S ⊆ νR.f R) is reviewed in

Appendix B.

Notation. A sequence, or family, of mathematical objects xi indexed by a set I is

written xi
i∈I . The superscript binds the index variable i. The superscript may be

abbreviated like xi
i or omitted if the intention is clear. Let X, Y range over ℘finVar,

the set of all finite subsets of Var. Let RX denote a family of relations RX indexed by

X ∈ ℘finVar. Union, inclusion, or other operations between families are done point-

wise, e.g., RX ⊆ SX denotes ∀X. RX ⊆ SX . Let the signature σ : X|Var ⇀
fin

Arg

mean that σ : Var ⇀
fin

Arg and dom σ ⊇ X, i.e., σ substitutes for at least the variables

in X. For a relation R, let R−1 denote {(e, t)|tRe}.

Definition 50 (Indexed Applicative Bisimilarity). Define indexed applicative simi-

larity (.X), indexed applicative bisimilarity (∼X), and auxiliary relations as follows.

u {RX
X}0 v

def⇐⇒

u ≡ λx.e =⇒ (v ≡ λx.t ∧ eR{x}t)

u ≡ 〈e〉 =⇒ (v ≡ 〈t〉 ∧ eR∅t)

u ≡ c =⇒ v ≡ c

u {RX
X}`+1 v

def⇐⇒ uR∅v

e [R]Xt
def⇐⇒ ∀σ : X|Var ⇀

fin
Arg. let ` = max(lv e, lv t) in

σe ⇓` u =⇒ (σt ⇓` v ∧ u {RX
X}` v)

(.X)
def
= νRX

X
. [R]X

X

(∼X)
def
= νRX

X
. [R]X

X
∩ [R−1]X

−1
X

Note that {−}` maps a family of relations RX to a single relation {RX}` , whereas

[−]X maps a family RX to a family [R]X .

Indexed applicative bisimilarity agrees with the simpler notion of indexed applica-

54

tive mutual similarity, which is the symmetric reduction of (.X). We will use these

notions interchangeably.

Proposition 51. Define applicative mutual similarity as (∼′X)
def
= (.X)∩(&X). Then

(∼X) = (∼′X).

Proof. See Appendix C.6 for details.

As discussed above, the main idea is that indexed applicative bisimilarity should be

a re-definition of observational equivalence. However, indexed applicative bisimilarity

coincides not with observational equivalence but an indexed variant thereof. At each

index X, the relation (/X) asserts (/) under substitutions whose domains contain

X. Then, whereas Howe proved (.) ⊆ (/), we prove (.X) ⊆ (/X).

Definition 52 (Indexed Observational Order and Equivalence). Define e ≈X t
def⇐⇒

∀σ : X|Var ⇀
fin

Arg. σe ≈ σt and e /X t
def⇐⇒ ∀σ : X|Var ⇀

fin
Arg. σe / σt.

To prove (.X) = (/X), we show mutual containment. The harder direction

(.X) ⊆ (/X) (soundness of indexed bisimilarity) derives from the fact that (.X) is

context-respecting, in the following adapted sense.

Definition 53. An indexed family of relations RX respects contexts with diminishing

indices iff we have ∀i. eiRXti =⇒ (τ ei)RY (τ ti) where Y = X \ {x} if τ ei ≡ λx.e0

and Y = X otherwise.

Lemma 54. e .X t⇐⇒ ∀σ : X|Var ⇀
fin

Arg. σe .∅ σt.

Proof. Straightforward; See Lemma 108 in Appendix C.6.

Theorem 55 (Soundness of Indexed Applicative Bisimulation). (.X) ⊆ (/X), there-

fore (∼X) ⊆ (≈X).

55

Proof. We will show below that (.̂X) respects contexts with diminishing indices.

Suppose e .X t and let a σ : X|Var ⇀
fin

and a context C be given such that

C[σe], C[σt] ∈ Prog. Then

σe .∅ σt by Lemma 54

C[σe] .∅ C[σt] by context-respecting property

C[σe] ⇓0=⇒ C[σt] ⇓0

and ∀c. C[σe] ⇓0 c =⇒ C[σt] ⇓0 c

 because (.X) = [.]X

σe / σt because C is arbitrary

e /X t because σ is arbitrary

Therefore, (.X) ⊆ (/X) and (∼X) = (&X) ∩ (.X) ⊆ ('X) ∩ (/X) = (≈X).

To prove that (.X) respects contexts with diminishing indices, Howe’s precongru-

ence candidate is modified for indexed relations as follows.

Definition 56 (Term Constructor). Let τ range over multi-contexts (contexts with

zero or more holes) of the forms x, c, (λx.•), (• •), 〈•〉, ˜•, and ! •. The two holes in

• • can be plugged by different expressions.

Using the notation introduced above for sequences and families, we write τei
i∈I

(using some finite set of positive integers I) for a term that is formed by plugging the

holes of τ by immediate subterms ei ; for example, when τ ≡ • •, then τei
i∈{1,2} ≡

e1 e2. If τ ≡ x or c, then the index set I is empty.

Definition 57 (Indexed Precongruence Candidate). Given a family of relations RX ,

define the indexed precongruence candidate R̂X by the following rules.

τei not of form λx.e0 ∀i. eiR̂Xsi τsiRXt

τeiR̂Xt

e0R̂Xs (λx.s)RX\{x}t

(λx.e0)R̂X\{x}t

56

Proposition 58, Proposition 59 (iv) and Lemma 60 imply (.̂X) = (.X), so by

Proposition 59 (ii), it follows that (.X) respects contexts with diminishing indices.

Proposition 58. Indexed applicative similarity is a monotonic family of precongru-

ences:

(i) (.X) is reflexive for every X.

(ii) (.X) is transitive for every X.

(iii) (.X) is monotonic in X (i.e., X ⊆ Y =⇒ (.X) ⊆ (.Y)).

Proof. The proofs for (i) and (ii) are adapted from [18].

(i) Define (≡X) to be syntactic equality for every X. Clearly (≡X) ⊆ [≡X], so

by coinduction (≡X) ⊆ (.X) in the product lattice
∏

X ℘(E × E). Therefore,

∀X. (≡) ⊆ (.X).

(ii) Define R◦S def
= {(e, t) : ∃d. eRdSt}. Take any triple e, d, t such that e .X d .X

t, and let σ : X|Var ⇀
fin
A, ` be given. Then σe ⇓` v =⇒ σd ⇓` w =⇒ σt ⇓` u

and v {.X}`w {.X}` u. The last assertion is equivalent to v {.X ◦ .X}` u, so

e [.X ◦ .X]t. Then by coinduction (.X ◦ .X) ⊆ (.X).

(iii) Suppose e .X t and X ⊆ Y . Any σ : Y |Var ⇀
fin
A also satisfies σ : X|Var ⇀

fin
A,

so if σ, σt ∈ E` then σe ⇓` v =⇒ σt ⇓` u where v {.X}` u. Thus e .Y t.

Proposition 59 (Basic Properties of the Indexed Precongruence Candidate). Let

RX be a family of preorders that is monotone in X, i.e., each RX is a preorder and

X ⊆ Y =⇒ RX ⊆ RY . Then

(i) R̂X is reflexive for every X.

57

(ii) R̂X respects contexts with diminishing indices.

(iii) eR̂XsRXt =⇒ eR̂Xt at each X.

(iv) RX ⊆ R̂X .

(v) R̂X is monotonic in X.

Proof.

(i) Trivial induction on e shows eR̂Xe.

(ii) By reflexivity of RX , derivation rules for R̂X subsume this assertion.

(iii) Straightforward induction on e using (i) and transitivity of RX .

(iv) Apply (i) to (iii).

(v) Straightforward induction on e using monotonicity of RX shows

(eR̂Xt ∧X ⊆ Y) =⇒ eR̂Y t.

Lemma 60. e .̂X t =⇒ e [.̂X]t.

Proof. Fix a σ and an `, and assume σe ;
`
n v. Then show σt ⇓` u ∧ v {.̂X}` u by

lexicographic induction on (n, e) with case analysis on the form of e. See Appendix C.6

for details.

To prove the completeness of indexed bisimilarity ((/X) ⊆ (.X)), we show

(/X) ⊆ [/]X and coinduct. While proving (/X) ⊆ [/]X , it is necessary to con-

vert (/) to (/∅). For example, when e /X t, σe ⇓0 〈e′〉 then we can easily show

σt ⇓0 〈t′〉 with e′ / t′, but we cannot immediately conclude the e′ /∅ t′ that we

need for 〈e′〉 {/X}0 〈t′〉. The argument given in Proposition 18, which hinges on the

58

new, generalized EU rule, allows us to perform this conversion from (/) to (/∅). We

restate Lemma 61 here for (/).

Lemma 61. ∀σ : Var ⇀
fin

Arg. e / t =⇒ σe / σt.

Proof. Use the same argument as Proposition 18.

Lemma 62. For every X, (/) ⊆ (/X). In particular, (/) = (/∅). Likewise,

(≈) ⊆ (≈X) and (≈) = (≈∅).

Proof. If e / t, then σe / σt for every σ : X|Var ⇀
fin

Arg by Lemma 61, so e /X t.

Therefore (/) ⊆ (/X). When X = ∅, the reverse containment (/∅) ⊆ (/) also

holds: the (/∅) relation implies (/) under any substitution, including the empty

substitution. Hence (/) = (/∅). The statement for (≈) follows immediately.

Theorem 63 (Completeness of Indexed Applicative Bisimulation). (/X) = (.X)

and (≈X) = (∼X).

Proof. By Theorem 55, only (/X) ⊆ (.X) and (≈X) ⊆ (∼X) need to be proved.

Suppose e /X t and fix a σ : X|Var ⇀
fin

Arg and an `. By definition σe / σt so

σe ⇓` v =⇒ σt ⇓` u; we will show that if these v, u exist then v {/X}` u.

[If ` > 0] Because v ≈ σe / σt ≈ u, by Lemma 62 it follows that v /∅ u.

[If ` = 0] Split cases by the form of v.

[If v ≡ λx.e′] If u were of the form 〈d〉, then the context 〈˜•〉 would distinguish v

and u because 〈˜λx.e′〉 is stuck while 〈˜〈d〉〉 ⇓0 〈d〉. If u were a constant, then

the trivial context • would distinguish u and v. Therefore, u ≡ λx.t′ for some

t′ ∈ E0. For any a ∈ Arg, the equivalence v / u guarantees [a/x]e′ / v a /

u a / [a/x]t′ so using Lemma 62, e′ /{x} t′.

59

[If v ≡ 〈e′〉] By the same argument as above, u ≡ 〈t′〉. Then, since e′ ∈ E0, we

have e′ ≈ ! 〈e′〉 / ! 〈t′〉 ≈ t′, so by Lemma 62, e′ /∅ t
′.

[If v ≡ c] u ≡ c, for otherwise the trivial context • would distinguish u and v.

It follows that e [/]Xt, so (/X) ⊆ [/]X . By coinduction, (/X) ⊆ (.X). Therefore,

(≈X) = ('X) ∩ (/X) = (&X) ∩ (.X) = (∼X) for each X.

Finally, from Theorems 55 and 63, we can prove the soundness and completeness

of non-indexed applicative bisimulations.

Proof of Theorem 43. Let us first prove soundness (if R• is a non-indexed bisim-

ulation, then R ⊆ (≈)). Given a relation R, define an indexed family RX by

eRXt
def⇐⇒ ∀σ : X|Var ⇀

fin
Arg. (σe)R(σt), and set ∀X. R̃X

def
= RX ∪ (≈X). Note

R• = R∅. Definition 42 states that R• is a (non-indexed) applicative bisimula-

tion precisely when R• ⊆ [R̃]∅ ∩ [R̃−1]∅
−1

. When this containment holds, we

claim that ∀X. R̃X ⊆ [R̃]∅ ∩ [R̃−1]∅
−1

follows. Suppose eR̃Xt for some e, t,X,

let ` = max(lv e, lv t), and let ∀σ : X|Var ⇀
fin

Arg be given. Then we have

∃u. σe ⇓` u⇐⇒ ∃v. σt ⇓` v and if u, v exist then u {R̃X}` v ∧ v {R̃−1
X }

` u (∗8)

as follows. First, we have σeR̃∅σt from eR̃Xt, hence either σeR∅σt or σe ≈∅ σt.

[If σeR∅σt] R∅ = R• ⊆ [R̃]∅ ∩ [R̃−1]∅
−1

, so (∗8) is immediate.

[If σe ≈∅ σt] By Theorems 55 and 63 (≈∅) = (∼∅), so σe ⇓` u iff σt ⇓` v and

u { ∼X}` v. But (∼X) ⊆ R̃X , so (∗8) follows.

Therefore, it follows that R̃X ⊆ [R̃]∅ ∩ [R̃−1]∅
−1

. By coinduction, R̃X ⊆ (∼X) =

(≈X), so in particular R∅ ⊆ (R̃∅) ⊆ (≈∅) = (≈) using Lemma 62.

Now let us prove the converse (if R ⊆ (≈) then R• is a non-indexed bisimulation).

Let R ⊆ (≈) be given, and define the families RX and R̃X as above. Then at each

X, we have RX ⊆ (≈X), so R̃X = (≈X) = (∼X). Therefore, R• = R∅ ⊆ (∼∅) ⊆

60

[R̃]∅ ∩ [R̃−1]∅
−1

, which means that R• is a bisimulation.

1

Chapter 6

Case Study: Longest Common Subsequence

In this section, we show how erasure and bisimulation work for a more complex exam-

ple. LCS has a much more sophisticated code generation scheme than power, using

the monadic memoization technique for eliminating the code duplication problem

that is pervasive for staging memoized functions [31].

6.1 The Code

Due to its size, the code for LCS is split up into two figures. Figure 6.1 shows

naive_lcs, a näıve version that serves as the reference implementation, and an un-

staged but memoized version lcs. Both of these functions map integers i, j and

arrays P,Q to the length of the LCS of P0, P1, . . . , Pi−1 and Q0, Q1, . . . , Qj−1. Note

that for simplicity, we compute the length of LCS instead of the actual sequence.

The naive_lcs runs in exponential time, while lcs is a textbook polynomial-time

version deploying memoization. The memo table is passed around monadically, using

the monad primitives defined in the same figure.

We use a state-continuation monad to hide memo table-passing and to make

the code in CPS. Computation in this monad takes a state (the memo table) and

a continuation, and calls the continuation with an updated state and return value.

Memo tables are functions mapping a key k and functions f, g to f v if a value v is

associated with k, or to g () if k is not in the table. The value empty is the empty

2

table, ext extends a table with a given key-value pair, and lookup looks up the table.∗

Figure 6.2 finally shows a staged, memoized implementation of LCS, which takes

the lengths i, j and unrolls the recursion of lcs for that particular pair of lengths.

Both lcs and stlcs are written with open recursion and closed up by memoizing

fixed-point combinators mem and memgen.

6.2 Purpose of Monadic Translation

The generator is written in CPS (via the state-continuation monad) to solve the

code duplication problem that commonly confronts staging of memoized functions.

We briefly review the purpose of CPS here using a simpler example, the Fibonacci

sequence. See [31] for a thorougher treatment.

let rec fib n =

if n <= 1 then n

else fib (n-1) + fib (n-2)

let rec stfib n = (* unroll recursion by MSP *)

if n <= 1 then .<n>.

else .<.~(stfib (n-1)) + .~(stfib (n-2))>.

The fib function computes the n-th term of the Fibonacci sequence, while stfib

generates code that results from unrolling the recursion in fib. If we memoize

these functions, then fib reduces from exponential time to linear time, but mem-

oized stfib still generates exponential code. The memo table for fib accumu-

∗This interface is chosen to make the correspondence with λU clear. In MetaOCaml, lookup

can return an option type, but since we left out higher-order constructors from λU we encoded the

option type here. Const covers first-order types like int option, but not higher-order types like

(int → int) option or (int code) option.

3

lates entries like fib 1 7→ 1 (i.e. the cached result for fib 1 is 1), fib 2 7→ 1,

and fib 3 7→ 2, caching an integer for each entry, whereas the table for stfib

gets entries like stfib 1 7→ .<1+0>., stfib 2 7→ .<(1+0)+0>)., and stfib 3 7→

.<((1+0)+0) + (1+0)>., caching progressively larger code. Intuitively, the problem

is that whereas fib’s memo caches the result of running some code, stfib’s memo

caches the code itself. For fib, copying a value off of the table does not entail repli-

cating and redoing all the computation that went into producing that value, so it does

not perform any duplicated work; by contrast, in stfib, copying code from the ta-

ble does result in duplicating all the sub-computations contained therein. Thus, the

generated code repeats e.g. 1+0—the computation for fib 2—exponentially many

times.

If we could cache only those code of the form .<zn>. where zn ∈ Var, then

copying them would not lead to exponential growth. On the one hand, we wish

stfib n returned .<zn>. for each n in such a way that the variable zn will be bound

to zn−1 +zn−2 in the final code. On the other hand, we cannot return .<zn>. without

a binding for zn, while returning .<let zn = zn−1 + zn−2 in zn>. would defeat the

purpose. CPS-translating the generator solves this dilemma. CPS functions do not

return but call their callers back, so instead of trying to return .<zn>., we can call

the caller back with .<zn>. as argument, within the (escaped) body of a binding for

zn:

let rec stfib’ n k = (* k is the continuaion *)

if n <= 1 then k .<n>.

else stfib’ (n-1) (fun zn−1 →

stfib’ (n-2) (fun zn−2 →

.<let zn = .~zn−1 + .~zn−2 in .~(k .<zn>.)>.))

4

If stfib’ is memoized and then invoked with the identity continuation, the memo

table is populated with entries of the form stfib’ n 7→ .<zn>., while contexts of

the form .<let zn = zn−1+zn−2 in .~•>. are pushed onto the stack (i.e. the ma-

chine stack, not the explicit continuations). When the identity continuation is finally

invoked on .<zn>., the let in the stack captures that zn. In the end, the mem-

oized generator produces a code in A-normal form. For example, stfib’ 4 with

memoization returns:

.<let z2 = 1 + 0 in

let z3 = z2 + 1 in

let z4 = z3 + z2 in

z4>.

CPS translation has the same effect on genlcs. The lcs function is a textbook

example of a memoized algorithm, and staging it would counteract the memoization.

To avoid this problem, we put the whole function into CPS (via a monad) and insert

a let in the memoizing wrapper memgen. Whenever memgen detects an argument has

no cached return value, it calls on genlcs to produce some code, and binds it to a

new variable z to insert into the memo table. This technique significantly improves

the quality of the generated, code but makes the code generation logic much trickier

and poses a challenge for verification.

The purpose of CPS in stlcs is to use Swadi et al.’s monadic translation technique

for avoiding code duplication [31], which in turn is an adaptation of Bondorf’s binding-

time improvement [5] to MSP. Näıvely staging a memoized function like lcs undoes

the effects of memoization and generates an unrolling of naive_lcs, duplicating code

exponentially many times. CPS secures a sweet spot for let-insertion, namely in the

memoizing fixed-point combinator memgen.

5

This technique greatly improves the quality of the generated code but makes the

code generation logic tricky. For example, perhaps a bit counter-intuitively, genlcs

generates code inside-out. It generates nested let’s that look like

let z1 = e1 in

let z2 = e2 in

. . .

in t

where e1 is a term that computes LCS for smaller (i, j) than does e2. Whereas

naive_lcs inspects larger (i, j) before smaller (i, j), the generated code above com-

putes smaller (i, j) before larger (i, j). These terms appear in the order that their

values would populate the memo table in lcs, i.e. the order in which calls to lcs

return. In general, advanced code generation schemes make describing the generated

code’s exact shape hard, and monadic memoization is no exception. But as we showed

in Chapter 4.2, erasure makes such details irrelevant, letting us get away with rather

sketchy characterizations of the generated code.

6.3 Correctness Proof

The correctness proof for CBN is just a simplification of CBV, so we will focus on

the harder CBV and leave CBN as an exercise. We assume Const has unit, booleans,

integers, tuples of integers, and arrays thereof with 0-based indices. A(⊆ Const)

stands for the set of all arrays, σ ranges over substitutions Var ⇀
fin
V 0, and e ⇓0 Z

means ∃n ∈ Z. e ⇓0 n. Inclusion between substitutions σ′ ⊇ σ is meant in the usual

set-theoretic sense (dom σ′ ⊇ domσ and σ′|domσ = σ).

Despite the extra baggage that comes with LCS, our overall strategy remains

6

the same as for power: check termination and apply the Erasure Theorem. In this

case, we should additionally prove that naive_lcs ≈ lcs. The first step is similar

to power but with additional material needed to account for memoization and CPS.

The second step is routine. Let us start with a high-level proof showing where the

Erasure Theorem is invoked and what lemmas we need.

Theorem 64. λUv ` naive_lcs ≈ λx.λy.λp.λq.stlcs x y p q

Proof. By extensionality and Lemma 46, it suffices to prove naive_lcs i j P Q ≈⇑

stlcs i j P Q for every i, j, P,Q ∈ V 0.

[If i, j ∈ Z] Depends on the types and lengths of P,Q.

[If P,Q ∈ A and i < length(P) ∧ j < length(Q)] This is where we need the Era-

sure Theorem, but note that erasure equates stlcs to lcs, not to naive_lcs.

This difference is immaterial as naive_lcs ≈ lcs (Lemma 79). Clearly

naive_lcs returns an integer in this case, so lcs does as well. Once we show

stlcs i j P Q ⇓0 Z (Lemma 70), then Lemma 33 derived from the Erasure

Theorem shows lcs i j P Q = stlcs i j P Q.

[Else] naive_lcs i j P Q ⇑0 either because of type error (P ,Q are indexed

but are not arrays) or index-out-of-bounds. We will show that in this case

stlcs i j P Q also diverges (Lemma 75).

[If i, j 6∈ Z] Both naive_lcs i j P Q and stlcs i j P Q get stuck.

We first prove that stlcs i j P Q ⇓0 Z whenever i, j ∈ Z and P,Q are arrays with

enough elements, which boils down to proving the same for the code generated by

genlcs. We maintain two invariants, the first being that the memo table should map

every key to some .<z>., where z should have an integer value under the substitution

that will be in effect when the generated code is run.

7

Definition 65. The set G of good memo tables is the set of all T ∈ E0 such that for

every i, j ∈ Z and every f, g ∈ V 0, either λUv ` lookup T (i, j) f g = f .<z>. for

some z, or λUv ` lookup T (i, j) f g = g (). If for all of the z’s we have z ∈ domσ

and σz ∈ Z, then T is covered by σ, written T ∈ Gσ.

Lemma 66. We have empty ∈ Gσ and T ∈ Gσ∧σz ∈ Z =⇒ ext T (i, j) .<z>. ∈ Gσ.

Also, empty ∈ G and T ∈ G =⇒ ext T (i, j) .<z>. ∈ G.

Proof. More or less obvious from definitions, but βv-reducing the application ext T

requires noting that every T ∈ Gσ is terminating because T (0, 0) (λ .1) (λ .1) ⇓0

1.

The other invariant is that the continuation maps every .<‖e‖>. to some .<‖t‖>.

where ‖t‖ terminates whenever ‖e‖ does. But e, t can contain free variables (the z’s

mentioned above), so termination must be assessed under substitutions. We set Kσ

to the set of continuations for which FV(‖t‖) ⊆ domσ; termination of ‖e‖, ‖t‖ are

assessed under extensions of σ covering FV(‖t‖) ∪ FV(‖e‖).

Definition 67. Let the set Kσ of all good continuations under σ consist of all k ∈ V 0

s.t. for any e, σ′ ⊇ σ, and T ∈ Gσ′ with σ′‖e‖ ⇓0 Z, we have ∃t. k T .<‖e‖>. =

.<‖t‖>. and σ′‖t‖ ⇓0 Z.

Under these invariants, genlcs always returns terminating code.

Lemma 68. Fix σ, T ∈ Gσ, (i, j ∈ Z), and (p, q ∈ Var). If ∀κ ∈ Kσ. ∃e. σ‖e‖ ⇓0 Z

and

λUv ` genlcs i j .<p>. .<q>. T κ = .<‖e‖>.

then ∀k ∈ Kσ. ∃e. σ‖e‖ ⇓0 Z and

λUv ` memgen genlcs i j .<p>. .<q>. T k = .<‖e‖>.

8

Proof. Fix k and split cases according to whether (i, j) is found in T , i.e. whether

lookup T (i, j) f g invokes f or g. If it calls f , which in this case is (fun s r → k s r),

then

λUv ` memgen genlcs i j .<p>. .<q>. T k = k T .<z>.,

for some z s.t. σz ∈ Z, so the conclusion follows from k ∈ Kσ. Else g is called, which

in this case calls genlcs, so

memgen genlcs i j.<p>. .<q>. T k

= genlcs i j .<p>. .<q>. T k′

where k′
def≡ (fun tab r → .<let . . . >.). Hence, it suffices to show k′ ∈ Kσ. Fix e,

σ′ ⊇ σ and T ′ ∈ Gσ′ , and assume σ′‖e‖ ⇓0 n ∈ Z. Letting T ′′
def≡ ext T ′ (i, j) .<z>.,

we have

k′ T ′ .<‖e‖>. = .<let z = ‖e‖ in .~(k T ′′ .<z>.)>.

Lemma 66 gives T ′′ ∈ Gσ′[z7→n], while σ′[z 7→ n] ⊇ σ, so by k ∈ Kσ the right-hand

side equals some .<let z = ‖e‖ in ‖t‖>. (which has the form .<‖e′‖>.) such that

σ′[z 7→ n]‖t‖ ⇓0 Z. Then

σ′(let z = ‖e‖ in ‖t‖) = (let z = n in σ′‖t‖)

= σ′[z 7→ n]‖t‖ ⇓0 Z

noting z is fresh for σ′ by Barendregt’s variable convention [3].

Lemma 69. Fix σ, T ∈ Gσ, (i, j ∈ Z), and (p, q ∈ Var) such that σp, σq ∈ A and

i < length(σp) ∧ j < length(σq). Then ∀k ∈ Kσ. ∃e. σ‖e‖ ⇓0 Z and

λUv ` genlcs i j .<p>. .<q>. T k = .<‖e‖>.

Proof. Lexicographic induction on (i, j). Fix k. Now, if i < 0 or j < 0 we have

genlcs i j .<p>. .<q>. T k = k T .<0>. and the conclusion follows immediately

9

from k ∈ Kσ. If i ≥ 0 ∧ j ≥ 0,

genlcs i j .<p>. .<q>. T k

= bind (memgen genlcs (i− 1) (j − 1) .<p>. .<q>.)

(fun n1 → bind . . .) T k

= memgen genlcs (i− 1) (j − 1) .<p>. .<q>. T k1 (∗9)

where k1
def≡ (fun s r → (fun n1 → . . .) r s k). It suffices to prove k1 ∈ Kσ,

for then (∗9) = .<‖e‖>. for some e s.t. σ‖e‖ ⇓0 Z by inductive hypothesis and

Lemma 68. So fix σ1 ⊇ σ, T1 ∈ Gσ1 , and e1 with σ1‖e1‖ ⇓0 Z, then let us prove

∃t. k1 T1 .<‖e1‖>. = .<‖t‖>. and σ1‖t‖ ⇓0 Z. But k1 T1.<‖e1‖>. reduces to

bind (memgen genlcs (i− 1) j .<p>. .<q>.)

(fun n2 → [.<‖e1‖>./n1] . . .) T1 k

so we see that it suffices to prove that k2 ∈ Kσ1 , where

k2 ≡ (fun s r → (fun n2 → [.<‖e1‖>./n1] . . .) r s k).

Note that we can invoke the inductive hypothesis since σ1 ⊇ σ implies that σ1 satisfies

the constraints on σ1p and σ1q. Fix σ2 ⊇ σ1, T2 ∈ Gσ2 , and e2 with σ2‖e2‖ ⇓0 Z.

Proceeding likewise with the one last call to memgen genlcs, we find that it suffices

to prove k3 ∈ Kσ2 , where k3 ≡ (fun s r → (fun n3 → . . .) r s k). Fixing

σ3 ⊇ σ2, T3 ∈ Gσ3 , and e3 with σ3‖e3‖ ⇓0 Z,

k3 T3 .<‖e3‖>. = k T3 .<if p.(i) q.(j) then ‖e1‖+1

else max ‖e2‖ ‖e3‖>.

As σ3 ⊇ σ2 ⊇ σ1, from σi‖ei‖ ⇓0 Z we get σ3‖e‖ ⇓0 Z (because if σi‖ei‖ ≈ n for some

n ∈ Z, then σ3‖e‖ ≡ (σ3|Var\domσi)(σi‖e‖) ≈ n using Proposition 18). Thus, since

σ3p, σ3q are arrays of length greater than i,j, respectively, σ3‖ei‖ ⇓0 Z for i = 1, 2,

10

and σ3(if p.(i) . . . ‖e3‖) ⇓0 Z. The conclusion then follows from k ∈ Kσ.

Lemma 70. If i, j ∈ Z, P,Q ∈ A, and i < length(P) ∧ j < length(Q), then

stlcs i j P Q ⇓0 Z.

Proof. Letting σ
def
= [P,Q/p, q], we have fun s r → r ∈ Kσ and empty ∈ Gσ, so

using Lemma 69,

stlcs i j P Q = (fun p q → ‖e‖) P Q = σ‖e‖ ⇓0 Z.

The proof that stlcs diverges if P,Q are too short or are not arrays is similar to

Lemma 70, only differing in the invariants. This time, the invariant on the continua-

tion holds that the generated code is always divergent for any extension of the current

substitution. If k T .<‖e‖>. = .<‖t‖>., the ‖e‖ plays no role in the divergence of

‖t‖. The previously important invariant that every 〈z〉 in the table is bound to an

integer becomes irrelevant as well. Given these invariants, genlcs generates code

that diverges, and memgen preserves this property.

Definition 71. Let the setK⇑σ of all erring continuations under σ consist of all k ∈ V 0

s.t. for any e and T ∈ G, we have ∃t. k T .<‖e‖>. = .<‖t‖>. and ∀σ′ ⊇ σ. σ′‖t‖ ⇑0.

Lemma 72. Fix σ, T ∈ Gσ, (i, j ∈ Z), and (p, q ∈ Var). If ∀κ ∈ K⇑σ . ∃e. (∀σ′ ⊇

σ. σ′‖e‖ ⇑0) and

λUv ` genlcs i j .<p>. .<q>. T κ = .<‖e‖>.

then ∀k ∈ K⇑σ . ∃e. (∀σ′ ⊇ σ. σ′‖e‖ ⇑0) and

λUv ` memgen genlcs i j .<p>. .<q>. T k = .<‖e‖>.

11

Proof. Fix k and split cases according to whether (i, j) is found in T , i.e. whether

lookup T (i, j) f g invokes f or g. If it calls f , which in this case is (fun s r → k s r),

then

λUv ` memgen genlcs i j .<p>. .<q>. T k = k T .<z>.,

for some z, so the conclusion follows from k ∈ K⇑σ . Else g is called, which in this case

calls genlcs and extends the table, so

memgen genlcs i j.<p>. .<q>. T k

= genlcs i j .<p>. .<q>. T k′

where k′
def≡ (fun tab r → .<let . . . >.). Hence, it suffices to show k′ ∈ K⇑σ . Fix

e and T ′ ∈ G. Letting T ′′
def≡ ext T ′ (i, j) .<z>., we have

k′ T ′ .<‖e‖>. = .<let z = ‖e‖ in .~(k T ′′ .<z>.)>.

Lemma 66 gives T ′′ ∈ G, so by k ∈ K⇑σ the rhs equals some .<let z = ‖e‖ in ‖t‖>.

(which has the form .<‖e′‖>.) such that ∀σ′ ⊇ σ. σ′‖t‖ ⇑0. Then if σ‖e‖ ⇑0 then

σ(let z = ‖e‖ in ‖t‖) ⇑0, and if σ‖e‖ ⇓0 v then σ(let z = ‖e‖ in ‖t‖) = σ[z 7→

v]‖t‖ ⇑0.

Lemma 73. ∀k ∈ K⇑σ . ∃e. genlcs i j .<p>. .<q>. T k = .<‖e‖>.∧σ‖e‖ ⇑0 for any

fixed σ, T ∈ G, (i, j ∈ Z), (p, q ∈ Var).

Proof. Lexicographic induction on (i, j). Fix k. If i < 0 or j < 0 then we have

genlcs i j .<p>. .<q>. T k = k T .<0>. and the conclusion follows immediately

from k ∈ K⇑σ . If i ≥ 0 ∧ j ≥ 0,

genlcs i j .<p>. .<q>. T k

= bind (memgen genlcs (i− 1) (j − 1) .<p>. .<q>.)

(fun n1 → bind . . .) T k

12

= memgen genlcs (i− 1) (j − 1) .<p>. .<q>. T k1 (∗10)

where k1
def≡ (fun s r → (fun n1 → . . .) r s k). It suffices to prove k1 ∈ K⇑σ ,

for then (∗10) = .<‖e‖>. for some e s.t. ∀σ′ ⊇ σ. σ′‖e‖ ⇑0 by inductive hypothesis

and Lemma 72. So fix T1 ∈ G and e1, then let us prove ∃t. k1 T1 .<‖e1‖>. = .<‖t‖>.

and ∀σ′ ⊇ σ. σ′‖t‖ ⇑0. But k1 T1.<‖e1‖>. reduces to

bind (memgen genlcs (i− 1) j .<p>. .<q>.)

(fun n2 → [.<‖e1‖>./n1] . . .) T1 k

so repeating the argument as before, we fix e2, e3 and T2, T3 ∈ G, and we see that it

suffices to prove that k3 ∈ K⇑σ , where k3 ≡ (fun s r → (fun n3 → . . .) r s k).

k3 T3 .<‖e3‖>. = k T3 .<if p.(i) q.(j) then ‖e1‖+1

else max ‖e2‖ ‖e3‖>.

so the conclusion follows from k ∈ K⇑σ .

Lemma 74. For any σ, T ∈ G, (i, j ∈ Z), (p, q ∈ Var), and k ∈ K⇑σ , there exists

some e such that memgen genlcs i j .<p>. .<q>. T k = .<‖e‖>. ∧ σ‖e‖ ⇑0.

Proof. Immediate from Lemmas 72 and 73.

Lemma 75. If i, j ∈ Z, P,Q ∈ V 0, and i ≥ 0, j ≥ 0, but ¬((P,Q ∈ A) ∧ i <

length(P) ∧ j < length(Q)), then stlcs i j P Q ⇑0.

Proof. Let ι
def≡ (fun s r → r). Then we have

genlcs i j .<p>. .<q>. empty ι

= bind (memgen genlcs (i− 1) (j − 1) .<p>. .<q>.) (fun n1 → . . .) empty ι

= memgen genlcs (i− 1) (j − 1) .<p>. .<q>. empty k (∗11)

13

where k
def≡ (fun s r → (fun n1 → . . .) r s ι). Then k ∈ K⇑[P,Q/p,q] by a similar

argument as in Lemma 69. Hence, by Lemma 72 the call to genlcs returns .<‖e‖>.

s.t. [P,Q/p, q]‖e‖ ⇑0, and we have stlcs i j P Q = [P,Q/p, q]‖e‖ ⇑0.

Now let us prove lcs ≈ naive_lcs.

Definition 76. Let the set FP,Q of faithful memo tables for P,Q consist of all T ∈ E0

s.t. ∀i, j ∈ Z and ∀f, g ∈ V 0, either ∃n ∈ Z. λUv ` naive_lcs i j P Q = n and

lookup T (i, j) f g = f n, or λUv ` lookup T (i, j) f g = g ().

Lemma 77. If k, P,Q ∈ V 0, T ∈ FP,Q, and i, j ∈ Z, then for some T ′ ∈ FP,Q we

have λUv ` mem lcs_rec i j P Q T k ≈⇑ k T ′ (naive_lcs i j P Q).

Proof. If lookup T (i, j) f g invokes f , then the conclusion is immediate from the

definition of faithful tables. Otherwise,

mem lcs_rec i j P Q T k

= lcs_rec i j P Q T (fun tab r → . . .)

= (fun tab r → . . .) T ′′ (naive_lcs i j P Q) (∗12)

for some T ′ ∈ FP,Q. If (naive_lcs i j P Q) ⇑0, then we are done because (∗12) ⇑0

and k T (naive_lcs i j P Q) ⇑0. Otherwise, ∃nij ∈ Z. naive_lcs i j P Q = nij,

and

(∗12) = k (ext T ′ (i, j) nij) nij

Then nij = naive_lcs i j P Q by assumption and one can confirm ext T ′ (i, j) nij ∈

FP,Q by inspecting definitions.

Lemma 78. If we have k, P,Q ∈ V 0, T ∈ FP,Q, and i, j ∈ Z, then there exists some

T ′ ∈ FP,Q such that λUv ` lcs_rec i j P Q T k ≈⇑ k T ′ (naive_lcs i j P Q).If

14

k, P,Q ∈ V 0, T ∈ FP,Q, and i, j ∈ Z, then λUv ` lcs_rec i j P Q T k ≈⇑

k T ′ (naive_lcs i j P Q) for some T ′ ∈ FP,Q.

Proof. Lexicographic induction on (i, j). If i < 0 or j < 0, then

lcs_rec i j P Q T k = k T 0 = naive_lcs i j P Q.

Otherwise,

lcs_rec i j P Q T k

= mem lcs_rec (i− 1) (j − 1) P Q k1 (∗13)

where k1 ≡ (fun s r → (fun n1 → . . .) r s k). By the inductive hypothesis

and Lemma 77, ∃T1 ∈ FP,Q s.t.

(∗13) ≈ k1 T1 (lcs_naive (i− 1) (j − 1) P Q).

If lcs_naive (i − 1) (j − 1) P Q diverges, then so does the right-hand side of this

equivalence, and also does lcs_naive i j P Q; hence (∗13) ≈⇑ lcs_naive i j P Q

holds. We can therefore focus on the case where lcs_naive (i − 1) (j − 1) P Q

returns an n(i−1)(j−1) ∈ Z. Proceeding with the two other recursive calls in the

same fashion, we find that the only interesting case is when the recursive calls return

n(i−1)j, ni(j−1) ∈ Z and T3 ∈ FP,Q such that

(∗13) ≈⇑k T3 (if p.(i) = q.(i) then n(i−1)(j−1) + 1)

else max n(i−1)j ni(j−1))

but the parenthesized portion is exactly what naive_lcs i j P Q computes.

Lemma 79. λUv ` lcs ≈ naive_lcs.

Proof. By extensionality and Lemma 46, it suffices to show that lcs i j P Q ≈⇑

naive_lcs i j P Q whenever i, j, P,Q ∈ V 0. Both sides diverge if i, j 6∈ Z, so assume

15

i, j ∈ Z. By Lemma 78,

∃T ∈ FP,Q. lcs i j P Q ≈⇑ ι T (naive_lcs i j P Q) (∗14)

where ι
def≡ fun s r → r. If naive_lcs i j P Q diverges, then so does (∗14), and we

are done; otherwise, the right-hand side of (∗14) reduces to naive_lcs i j P Q.

Let us emphasize how the argument from Definition 65 through Lemma 75, we

could ignore many details about the generated code. We did track type information,

but we never said what the generated code looks like or what specific values it should

compute. In fact, we are blissfully ignorant of the fact that naive_lcs has anything

to do with stlcs. Erasure thus decouples the reasoning about staging from the

reasoning about return values.

The proof of naive_lcs ≈ lcs was quite routine. The lack of surprise in this

part of the proof is itself noteworthy, because it shows that despite the challenges of

open term evaluation (Sections 3.4 and 5), the impact on correctness proofs is very

limited.

Having equalities is also an advantage, as it obviates the bookkeeping needed

to handle administrative redexes. For example, if (∗11) used small steps instead

of equality, the memgen genlcs . . . must be reduced to a value before bind can be

contracted, and (∗11) must end with that value instead of memgen genlcs . . . itself.

However, the k in (∗11) also contains subterms of the form memgen genlcs . . . which

are not reduced to values because they occur under λ. The difference between those

terms is often annoying to track and propagate through inductive proofs, and this

bookkeeping is something we would rather not spend energy on. Equalities help by

keeping these trivial things trivial.

16

let rec naive_lcs i j p q =

if (i < 0 || j < 0) then 0

else

let n1 = naive_lcs (i-1) (j-1) p q in

let n2 = naive_lcs (i-1) j p q in

let n3 = naive_lcs i (j-1) p q in

if p.(i) = q.(j) then n1 + 1

else max n2 n3

let ext table key v = fun key’ f g →
if key = key’ then f v

else table key’ f g

and empty key f g = g ()

and lookup table key f g = table key f g

let ret a = fun s k → k s a

and bind m f = fun s k → m s (fun s r → f r s k)

let eval_m m = m empty (fun s r → r)

let rec lcs_rec i j p q =

if (i < 0 || j < 0) then ret 0

else

bind (mem lcs_rec (i-1) (j-1) p q) (fun n1 →
bind (mem lcs_rec (i-1) j p q) (fun n2 →
bind (mem lcs_rec i (j-1) p q) (fun n3 →
ret (if p.(i) = q.(j)

then n1 + 1

else max n2 n3))))

and mem f i j p q =

fun tab k →
lookup tab (i,j)

(fun r → k tab r)

(fun _ →
f i j p q tab (fun tab r →
let z = r in (k (ext tab (i,j) z) z)))

let lcs i j p q =

eval_m (lcs_rec i j p q)

Figure 6.1 : Unstaged longest common subsequence with helper functions.

17

let rec genlcs i j p q =

if (i < 0 || j < 0) then ret .<0>.

else

bind (memgen genlcs (i-1) (j-1) p q) (fun n1 →
bind (memgen genlcs (i-1) j p q) (fun n2 →
bind (memgen genlcs i (j-1) p q) (fun n3 →
ret .<if (.~p).(i) = (.~q).(j)

then .~n1 + 1

else max .~n2 .~n3>.)))

and memgen f i j p q = fun tab k →
lookup tab (i,j)

(fun r → k tab r)

(fun _ →
f i j p q tab (fun tab r →
.<let z = .~r in

.~(k (ext tab (i,j) .<z>.) .<z>.)

>.))

let stlcs i j =

.!.<fun p q → .~(eval_m (genlcs i j .<p>. .<q>.))>.

Figure 6.2 : Staged, memoized longest common subsequence.

18

Chapter 7

Related Works

Taha [32] first discovered λU , which showed that functional hygienic MSP admits

intensional equalities like β, even under brackets. However, [32] showed the mere

existence of the theory and did not explore how to use it for verification, or how

to prove extensional equivalences. Moreover, though [32] laid down the operational

semantics of both CBV and CBN, it gave an equational theory for only CBN and left

the trickier CBV unaddressed.

Yang pioneered the use of an “annotation erasure theorem”, which stated e ⇓0

〈‖t‖〉 =⇒ ‖t‖ ≈ ‖e‖ [37]. But there was a catch: the assertion ‖t‖ ≈ ‖e‖ was asserted

in the unstaged base language, instead of the staged language—translated to our

setting, the theorem guaranteed λ ` ‖t‖ ≈ ‖e‖ and not λU ` ‖t‖ ≈ ‖e‖, subject

to termination of the generator. In practical terms, this meant that the context of

deployment of the staged code could contain no further staging. Code generation must

be done offline, and application programs using the generated ‖t‖must be written in a

single-stage language, or else no guarantee was made. This interferes with combining

analyses of multiple generators and precludes dynamic code generation by run (.!).

Yang also worked with operational semantics, and did not explore in depth how

equational reasoning interacts with erasure.

This paper can be seen as a confluence of these two lines of research: we complete

λU by giving a CBV theory with a comprehensive study of its peculiarities, and adapt

erasure to produce an equality in the staged language λU .

19

Berger and Tratt [4] devised a Hoare-style program logic for the typed language

Mini-ML2
e . They develop a promising foundation and prove strong properties about

it such as relative completeness, but concrete verification tasks considered concern

relatively simplistic programs. Mini-ML2
e also prohibits manipulating open terms, so

it does not capture the challenges of reasoning about free variables, which was one of

the main challenges to which this thesis faced up. Insights gained from λU may help

extend such logics to more expressive languages, and our proof techniques will be a

good toolbox to lay on top of them.

For proving the correctness of programs in MSP with variable capture, Choi et

al. [10] recently proposed an alternative approach with different trade-offs than the

erasure approach explored here. They provide an “unstaging” translation of staging

annotations into environment-passing code. Their translation is semantics preserving

with no proof obligations but leaves an unstaged program that is complicated by

environment-passing, whereas our erasure approach leaves a simpler unstaged pro-

gram at the expense of additional proof obligations. It will be interesting to see how

these approaches compare in practice or if they can be usefully combined, but for the

moment they seem to fill different niches.

20

Chapter 8

Conclusion and Future Work

This thesis addressed three basic concerns for verifying staged programs. It showed

that staging is a non-conservative extension because reasoning under substitutions is

unsound in a MSP language, even if we are dealing with unstaged terms. Despite

this drawback, untyped functional MSP has a rich set of useful properties. Simple

termination conditions guarantee that erasure preserves semantics, which reduces the

task of proving the irrelevance of annotations on a program’s semantics to the better

studied problem of proving termination. We showed a sound and complete notion of

applicative bisimulation for this setting, which allows us to reason under substitution

in some cases. In particular, the shocking lack of βx in λUv is of limited practical

relevance as Cβx can be used instead.

These results improve our general understanding of hygienic MSP. We better know

the multi-stage λ calculus’ similarities with the plain λ calculus (e.g., completeness of

bisimulation), as well as its pathologies and the extent to which they are a problem.

The Erasure Theorem gives intuitions on what staging annotations can or cannot do,

with which we may educate the novice multi-stage programmer. This understanding

has brought us to a level where the proof of a sophisticated generator like LCS is easily

within reach. Thus, indeed, MSP can achieve not only genericity with performance,

but also correctness, with a reasonable amount of effort.

This work may be extended in several interesting directions. We have specifically

identified some open questions about λU : which type systems allow reasoning under

21

substitutions, whether it is conservative over the plain λ calculus for closed terms,

and whether the extensionality principle can be strengthened to require equivalence

for only closed-term arguments.

Devising a mechanized program logic would also be an excellent goal. Berger

and Tratt’s system [4] may be a good starting point, although whether to go with

Hoare logic or to recast it in equational style is an interesting design question. A

mechanized program logic may let us automate the particularly MSP-specific proof

step of showing that erasure preserves semantics. The Erasure Theorem reduces this

problem to essentially termination checks, and we can probably capitalize on recent

advances in automated termination analysis [16].

Bisimulation is known to work for single-stage imperative languages, though in

quite different flavors from applicative bisimulation [23]. Adapting them to MSP

would make the emerging imperative hygienic MSP languages [20, 29, 36] susceptible

to analysis. The Erasure Theorem does not apply as-is to imperative languages since

modifying evaluation strategies can commute the order of effects. Two mechanisms

will be key in studying erasure for imperative languages—one for tracking which

effects are commuted with which, and one for tracking mutual (in)dependence of

effects, perhaps separation logic [28] for the latter. In any case, investigation of

imperative hygienic MSP may have to wait until the foundation matures, as noted in

the introduction.

Finally, this work focused on functional (input-output) correctness of staged code,

but quantifying performance benefits is also an important concern for a staged pro-

gram. It will be interesting to see how we can quantify the performance of a staged

program through formalisms like improvement theory [30].

22

Bibliography

[1] Samson Abramsky. The lazy lambda calculus. In Research Topics in Func-
tional Programming, pages 65–116. Addison-Wesley Longman Publishing Co.,
Inc., 1990.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[3] Hendrik P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies
in Logic and The Foundations of Mathematics. North-Holland, 1984.

[4] Martin Berger and Laurence Tratt. Program logics for homogeneous meta-
programming. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 64–81. Springer, 2010.

[5] Anders Bondorf. Improving binding times without explicit CPS-conversion. In
Proc. of LFP, pages 1–10. ACM, 1992.

[6] Edwin Brady and Kevin Hammond. A verified staged interpreter is a verified
compiler. In Proc. of GPCE, pages 111–120. ACM, 2006.

[7] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing
multi-stage languages using ASTs, gensym, and reflection. In Proc. of GPCE,
pages 57–76. Springer-Verlag New York, Inc., 2003.

[8] Jacques Carette and Oleg Kiselyov. Multi-stage programming with functors and
monads: Eliminating abstraction overhead from generic code. In Proc. of GPCE,
pages 256–274. Springer, 2005.

[9] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, partially
evaluated tagless staged interpreters for simpler typed languages. In Proc. of
APLAS, pages 222–238. Springer-Verlag, 2007.

[10] Wontae Choi, Baris Aktemur, Kwangkeun Yi, and Makoto Tatsuta. Static anal-
ysis of multi-staged programs via unstaging translation. In Proc. of POPL, pages
81–92, New York, NY, USA, 2011. ACM.

[11] Albert Cohen, Sébastien Donadio, Maria-Jesus Garzaran, Christoph Herrmann,
Oleg Kiselyov, and David Padua. In search of a program generator to imple-
ment generic transformations for high-performance computing. Sci. Comput.
Program., pages 25–46, 2006.

23

[12] Ronak Kent Dybvig. Writing hygienic macros in scheme with syntax-case. Tech-
nical report, Indiana University Computer Science Department, 1992.

[13] Thomas Forster. Logic, Induction and Sets. London Mathematical Society Stu-
dent Texts. Cambridge University Press, July 2003.

[14] Andrew D. Gordon. A tutorial on co-induction and functional programming. In
Glasgow functional programming workshop, pages 78–95. Springer, 1994.

[15] Andrew D Gordon. Bisimilarity as a theory of functional programming. Theo-
retical Computer Science, pages 5–47, 1999.

[16] Matthias Heizmann, Neil Jones, and Andreas Podelski. Size-change termination
and transition invariants. In Static Analysis, pages 22–50. Springer Berlin /
Heidelberg, 2011.

[17] Christoph A. Herrmann and Tobias Langhammer. Combining partial evaluation
and staged interpretation in the implementation of domain-specific languages.
Sci. Comput. Program., pages 47–65, 2006.

[18] Douglas J. Howe. Proving congruence of bisimulation in functional programming
languages. Inf. Comput., pages 103–112, 1996.

[19] Benedetto Intrigila and Richard Statman. The omega rule is Π1
1-complete in the

λβ-calculus. In Proc. of TLCA, pages 178–193. Springer, 2007.

[20] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Shifting the stage:
staging with delimited control. In Proc. of PEPM, pages 111–120. ACM, 2008.

[21] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic modal
type system for lisp-like multi-staged languages. In Proc. of POPL, pages 257–
268. ACM, 2006.

[22] Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. A methodology for generating
verified combinatorial circuits. In Proc. of EMSOFT, pages 249–258. ACM, 2004.

[23] Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about
higher-order imperative programs. In Proc. of POPL, pages 141–152. ACM,
2006.

[24] John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[25] Robert Muller. M-LISP: a representation-independent dialect of LISP with re-
duction semantics. ACM Trans. Program. Lang. Syst., pages 589–616, 1992.

[26] Gordon D. Plotkin. The λ-calculus is ω-incomplete. J. Symb. Logic, pages 313–
317, June 1974.

24

[27] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, pages 125–159, December 1975.

[28] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. of LICS, pages 55–74, 2002.

[29] Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled DSLs. In Proc. of GPCE,
2010.

[30] D. Sands. Improvement theory and its applications, pages 275–306. Cambridge
University Press, 1998.

[31] Kedar Swadi, Walid Taha, Oleg Kiselyov, and Emir Pašalić. A monadic approach
for avoiding code duplication when staging memoized functions. In Proc. of
PEPM, pages 160–169. ACM, 2006.

[32] Walid Taha. Multistage programming: Its theory and applications. PhD thesis,
Oregon Graduate Institute, 1999.

[33] Walid Taha and Michael Florentin Nielsen. Environment classifiers. In Proc. of
POPL, pages 26–37. ACM, 2003.

[34] Masako Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., pages
120–127, 1995.

[35] Takeshi Tsukada and Atsushi Igarashi. A logical foundation for environment
classifiers. In Proc. of TLCA, pages 341–355. Springer-Verlag, 2009.

[36] Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Abdelatif,
and Walid Taha. Mint: Java multi-stage programming using weak separability.
In Proc. of PLDI, 2010.

[37] Zhe Yang. Reasoning about code-generation in two-level languages. Technical
report, BRICS, 2000.

[38] Yosihiro Yuse and Atsushi Igarashi. A modal type system for multi-level gener-
ating extensions with persistent code. In Proc. of PPDP, pages 201–212. ACM,
2006.

25

Appendix A

OCaml

This appendix gives a brief summary of OCaml’s basic constructs and their semantics.

Note that the execution model presented here is vigorously simplified from the actual

implementation, intended to give just enough background to follow the discussions

in this thesis. The reader should see the official OCaml documentations to develop a

working understanding of the actual language.

An OCaml program consists of a list of declarations and a single expression. An

expression is built from standard arithmetic operations (+, *, <, <=, etc), conditionals

(if-then-else), anonymous functions (fun x → e) where e is any expression, and

function application (written as juxtaposition). For example,

(fun x → x + x) (1 + 2)

is an expression that returns 6—a function that adds two copies of its argument is

applied to the sum of 1 and 2. It may help to think of fun x → e as being like

(x 7→ e) in ordinary mathematical notation.

A declaration has one the following three forms:

let y = f x

let g x = x + x

let rec h x = h x

The first line is a declaration of a value, stipulating that y shall refer to the return

value of the function call f x. The second line defines a function g of one argument.

26

This function declaration syntax differs from the value declaration syntax on the first

line, in that there are more than one names listed between the keyword let and the

=. The third line defines a function h that may recurse (i.e. call itself). In this case

h is non-terminating.

A function declaration like

let g x = x + x

can always be seen as an abbreviation of a value declaration:

let g = fun x → x + x

This identification is possible because functions are first-class values in OCaml. Just

like integers or booleans are values and therefore can be given names and manipulated,

functions can be given names and/or passed as arguments to other functions.

Given declarations and an expression (the main expression), OCaml will evaluate

that one expression, drawing definitions from the list of declarations as necessary.

Whatever value that results from evaluating that main expression is returned as the

result of the whole program. For example, given the declarations

let double x = x + x

let rec repeat f n x =

if n = 0 then x

else repeat f (n-1) (f x)

and the expression

repeat double 5 1

the result of this program is determined by calling and evaluating the repeat func-

tions with the arguments set to f=double, n=5, and x=1. Since n = 0 is false,

27

OCaml executes the else branch of the repeat function’s body, which in this case is

repeat double 4 (double 1). Thus the result of the whole program is determined

by calling repeat with f=double, n=4, and x=(double 1). Continuing in this man-

ner, we can see that the result is obtained by applying double five times to 1, which

is 32.

28

Appendix B

Coinduction

This appendix briefly reviews coinduction as it applies to the definition of applicative

bisimilarity. More thorough treatises can be found in [14, 13].

Coinduction is the dual to induction. A coinductive definition finds the greatest

fixed point of a set of derivations, whereas an inductive definition finds the least

fixed point. Coinduction on a coinductive set S shows that a certain property implies

membership in S, whereas induction on an inductive set S ′ shows that membership in

S ′ implies a certain property. Construction of the fixed point relies on the Knaster–

Tarski Fixed Point Theorem, from which the associated principle of coinduction falls

out as a byproduct.

Definition 80. A complete lattice is a triple (L,≤,
⊔

) such that (L,≤) forms a

partial order in which every subset S ⊆ L has a least upper bound
⊔
S in L. An

upper bound for S is an element y ∈ L such that ∀x ∈ S. x ≤ y, and the least upper

bound for S is the least such element, i.e.

∀y ∈ L. (∀x ∈ S. x ≤ y) =⇒
⊔

S ≤ y.

By abuse of terminology the set L by itself may also be called a complete lattice,

with (≤) and
⊔

to be inferred from context.

Remark. This definition forces the existence of greatest lower bounds, in accord with

the standard definition of complete lattice. We will only be concerned with upper

bounds and maximal fixed points, however.

29

Theorem 81 (Knaster–Tarski Fixed Point). Let f : L → L be a function from a

complete lattice L to itself. If f is monotone—(x ≤ y) implies (f x ≤ f y)—then f

has a greatest fixed point z which is also the greatest element such that z ≤ f z.

Proof. Take S
def
= {x ∈ L : x ≤ f x} and z

def
=
⊔
S. Then

∀x ∈ S. x ≤ z because z is an upper bound

∀x ∈ S. f x ≤ f z by monotonicity

z ≤ f z because z is the least upper bound (1)

z ∈ S by definition of S

f z ≤ f (f z) by (1) and monotonicity

f z ∈ S by definition of S

z ≥ f z because z is an upper bound (2)

z = f z by (1)(2)

Clearly every fixed point of f and every element x ∈ L such that x ≤ f x are in S,

so z is the greatest of such elements.

The specific complete lattices we need are powerset lattices and product lattices.

Both constructions are standard. We omit the straightforward proof that a powerset

lattice is a complete lattice.

Definition 82. A powerset lattice of a set S is the complete lattice (℘S,⊆,
⋃

) where

℘S denotes the powerset of S.

Definition 83. If (Li,≤i,
⊔
i)
i∈I

is a family of complete lattices, then its product is

the triple (
∏

i∈I Li,≤,
⊔

) where the ordering operators are defined component-wise:

xi
i∈I ≤ yi

i∈I def⇐⇒ ∀i ∈ I. xi ≤i yi⊔
S

def
=

⊔
i Si

i∈I

30

where Si is {xi : xj
j∈I ∈ S}, the set of the i-th components of all sequences in S.

Proposition 84. A product of complete lattices is always a complete lattice.

Proof. The (≤) relation clearly inherits reflexivity and transitivity from (≤i), so
∏

i Li

is a partial order. For
⊔

, let a subset S ⊆
∏

i L be given and set zi
def
=
⊔
S. For

an arbitrary xi ∈ S, by definition ∀i. xi ≤i zi so xi ≤ zi . Therefore, zi bounds S in∏
i Li. For any upper bound yi of S, for every i, the yi bounds Si in Li so zi ≤i yi.

Therefore, zi ≤ yi so zi is the least upper bound of S in
∏

i Li.

Notation. If R is a binary relation, xiRyi means ∀i. xiRyi.

A coinductive definition of a set S in a universe U is written S
def
= νT.f T for some

monotonic f : ℘U → ℘U , which defines S to be the largest solution of the equation

S = f S. The Knaster–Tarski Fixed Point Theorem guarantees the existence of the

equation’s solution as well as the associated principle of coinduction:

∀T ⊆ L. T ⊆ f T =⇒ T ⊆ S.

Thus to show that some property φ implies membership in S, one only needs to show

that for some T ⊇ {x ∈ L : φ(x)} it is the case that T ⊆ f T .

To a first approximation, applicative bisimilarity is just the greatest fixed point of

a monotonic function [−] : E×E → E×E over the lattice ℘(E × E). An applicative

bisimulation is any subset R of bisimilarity that satisfies R ⊆ [R], so Theorem 43 is

essentially just a stylized statement of the fact that applicative bisimilarity coincides

with observational equivalence. But since λU requires a relation indexed by variable

sets, the definition of applicative bisimilarity is mutually coinductive. This mutual

coinduction is justified in the product lattice
∏

X∈℘finVar
℘(E × E).

31

Appendix C

Proof Details

The main text omits details of proofs that would distract from conveying the core

ideas. This appendix fills in those omitted details for nontrivial proofs. The state-

ments of theorems which were stated in the main text are recalled here for the reader’s

convenience.

Notation. BVC stands for Barendregt’s variable convention [3], i.e. the assumption

that all bound variables are fresh. IH stands for inductive hypothesis.

C.1 Substitution

We first prove some miscellaneous facts about substitution.

Lemma 85. If e ∈ E0 then lv t = lv([e/x]t) (or equivalently, t ∈ E` ⇐⇒ [e/x]t ∈ E`).

Proof. Straightforward induction on t.

Lemma 86. For any substitution σ : Var ⇀
fin
E0

cl, we have σe ∈ Arg =⇒ e ∈ domσ ∪

Arg.

Proof. Immediate for CBN by Lemma 85. For CBV, perform case analysis on the

form of e and apply Lemma 85.

Lemma 87. [e0/x]a ∈ Arg.

32

Proof. Follows directly from Lemma 85 in CBN. In CBV, a is of the form λy.t0 or

〈t0〉, and by BVC [e0/x](λy.t0) ≡ λy.[e0/x]t0 or [e0/x]〈t0〉 ≡ 〈[e0/x]t0〉, respectively.

By Lemma 85 [e0/x]t0 ∈ E0 so both of these forms are level-0 values.

Lemma 88. Let σ : Var ⇀
fin
E be a substitution and let y be a variable that is fresh

for σ, i.e. y 6∈ domσ ∪ (
⋃
x∈domσ FV(σx)). Then σ([e/y]t) ≡ [σe/y](σt).

Proof. Induction on t.

C.2 Proofs for Operational Semantics

This section proves basic properties about (;) and (≈).

C.2.1 Evaluation Contexts Compose

As evaluation contexts compose, in inductive proofs involving small-steps we may

assume without loss of generality that SS-Ctx is used exactly once. Hence to induct

on small-step, we induct on the evaluation context.

Lemma 89. E `,m′
[Em′,m] ∈ ECtx`,m

Proof. Straightforward induction.

Lemma 90. Any judgment e;
`
t has a derivation that uses SS-Ctx exactly once.

Proof. We can assume SS-Ctx is used at least once because • ∈ ECtx`,`. Multiple

uses of SS-Ctx can be collapsed to one by the preceding lemma.

C.2.2 Determinism, Irreducibility of Values, and Focus

The small-step semantics is a deterministic transition system that halts as soon as

a value is reached. Proposition 91 says that a small-step is unique (deterministic).

33

Proposition 92 states that a value does not step any further. Proposition 93 states that

small-step “focuses” on the hole of an evaluation context, never reducing elsewhere

until the hole contains a value. These facts have the important consequence that for

an expression E [e] to terminate, e must terminate first (Lemma 94), which comes in

handy when we want to show that certain terms diverge.

Proposition 91. (e;
`
t1 ∧ e;` t2) =⇒ t1 ≡ t2.

Proof. Straightforward induction on the evaluation context used in the derivation of

e;
`
t1.

Proposition 92. v` 6≡ E `,m[em] whenever em is a redex, i.e. m = 0 and em ≡ (λx.t0) a,

m = 0 and em ≡ c d, m = 0 and em ≡ ! 〈t0〉, or m = 1 and em ≡ ˜〈t0〉.

Proof. Straightforward induction on E `,m.

Proposition 93 (Focus). An expression E `,m[em] where em 6∈ V m small-steps at level

` iff em small-steps at level m.

Proof. The “if” direction follows immediately from SS-Ctx. For the “only if” direc-

tion, E `,m[em] small-steps, so by Lemma 90, E `,m[em] ≡ E ′[r] for some E ′ ∈ ECtx`,n

and level-n redex r. Straightforward induction on E `,m using the hypothesis em 6∈ V `

shows that for some E ′′ ∈ ECtxm,n we have E `,m[E ′′] ≡ E ′, so E ′′[r] ≡ em.

Lemma 94. If e` ≡ E `,m[tm] ;
`
n v ∈ V `, then tm ;m

n′
u ∈ V m where n′ ≤ n.

Proof. By Proposition 93, e` keeps small-stepping to expressions of the form E `,m[t],

with only the t changing (i.e. stepping at level m), until t ≡ u. By Proposition 91,

these steps must form a prefix of e` ;
`
n v, so tm does reach a u, in at most n steps.

34

Proof of Lemma 94.

Statement. By Proposition 93, e` keeps small-stepping to expressions of the form

E `,m[t], with only the t changing (i.e. stepping at level m), until t ≡ u. By Proposi-

tion 91, these steps must form a prefix of e` ;
`
n v, so tm does reach a u, in at most

n steps.

C.2.3 Equivalence of Open- and Closed-Term Observation

As mentioned in chapter 3, open-term observation and closed-term observation coin-

cide in λU .

Definition 95. Define open observational equivalence (≈op) just like (≈) but using

E0 in place of Prog. Formally, let e ≈op t iff for every C such that C[e], C[t] ∈ E0,

(∃u0. C[e] ⇓0 v ⇐⇒ ∃v0. C[t] ⇓0) holds and whenever such u0, v0 exist they obey

∀c. u0 ≡ c⇐⇒ v0 ≡ c.

Let us call C a distinguishing context for e and t iff C[e], C[t] ∈ E0 but exactly

one of these terms terminate at level 0. Thus e ≈op t holds iff no distinguishing

context exists for e and t, whereas e ≈ t holds iff no closing context for e and t is

distinguishing.

The proof of (≈) = (≈op) in CBV uses the peculiarity of λU that it can force

evaluation under binders. In CBN, this argument doesn’t quite work. Instead we

note that we can close up terms without affecting termination by replacing all free

variables by divergence. This latter argument works for the plain CBN λ calculus as

well but neither in CBV λ nor CBV λU .

Proposition 96. (≈) = (≈op).

35

Proof. We prove the CBV case first. Clearly λUv ` e ≈op t =⇒ λUv ` e ≈ t. For the

converse, suppose λUv ` e 6≈op t, and let C be a (not necessarily closing) context that

distinguishes e and t. Let λxi denote a sequence of λ’s that bind all free variables

in C[e] and C[t]. Let e1; e2 denote sequencing, which checks that e1 terminates,

discarding the return value, and then evaluates e2. Sequencing is just syntactic sugar

for (λ .e2) e1 in CBV. Then the context C ′
def≡ 〈λxi .˜(C; 〈λy.y〉)〉 is a closing context

that distinguishes e and t, so λUv ` e 6≈ t.

Now consider CBN. Again, obviously λUn ` e ≈op t =⇒ λUn ` e ≈ t. Suppose

for the converse that e 6≈op t, and let C be a distinguishing context. We prove in

the remainder of this section that a term e terminates iff [Ω/x]e does for a level-0,

divergent Ω (Lemma 100). Thus, if Ω is any closed such term, C ′
def≡ (λxi

i∈I .C) Ω
i∈I

is a closing, distinguishing context for e and t, where λxi
i∈I is again a sequence of

binders that bind all relevant variables and λxi
i∈I .C is applied to as many copies of

Ω as there are xi’s.

Lemma 97 (Classification). Suppose σ : Var
fin→ E0 is a substitution that maps

variables to level-0 expressions. If σe;
`
s, then at least one of the following conditions

hold, where any variables bound in the evaluation contexts∗ are distinct from x and

fresh for σ.

(1) e;
`
t for some t, and ∀σ′ : Var ⇀

fin
E0

cl. σ
′e;

`
σ′t.

(2) e ≡ E `,m[x] and σx small-steps at level m.

(3) e ≡ E `,0[x t] and σx ≡ λy.t0 and σt ∈ Arg.

(4) We are working in CBV, and e ≡ E `,0[(λy.t0) x] and σx ∈ V 0.

∗Unlike in single-stage languages, evaluation contexts can bind variables at level > 0.

36

(5) e ≡ E `,0[x c] and σx ∈ Const and (σx, c) ∈ dom δ.

(6) e ≡ E `,0[c x] and σx ∈ Const and (c, σx) ∈ dom δ.

(7) e ≡ E `,0[!x] or E `,1[˜x], and σx ≡ 〈t0〉.

Proof. Induction on e.

[If e ≡ c] Vacuous: σe ≡ c 6;
`

.

[If e ≡ x] Condition (2) holds with E `,m ≡ •.

[If e ≡ e1 e2] Inversion on σe;
`
s generates three cases, two of which are trivial.

[If σe1 small-steps] Immediate from IH.

[If σe1 ∈ V ` and σe2 small-steps] Immediate from IH.

[If σe;
`
s is derived by SS-β or SS-βv] By inversion

(i) ` = 0 (ii) σe1 ≡ λy.t0 (iii) σe2 ∈ Arg

Case analysis on the form of e1 generates two cases: e1 ≡ x or e1 ≡ λy.e′1 for

some e′1 such that σλy.e′1 ≡ λy.t0.

[If e1 ≡ x] Condition (3) holds.

[If e1 ≡ λy.e′1] Cases analysis on whether e2 ∈ Arg.

[If e2 ∈ Arg] Condition (1) holds: clearly e;
0

[e2/y]e′1, and given any σ′,

σ′e ≡ (λy.σ′e′1) (σ′e2) ;
0

[σ′e2/y](σ′e′1) ≡ σ′([e2/y]e′1)

where by BVC y is fresh for σ′, so the first (≡) is immediate and the

second (≡) follows by Lemma 88.

[If e2 6∈ Arg] By Lemma 86, it must be the case that e2 ≡ x where σx ∈ Arg,

which means:

37

[In CBN] Condition (1) holds. We have e1 e2 ≡ (λy.t0) x ;
0

[x/y]t0

and so σ′e ≡ (λy.σ′t0) (σ′x) ;
0

[σ′x/y](σ′t0) ≡ σ′([x/y]t0) where the

manipulation of σ′ uses BVC with Lemma 88.

[In CBV] Condition (4) holds. From (iii) we have σx ∈ V 0, and from

σ(λy.e′1) ≡ λ.t0 ∈ E0 and Lemma 85 we have e′1 ∈ E0.

[If σe ;
`
s is derived by SS-δ] By inversion σei ∈ Const for i = 1, 2, hence

ei ∈ Const ∪ Var. If e1 ∈ Var then condition (5) holds, else if e2 ∈ Var then

condition (6) holds, else condition (1) holds.

[If e ≡ λy.e′] By BVC y is fresh for σ, so σe ≡ λy.σe′. By inversion σe′ small-steps

at level ` (which is necessarily > 0), so IH is applicable. The conclusion is then

immediate.

[If e ≡ 〈e′〉] Immediate from IH.

[If e ≡ ˜e′] Inversion generates two cases.

[If σe′ small-steps] Immediate from IH.

[If σe;
`
t is derived by SS-E] By inversion,

(i) ` = 1 (ii) σe′ ≡ 〈t〉 (iii) t ∈ E0.

Case analysis on the form of e′ yields two cases.

[If e′ ≡ x] Condition (7) holds.

[If e′ ≡ 〈e′′〉 where σe′′ ≡ t] Condition (1) holds.

[If e ≡ ! e′] Similar to the preceding case.

Lemma 98. Let σ : Var ⇀
fin
{e ∈ E0 : e ⇑0} be a substitution that substitutes

divergent level-0 expressions. Then v ∈ V ` ⇐⇒ σv ∈ V `.

Proof. For ` > 0, this lemma is a special case of Lemma 85. If ` = 0 then e must be

λx.t0 or 〈t0〉 or c, so Lemma 85 ensures σe ∈ V 0.

38

Lemma 99. Let σ, σ′ : Var ⇀
fin
{t ∈ E0 : t ⇑0} be substitutions that substitute only

divergent level-0 terms. Then σe ⇓`⇐⇒ σ′e ⇓` for any `, e.

Proof. By symmetry, proving one direction will suffice. Suppose σe ;
`
n v for some

v ∈ V `. We will prove σ′e ⇓` by induction on n. If n = 0, then by Lemma 98,

σe ∈ V ` ⇐⇒ e ∈ V 0 ⇐⇒ σ′e ∈ V `. If n > 0, we perform case analysis on the first

small-step using Lemma 97. Conditions (3), (5), (6), and (7) are vacuous because

they force σx ∈ V 0. For the remaining cases:

(1) The σe small-steps as σe;
`
σt;

`
n−1 v, and σ′e;

`
σ′t. By IH σ′t ⇓`, so σ′e ⇓`.

(2) The e must decompose as E `,m[x] where σx small-steps at level m. By assump-

tion σx ∈ E0 so in order for σx to small-step, m = 0 is necessary. But as

σe ≡ (σE `,m)[σx] ⇓`, by Lemma 94 σx ⇓m i.e. σx ⇓0, contrary to assumption.

This case is therefore vacuous.

(4) We must be working with CBV, and e decomposes as E `,0[(λy.t0) x] where

σt ≡ λy.t0 and σx ∈ V 0. By assumption σx 6∈ V 0, so this case is vacuous.

Lemma 100. If Ω is a level-0 divergent term, then e ⇓`⇐⇒ [Ω/x]e ⇓`.

Proof. Take σ = ∅ and σ′ = [Ω/x] in Lemma 100.

C.3 Proofs for Equational Theory

This section fills in the proof details for confluence and standardization.

C.3.1 Confluence

Confluence of the reduction relation was reduced in the main text to confluence of

parallel reduction. Parallel reduction is shown to be confluent as follows.

39

Lemma 101 (Level Reduction). Suppose e −→∗ t. Then lv e ≥ lv t, or equivalently,

∀`. e ∈ E` =⇒ t ∈ E`.

Proof. Straightforward induction, first on the length of the reduction, then on the

(derivation of the) first reduction, using Lemma 85.

Lemma 102. For any v ∈ V `, v −→∗ e =⇒ e ∈ V `. Moreover, v and e have the

same form: v ≡ c⇐⇒ e ≡ c, v ≡ λx.t⇐⇒ e ≡ λx.e′, and v ≡ 〈t〉 ⇐⇒ e ≡ 〈e′〉.

Proof. By induction on the length of the reduction v −→∗ e, it suffices to prove this

assertion for one-step reductions. The case ` > 0 is just Lemma 101. For ` = 0, if v

is λx.t or 〈t〉 for some t ∈ E0 then e is λx.t′ or 〈t′〉, respectively, where t −→∗ t′. By

Lemma 101 t′ ∈ E0 so e ∈ V 0. If v ≡ c then e ≡ c because c is a normal form.

Lemma 103. If a −→∗ e then e ∈ Arg.

Proof. Immediate from Lemma 101 for CBN and from Lemma 102 for CBV.

Lemma 104. If e →−→n t and a →−→m b where e, t ∈ E0 and a, b ∈ Arg, then we have

[a/x]e →−→
n+#(x,t)·m

[b/x]t.

Proof. Induction on e →−→n t with case analysis on the last rule used to derive it. Let

N
def
= n+ #(x, t) ·m.

[PR-Var] By inversion, e ≡ y ≡ t for some y and n = 0.

[If x ≡ y] N = m, so [a/x]e ≡ a →−→
N

b ≡ [b/x]t.

[If x 6≡ y] N = 0, so [a/x]e ≡ y →−→
N

y ≡ [b/x]t.

[PR-Abs]

(i) e ≡ λy.e′ (ii) t ≡ λy.t′ (iii) e′ →−→n t′ by inversion (1)

#(x, t) = #(x, t′). because x 6≡ y by BVC (2)

40

N = n+ #(x, t′) ·m by (2), defn of N (3)

[a/x]e′ →−→
N

[b/x]t′ by IH on (1.iii) with (3) (4)

λy.[a/x]e′ →−→
N

λy.[a/x]t′ by PR-Abs

Therefore [a/x]λy.e′ →−→
N

[a/x]λy.t′ because x 6≡ y.

[PR-App]

(i) e ≡ e1 e2 (ii) t ≡ t1 t2

(iii) ei →−→ni
ti (i = 1, 2) (iv) n = n1 + n2

 by inversion

[a/x]ei →−→
ni+#(x,ti)·m

[b/x]ti (i = 1, 2) by IH on (iii)

[a/x](e1 e2) →−→
N

[b/x](t1 t2) by PR-App

where the last step uses the fact that

n1 + #(x, t1) ·m+ n2 + #(x, t2) ·m = n1 + n2 + #(x, t1 t2) ·m = N.

[PR-β] There exist some f ∈ Arg and f ′ ∈ E such that

(i) e ≡ (λy.t′) f ∈ E0 (ii) t ≡ [f ′/y]t′

(iii) t →−→nt
t′ (iv) f →−→nf

f ′

(v) n = nt + #(y, t′) · nf + 1

 by inversion (5)

f ′ ∈ Arg by Lemma 103 and (5.iv) (6)

[a/x]t →−→
nt+#(x,t′)·m

[b/x]t′ by IH on (iii) (7)

[a/x]f →−→
nf+#(x,f ′)·m

[b/x]f ′ by IH on (iv) (8)

Taking

M
def
= (nt + #(x, t′) ·m) + #(y, t′) · (nf + #(x, f ′) ·m) + 1

41

and noting that x 6≡ y by BVC,

[a/x]((λy.t) f) →−→
M

[[b/x]f ′/y][b/x]t′ by PR-β on (7)(8) noting (6)

[[b/x]f ′/y][b/x]t′ ≡ [b/x][f ′/y]t′ because y 6∈ FV(b) by BVC

[a/x]((λy.t) f) →−→
M

[b/x][f ′/y]t′ by the two preceding lines

as required. For the complexity,

M = (nt + #(x, t′) ·m) + #(y, t′) · (nf + #(x, f ′) ·m) + 1

= nt + #(y, t′) · nf + 1 + (#(x, t′) + #(y, t′)#(x, f ′)) ·m

= n+ #(x, [f ′/y]t′) ·m

as required.

[Other cases] Trivial.

Proof of Lemma 10 (Takahashi’s Property).

Statement. e →−→ t =⇒ t →−→ e∗.

Proof. Induction on e with case analysis on e.

[If e ≡ c] c →−→ c ≡ t ≡ c∗.

[If e ≡ x] x →−→ x ≡ t ≡ x∗.

[If e ≡ λx.e′]

(i) t ≡ λx.t′ (ii) e′ →−→ t′ by inversion

t′ →−→ (e′)∗ by IH on (ii)

λx.t′ →−→ λx.(e′)∗ by PR-Abs

and λx.(e′)∗ is just e∗.

[If e ≡ c d and (c, d) ∈ dom δ] c d →−→ δ(c, d) ≡ t ≡ (c d)∗.

42

[If e ≡ (λx.e′) a where e′ ∈ E0]

(i) t ≡ (λx.t′) a′ ∨ t ≡ [a′/x]t′

(ii) e′ →−→ t′ (iii) a →−→ a′

 by inversion (1)

where the shape of t depends on whether the last rule used to derive e →−→ t is

PR-App or PR-β.

(i) t′ →−→ (e′)∗ (ii) a′ →−→ a∗ by IH on (1.ii)(1.iii) (2)

(i) (e′)∗ ∈ E0 (ii) a∗ ∈ Arg using Lemma 103 on (2) (3)

t →−→ [a∗/x](e′)∗ ≡ ((λx.e′) a)∗ (4)

where the (→−→) in (4) follows by applying, to (2)(3), the rule PR-β if t ≡ (λx.t′) a′

or Lemma 104 if t ≡ [a′/x]t′; the β expansion under ·∗ is justified by the definition

of ·∗.

[If e ≡ e1 e2 and e is not a β or δ redex]

(i) t ≡ t1 t2 (ii) ei →−→ ti (i = 1, 2) by inversion

ti →−→ e∗i (i = 1, 2) by IH on (ii)

t →−→ e∗1 e
∗
2 ≡ e∗. by PR-App and definition of ·∗

[If e ≡ ˜〈e′〉]

(i) t ≡ t′ ∨ t ≡ ˜〈t′〉 (ii) e′ →−→ t′ by inversion

t′ →−→ (e′)∗ by IH on (ii)

˜〈t′〉 →−→ (e′)∗ ≡ (˜〈e′〉)∗ by PR-E and definition of ·∗

[If e ≡ ! 〈e′〉 where e′ ∈ E0] Similar to the preceding case.

[If e ≡ 〈e′〉 or e ≡ ˜e′ or e ≡ ! e′, and e is not a redex] Immediate from IH.

43

Proof of Proposition 11.

Statement. (→−→∗) is confluent: e1 ←←−n e →−→k e2 =⇒ ∃e′. e1 →−→k e′ ←←−n e2.

Proof. Induction on (n, k) under lexicographical ordering.

[If n = 0] e ≡ e1, so take e′
def≡ e2.

[If k = 0] e ≡ e2, so take e′
def≡ e1.

[If n, k > 0]

∃e′1 e1 ←←− e′1 ←←−n−1 e →−→k e2 because n > 0

∃e3 e′1 →−→k e3 ←←−n−1 e2 by IH (1)

∃e′3 e1 ←←− e′1 →−→k−1 e′3 →−→ e3 by (1) and k > 0 (2)

∃e4 e1 →−→k−1 e4 ←←− e′3 by IH (3)

e4 ←←− e′3 →−→ e3 by (2)(3)

e4 →−→ (e′3)∗ ←←− e3 by Takahashi’s property (4)

e1 →−→k (e′3)∗ ←←−n e2 by (1)(3)(4)

C.3.2 Standardization

This section provides proof details of Lemma 17, which is traditionally proved via

a “standardization” lemma and we therefore call standardization itself by abuse of

terminology. Takahashi’s method obviates the need to define an auxiliary standard

reduction, however.

Proof of Lemma 14 (Transition).

Statement. If e ∈ E` and v ∈ V ` then e →−→n v =⇒ ∃u ∈ V `. e;
`
∗ u →−→ v.

Proof. The conclusion is obvious when e ∈ V `, so assume e 6∈ V `. Lexicographically

induct on (n, e), with case analysis on the last rule used to derive the parallel reduc-

44

tion. Note that before invoking IH on a sub-judgment e′ →−→
n′ t of e →−→n v, where

n′ ≤ n and e′ is a subterm of e, the side conditions e′ ∈ Ek and t ∈ V k must be

checked (where k is ` or `± 1 depending upon the shape of e). If k > 0, checking the

levels of e′ and t suffice; otherwise, their shapes must be analyzed.

[PR-Const] e ≡ v ≡ c, so take u
def≡ c.

[PR-Var] Vacuous: x 6∈ V ` so v 6≡ x.

[PR-Abs]

(i) e ≡ λx.t (ii) v ≡ λx.t′ (iii) t →−→n t′ by inversion (1)

(i) ` > 0 (ii) t ∈ E` because λx.t ∈ E` \ V ` (2)

t′ ∈ V ` because λx.t′ ∈ V ` and ` > 0 (3)

(2.ii) and (3) justify using IH on (1.iii).

(i) t;
`

∗ u →−→ t′ (ii) u ∈ V ` by IH on (1.iii) (4)

λx.t;
`

∗ λx.u →−→ λx.t′ from (4.i)

where λx.u ∈ V ` because u ∈ V ` and ` > 0.

[PR-δ] By inversion e ≡ c d →−→ δ(c, d) ≡ v where (c, d) ∈ dom δ. If ` = 0 take

u
def≡ δ(c, d), otherwise take u

def≡ c d: then the given constraints are satisfied.

[PR-App]

(i) e ≡ e1 e2 (ii) v ≡ v1 v2

(iii) ei →−→ni
vi (i = 1, 2) (iv) n = n1 + n2

 by inversion (5)

(i) ` > 0 (ii) v1, v2 ∈ V ` from v ∈ V ` (6)

e1, e2 ∈ E` from e ∈ E` (7)

45

(6.ii) and (7) justify using IH on (5.iii).

(i) ei ;`
∗ ui →−→ vi (i = 1, 2) (ii) u1, u2 ∈ V ` by IH on (5.iii) (8)

e1 e2 ;`
∗ u1 e2 by (8.i) and • e2 ∈ ECtx`,`

u1 e2 ;`
∗ u1 u2 →−→ v1 v2 noting u1 • ∈ ECtx`,` from (6.i)

and u1 u2 ∈ V ` by (6.i) and (8.ii).

[PR-β]

(i) e ≡ (λx.t) a (ii) v ≡ [a′/x]t′

(iii) t →−→n1
t′ (iv) a →−→n2

a′

(v) n = n1 + #(x, t′) · n2 + 1

 by inversion (9)

(i) ` = 0 (ii) t ∈ E0 because e ∈ E0 \ V ` (10)

a′ ∈ Arg by Lemma 103 and (9.iv) (11)

[a/x]t →−→
n−1

[a′/x]t′ by Lemma 104 and (11) (12)

[a/x]t ∈ E0 by Lemma 85 and (10.ii) (13)

IH can be invoked on (12) because (13) and [a′/x]t′ ≡ v ∈ V 0.

(i) [a/x]t;
0

∗ u →−→ [a′/x]t′ (ii) u ∈ V 0 by IH (14)

e;
0

[a/x]t;
0

∗ u →−→ [a′/x]t′ by SS-β

[PR-Brk, PR-Esc, or PR-Run] All of these cases are similar. PR-Brk is worked

out here as an example.

(i) e ≡ 〈e′〉 (ii) v ≡ 〈v′〉 (iii) e′ →−→n v′ by inversion (15)

e′ ∈ E`+1 because 〈e′〉 ∈ E` (16)

v′ ∈ V `+1 because 〈v′〉 ∈ V ` (17)

46

(16)(17) justify using IH on (15.iii).

(i) e′ ;
`+1

∗ u′ →−→ v′ (ii) u′ ∈ V `+1 by IH on (15.iii) (18)

〈e′〉;
`

∗ 〈u′〉 →−→ 〈v′〉 from (18.i)

where 〈u′〉 ∈ V ` by (18.ii).

[PR-E]

(i) e ≡ ˜〈e′〉 (ii) e′ →−→
n−1

v by inversion (19)

(i) ` > 0 (ii) e′ ∈ E` because ˜〈e′〉 ∈ E` (20)

Invoking IH on (19.ii) is justified by (20.ii) and the assumption that v ∈ V `.

(i) e′ ;
`

∗ u →−→ v (ii) u ∈ V ` by IH on (19.ii) (21)

˜〈e′〉;
`

∗ ˜〈u〉 from (21.i)

Then split cases on `.

[If ` = 1]

˜〈u〉;
1
u by EV using (21.ii)

˜〈e′〉;
1

∗ ˜〈u〉;
1
u →−→ v immediately

[If ` > 1]

˜〈e′〉;
1

∗ ˜〈u〉 →−→ v by (21.i)

where

〈u〉 ∈ E`−2 = V `−1 by (21.ii) and ` > 1

˜〈u〉 ∈ V ` immediately

47

[PR-R]

(i) e ≡ ! 〈e′〉 (ii) e′ →−→
n−1

v (iii) e′ ∈ E0 by inversion (22)

` = 0 because ! 〈e′〉 6∈ V `

while (22.iii)

(23)

IH on (22.ii) is justified by (22.iii) and the assumption v ∈ V `.

(i) e′ ;
0

∗ u →−→ v (ii) u ∈ V 0 by IH on (22.ii) (24)

! 〈e′〉;
0
e′ by RV using (22.iii)

! 〈e′〉;
0
e′ ;

0

∗ u →−→ v immediately

Proof of Lemma 15 (Permutation).

Statement. If e, t, s ∈ E` then e →−→n t;
`
s =⇒ ∃t′ ∈ E`. e;

`
+ t′ →−→ s.

Proof. Induction on n with case analysis on the last rule used to derive e →−→n t. In

all cases but PR-β, the complexity n obviously diminishes in the IH, so we omit this

check in other cases. In fact, except for PR-β we omit the complexity annotation

altogether.

[PR-Const] Vacuous: e ≡ c ≡ t so t 6;
`

.

[PR-Var] Vacuous: e ≡ x ≡ t so t 6;
`

.

[PR-Abs]

(i) e ≡ λx.e′ (ii) t ≡ λx.t′ (iii) e′ →−→ t′ by inversion (1)

(i) ` > 0 (ii) s ≡ λx.s′ (iii) t′ ;
`
s′ by inversion on λx.t′ ;

`
s (2)

e′ →−→ t′ ;
`
s′ by (1.iii)(2.iii)

e′ ;
`

+ t′′ →−→ s′ by IH (3)

48

λx.e′ ;
`

+ λx.t′′ →−→ λx.s′ from (3) and (2.i)

[PR-App]

(i) e ≡ e1 e2 (ii) t ≡ t1 t2 (iii) ei →−→ ti (i = 1, 2) by inversion (4)

Inversion on t1 t2 ;` s generates four cases.

[If t1 t2 ;` s is derived by SS-δ]

(i) ` = 0 (ii) ti ≡ ci (i = 1, 2)

(iii) (c1, c2) ∈ dom δ (iv) s ≡ δ(c1, c2)

 by inversion (5)

∃vi. ei ;`
∗ vi →−→ ci by Transition on

(4.iii)(5.ii)

(6)

vi ≡ ci by Lemma 102 and (6)

e1 e2 ;0
∗ c1 e2 ;0

∗ c1 c2 ;0 δ(c1, c2) ≡ s noting (• e2), (c1 •) ∈ ECtx0,0

e1 e2 ;0
+ δ(c1, c2) →−→ s since (→−→) is reflexive

[If t1 t2 ;` s is derived by SS-β]

(i) ` = 0 (ii) t1 ≡ λx.t3

(iii) t2 ∈ Arg (iv) s ≡ [t2/x]t3

 by inversion (7)

Noting that t1 ∈ V 0,

(i) e1 ;0
∗ v1 →−→ t1 (ii) v1 ∈ V 0 by Transition on (7.iii) (8)

v1 ≡ λx.e3 by Lemma 102 with (7.ii)(8.i) (9)

e3 →−→ t3 by inversion on (8.i) using (7.ii)(9) (10)

Now split cases by evaluation strategy.

49

[CBV] Observing that t2 ∈ Arg = V 0,

(i) e2 ;0
∗ v2 →−→ t2 (ii) v2 ∈ V 0 by Transition on (7.iii) (11)

e1 e2 ;0
∗ (λx.e3) v2 ;0 [v2/x]e3 by (11.i)(9) and SS-β (12)

[v2/x]e3 →−→ [t2/x]t3 by Lemma 104 using (10)(11.i) (13)

e1 e2 ;0
+ [v2/x]e3 →−→ s by (12)(13)(7.iv)

[CBN] Observing that t2 ∈ Arg = E0,

e1 e2 ;0
∗ (λx.e3) t2 ;0 [t2/x]e3 by (11.i)(9) and SS-β (14)

[t2/x]e3 →−→ [t2/x]t3 by Lemma 104 using (10) (15)

e1 e2 ;0
+ [t2/x]e3 →−→ s by (14)(15)(7.iv)

[If t1 ∈ V ` but t1 t2 is not a β redex]

(t1 •) ∈ ECtx`,` because t1 ∈ V ` (16)

(i) s ≡ t1 s2 (ii) t2 ;` s2 by Proposition 93 and (16) (17)

e2 →−→ t2 ;` s2 by (4.iii)(17)

(i) e2 ;`
+ s′2 →−→ s2 (ii) s′2 ∈ E` by IH (18)

e1 e2 ;`
+ e1 s

′
2 →−→ t1s2 from (18.i)(4.iii)

[If t1 6∈ V `]

(• t2) ∈ ECtx`,` clearly (19)

(i) s ≡ s1 t2 (ii) t1 ;` s1 by Proposition 93 and (19)

(iii) e1 ;`
+ s′1 →−→ s1 (iv) s′1 ∈ E` by IH (20)

e1 e2 ;`
+ s′1 e2 →−→ s1 t2 from (20.i)(4.iii)

50

[PR-δ] Vacuous: by inversion t ∈ V 0 so t cannot step.

[PR-β] This is the only case where it’s nontrivial to check that the complexity dimin-

ishes.

(i) e ≡ (λx.e′) a (ii) t ≡ [a′/x]e′′

(iii) e′ →−→n1
e′′ (iv) a →−→n2

a′

(v) e′ ∈ E0

(vi) n = n1 + #(x, e′′) · n2 + 1

by inversion (21)

a′ ∈ Arg by Lemma 103 and (21.iv) (22)

[a/x]e′ →−→
n1+#(x,e′′)·n2

[a′/x]e′′ by Lemma 104 and

(21.iii)(21.iv)(22)

(23)

Observe that the complexity is indeed smaller. Noting (21.ii),

(i) [a/x]e′ ;
`

+ t′ →−→ s (ii) t′ ∈ E` by IH on (23) and t;
`
s (24)

Now, to connect (24.i) to e:

e;
0

[a/x]e′ by SS-βv (25)

[a/x]e′ ∈ E0 by (25) (26)

` = 0 because (24.i)(26) (27)

e;
0

[a/x]e′ ;
0

+ t′ →−→ s by (24.i)(25)(27)

[PR-Esc]

(i) e ≡ ˜e′ (ii) t ≡ ˜t′ (iii) e′ →−→ t′ by inversion (28)

(i) ` > 0 (ii) t′, e′ ∈ E`−1 because ˜e′, ˜t′ ∈ E` (29)

Inversion on ˜t′ ;
`
s generates two cases.

51

[If ˜t′ ;
`
s is derived by SS-EV]

(i) ` = 1 (ii) t′ ≡ 〈s〉 (iii) s ∈ E0 by inversion (30)

t′ ∈ V 0 by (30.ii)(30.iii) (31)

(i) e′ ;
0

∗ v →−→ t′ (ii) v ∈ V 0 by Transition,

using (28.iii)(31)

(32)

(i) v ≡ 〈s′〉 (ii) s′ ∈ E0 by Lemma 102,

using (30.ii)(30.iii)(31)(32)

˜〈s′〉;
1
s′ by SS-EV (33)

s′ →−→ s by inversion on (32.i) (34)

˜〈e′〉;
1

∗ ˜〈s′〉;
1
s′ →−→ s by (32.i)(34)(33)

[If t′ small-steps]

(i) s ≡ ˜s′ (ii) t′ ;
`−1

s′ by inversion (35)

e′ →−→ t′ ;
`−1

s′ by (28.iii)(35.ii)

e′ ;
`−1

+ t′ →−→ s′ by IH

˜e′ ;
`

+ ˜t′ →−→ ˜s′ immediately

[PR-E]

(i) e ≡ ˜〈e′〉 (ii) e′ →−→ t by inversion (36)

(i) ` > 0 (ii) e′ ∈ E` because ˜〈e′〉 ∈ E` (37)

e′ →−→ t;
`
s by (36.ii) and assumption

(i) e′ ;
`

+ t′ →−→ s (ii) t′ ∈ E` by IH, justified by (37.ii) (38)

˜〈e′〉;
`

+ ˜〈t′〉 →−→ s using SS-Ctx and PR-E

where (38.ii) guarantees ˜〈t′〉 ∈ E`.

52

[PR-Run]

(i) e ≡ ! e′ (ii) t ≡ ! t′ (iii) e′ →−→ t′ (iv) e′, t′ ∈ E` by inversion (39)

Inversion on ! t′ ;
`
s generates two cases.

[If ! t′ ;
`
s is derived by SS-RV]

(i) ` = 0 (ii) t′ ≡ 〈s〉 (iii) s ∈ E0 by inversion (40)

(i) e′ ;
0

∗ v →−→ 〈s〉 (ii) v ∈ V 0 by Transition, using

(39.iii)(40.ii)(40.iii)

(41)

(i) v ≡ 〈s′〉 (ii) s′ ∈ E0 by Lemma 102 (42)

s′ →−→ s by inversion on (41.i),

using (42)

(43)

! 〈e′〉;
0

∗ ! 〈s′〉;
0
s′ →−→ s from (41.i)(42.i)(43)

[If t′ small-steps]

(i) s ≡ ! s′ (ii) t′ ;
`
s′ (iii) s′ ∈ E` by inversion (44)

e′ →−→ t′ ;
`
s′ by (39.iii)(44.ii) (45)

(i) e′ ;
`
t′′ →−→ s′ (ii) t′′ ∈ E` by IH

! e′ ;
`

! t′′ →−→ ! s′ immediately

[PR-R]

(i) e ≡ ! 〈e′〉 (ii) e′ →−→ t (iii) e′, t ∈ E0 by inversion (46)

e′ →−→ t;
`
s by (46.ii) and premise

` = 0 because (46.iii) but t;
`
s

(i) e′ ;
0

+ t′ →−→ s (ii) t′ ∈ E` by IH

! 〈e′〉;
0
e′ ;

0

+ t′ →−→ s immediately

53

C.4 Proofs for Generalized Axioms

This section fills in the details of proofs that showed the unsoundness of some equa-

tions in Chapter 3.3.

Proof of Proposition 20.

Statement. ∀C. ∃L(C) ∈ N. lv e ≥ L(C) =⇒ lvC[e] = lv e+ ∆C.

Proof. Induction on C.

[If C ≡ •] Take L(•) def
= 0; then lvC[e] = lv e+ L(•).

For the remaining cases, I will take the existence of L(C ′) for granted, where C ′

names the immediate subcontext of C. This assumption is justified by IH. In each

case, lv e ≥ L(C) is implicitly assumed once L(C) is defined.

[If C ≡ λx.C ′ or !C ′] Take L(C)
def
= L(C ′). Then lvC[e] = lvC ′[e] = lv e + L(C ′) =

lv e+ L(C).

[If C ≡ t C ′ or C ′ t] Take L(C)
def
= max(L(C ′), lv t − ∆C ′). Then lv e + ∆C ′ ≥

L(C) + ∆C ′ ≥ lv t − ∆C ′ + ∆C ′ = lv t, so lvC[e] = max(lv t, lv e + ∆C ′) =

lv e + ∆C ′ = lv e + ∆C. Note that taking the maximum with L(C ′) is necessary

to justify IH.

[If C ≡ 〈C ′〉] Take L(C)
def
= max(L(C ′), 1−∆C ′). Then lv e+ ∆C ′ − 1 ≥ 1−∆C ′ +

∆C ′ − 1 = 0, so lvC[t] = max(lvC ′[t] − 1, 0) = lv e + ∆C ′ − 1 = lv e + ∆〈C ′〉.

Note that taking the maximum with L(C ′) is necessary to justify IH.

[If C ≡ ˜C ′] Take L(C)
def
= L(C ′). Then lvC[e] = lvC ′[t] + 1 = lv e + ∆C ′ + 1 =

lv e+ ∆(˜C ′).

Lemma 105. lv e ≤ size(e).

Proof. Straightforward induction on e.

54

Proof of Lemma 22 (Context Domination).

Statement. ` > size(C) =⇒ C ∈ ECtx`,m.

Proof. Induction on C. There is a precondition `′ > size(C ′) for applying IH to the

subcontext C ′ to obtain C ′ ∈ ECtx`
′,m. This precondition holds because IH is invoked

with size(C ′) ≤ size(C)− 1 and `− 1 ≤ `′ in each case.

[If C ≡ •] Clearly C ∈ ECtx`,`, and m
def
= ` satisfies ∆ • (m) = `.

[If C ≡ C ′ e]

C ′ ∈ ECtx`,m by IH (1)

lv e ≤ size(C) < ` using Lemma 105 (2)

e ∈ E` immediately (3)

C ′ e ∈ ECtx`,m by (1)(3)

[If C ≡ e C ′]

C ′ ∈ ECtx`,m by IH (4)

lv e ≤ size(C) < ` using Lemma 105 (5)

e ∈ E`−1 = V ` immediately (6)

C ′ e ∈ ECtx`,m by (4)(6)

[If C ≡ 〈C ′〉] IH gives C ′ ∈ ECtx`−1,m, so 〈C ′〉 ∈ ECtx`,m.

[If C ≡ ˜C ′] IH gives C ′ ∈ ECtx`+1,m, so ˜C ′ ∈ ECtx`,m.

[If C ≡ !C ′] IH gives C ′ ∈ ECtx`,m, so !C ′ ∈ ECtx`,m.

C.5 Proofs for Extensionality

The proof of Proposition 44 (extensionality) relies on commutation of substitution,

concluding [a/x]σe ≈ [a/x]σt from ∀b. [b/x]e ≈ [b/x]t. This inference is justified in

55

this section.

Lemma 106. Given a simultaneous substitution σ : Var ⇀
fin

Arg
def≡ [ai/xi] and a pair

of expressions e and t, there exists a sequential substitution σ′
def≡ [cj/zj]

j
[bi/xi]

i
such

that σ′e = σe and σ′t = σt. Furthermore, the order in which the variables xi are

substituted for is arbitrary.

Proof. Observe that if either ∀i, j. xi 6∈ FV(aj) or ∀i. ai ∈ Var then a simultaneous

substitution [ai/xi] can be made sequential as [ai/xi]. Furthermore, in the former

case the individual substitutions [ai/xi] commute with each other, so their order is

arbitrary. Thus using fresh variables zi ,

[ai/xi] ≡ [xi/zi]
[
[zj

j/xj
j]ai

i
/xi

]
≡ [xi/zi]

i
[[zj

j/xj
j]ai/zi]

i
.

But, unfortunately, xi 6∈ Arg in CBV, so the substitution [xi/zi] does not have the

signature Var ⇀
fin

Arg. By giving up syntactic equality between σ and σ′, the new

substitution can be made to have the required signature. Choose an arbitrary v ∈ V 0
cl

and substitute a stuck expression zi v instead of just zi for xi, then substitute λ .xi

for zi to resolve this stuck application and contract it to xi by β substitution. We

get:

σ′ ≡
[
λ .xi/zi

] [[
zj v

j/xj
j
]
ai
i/xi

i
]
≡ [λ .xi/zi]

i
[
[zj v/xj]

j
ai/xi

]i
Note that zj v 6∈ Arg is not a problem: this lemma only asserts ∀i. [zj v/xj]

j
ai ∈ Arg,

which follows from Lemma 87. Then for each i,

σ′xi ≡
[
λ .xj

j
/zj

j
] [
zj v

j/xj
j
]
ai ≡

[
(λ .xj) v

j
/xj

j
]
ai =

[
xj
j/xj

j
]
ai ≡ ai ≡ σxi.

I omit the trivial induction argument that this equality extends to σ′e = σe and

σ′t = σt.

56

Remark. The only reason we refer to a pair of expressions instead of one expression

in Lemma 106 is because we need fresh variables zi . If each zi is requested to be fresh

for only σ and e, then it might fail to be fresh for t.

Lemma 107. ∀a. [a/x]e ≈ [a/x]t =⇒ ∀σ. ∀a. [a/x]σe ≈ [a/x]σt.

Proof. Without loss of generality, σ ≡
[
bi
i∈I
/xi

i∈I
]

where I = {1, 2, . . . ,# domσ}.

If x ∈ domσ, then [a/x]σ ≡
[
[a/x]bi

i∈I
/xi

i∈I
]

and ∃i. x ≡ xi; if not, then [a/x]σ ≡[
bi
i∈({0}∪I)

/xi
i∈({0}∪I)

]
where b0

def≡ a and x0
def≡ x. Either way, [a/x]σ is equal to a

single parallel substitution of the form σ′
def
= [bi/xi] such that ∃i. xi ≡ x.

By Lemma 106, there exists a sequential substitution [ai/xi][a
′/x] such that σ′e =

[ai/xi][a
′/x]e and σ′t = [ai/xi][a

′/x]t. Note that the lemma explicitly states that we

can require x to be substituted first. Then

[a/x]σe ≡ σ′e = [ai/xi][a/x]e ≈ [ai/xi][a
′/x]t = σ′t ≡ [a/x]σt.

C.6 Proofs for Soundness and Completeness of Applicative

Bisimulation

This section provides proof details pertaining to the soundness and completeness of

indexed applicative bisimulation. The main text gives a high-level explanation of the

entire proof, so this section will fill in just the missing pieces without repeating the

explanations.

Proof of Proposition 51.

Statement. Define applicative mutual similarity as (∼′X)
def
= (.X) ∩ (&X). Then

(∼X) = ∼′X .

Proof. We show double containment.

57

[For (∼X) ⊆ (∼′X)] Obviously ∀X. (∼X) = [∼]X ∩ [∼−1]X
−1 ⊆ [∼]X , so (∼X) ⊆

(.X). By the way, ∀X. (∼−1
X) = [∼]X

−1 ∩ [∼−1]X = [∼−1]X [(∼−1)
−1

]X
−1

, so

by coinduction (∼−1
X) ⊆ (∼X). It follows that (∼−1

X) ⊆ (.X), i.e. (∼X) ⊆ (&X).

Therefore, (∼X) ⊆ (&X) ∩ (.X) = (∼′X).

[For (∼′X) ⊆ (∼X)] Suppose e ∼′X t and let ` = max(lv e, lv t). Then we have e .X t,

so whenever σe ⇓` u for some σ, u we have σt ⇓0 v and u {.X}` v. Furthermore

we have t .X e, so σt ⇓0 v implies σe ⇓0 u′ and v {.X}` u′. Evaluation is

deterministic, so u ≡ u′—therefore, u {∼′X}` v. Arguing similarly, we can show

∃v. σt ⇓` v =⇒ ∃u. σe ⇓` u∧u {∼′X}` v. Hence (∼′X) ⊆ [∼′]X ∩ [(∼′)−1]X
−1

; then

by coinduction, (∼′X) ⊆ (∼X).

Lemma 108. If RX is a family of relations, then

(i) e [R]Xt =⇒ ∀σ : X|Var ⇀
fin

Arg. σe [R]X\domσσt and

(ii) ∀Y ⊆ X. ((∀σ : Y |Var ⇀
fin

Arg. σe [R]X\domσσt) =⇒ e [R]Xt).

Proof.

(i) Suppose e [R]Xt and let σ : Var ⇀
fin

Arg be given. Then for any σ′ : (X \

domσ)|Var ⇀
fin

Arg, the composition of the substitutions satisfies σ′σ : X|Var ⇀
fin

Arg, where (σ′σ)e
def≡ σ′(σe). Thus by assumption σ′(σe) ⇓` v =⇒ (σ′(σt) ⇓`

u ∧ v {RY }` u). Therefore, (σe)RX\domσ(σt).

(ii) Suppose ∀σ : Y |Var ⇀
fin

Arg. (σe) [R]X\domσ(σt) for some Y and let any σ′ :

X|Var ⇀
fin

Arg be given. By the assumption Y ⊆ X ⊆ domσ′ and Lemma 106,

σ′ can be decomposed as σ′ ≡ σ′′σ for some σ : Y |Var ⇀
fin

Arg and σ′′ :

X \ domσ|Var ⇀
fin

Arg such that σ′′(σe) = σ′e and σ′′(σt) = σ′t. Then by

assumption (σe) [R]X\domσ(σt), so σ′′(σe) ⇓` v =⇒ (σ′′(σt) ⇓` u ∧ v {R}` u).

58

The statement about (.∅) follows by taking R = (.) and Y = X.

Proof of Lemma 54.

Statement. e .X t⇐⇒ ∀σ : X|Var ⇀
fin

Arg. σe .∅ σt.

Proof. Immediate from Lemma 108.

Lemma 109. e .̂X t ∧ a .̂X\{x} b =⇒ [a/x]e .̂X\{x} [b/x]t.

Proof. Induction on e with case analysis on e.

[If e ≡ x]

x .X t by inversion

[b/x]x .X\{x} [b/x]t by Lemma 54 (1)

[a/x]x .̂X\{x} [b/x]x because a .̂X\{x} b by assumption (2)

[a/x]x .̂X\{x} [b/x]t by Proposition 59 (iii) and (1)(2)

[If e ≡ τ ei 6≡ λx.e0 (note: includes the case e ≡ c)]

(i) ∀i. ei .̂X si (ii) τ si .X t by assumption (3)

∀i. [a/x]ei .̂X\{x} [b/x]si by IH on (3.i) (4)

τ [a/x]ei ≡ [a/x](τ ei)

τ [b/x]si ≡ [b/x](τ si)

 since τ 6≡ x and τ 6≡ λx.• (5)

[a/x](τ ei) .̂X\{x} [b/x](τ si) by (4)(5) and Proposition 59 (ii) (6)

[b/x](τ si) .X\{x} [b/x]t by (3.ii) using Lemma 54 (7)

[a/x](τ ei) .̂X\{x} [b/x]t by (6)(7) using Proposition 59 (iii)

[If e ≡ λy.e1 where e1 ∈ E0]

(i) e1 .̂Y s1 (ii) λy.s1 .X t (iii) Y \ {y} = X by inversion (8)

59

[a/x]e1 .̂Y \{x} [b/x]s1 by IH on (8.i) (9)

λy.[a/x]e1 ≡ [a/x]λy.e1

λy.[b/x]s1 ≡ [b/x]λy.s1

 using BVC (10)

[a/x]λy.e1 ∈ E0 by Lemma 85 and e1 ∈ E0 (11)

[a/x]λy.e1 .̂Y \{x,y} [b/x]λy.s1 by (9)(10)(11)

[a/x]λy.e1 .̂X\{x} [b/x]λy.s1 using (8.ii) (12)

[b/x]λy.s1 .X\{x} [b/x]t by (8.ii) and Lemma 54 (13)

[a/x]λy.e1 .X\{x} [b/x]t by (12)(13) and Lemma 54

Lemma 110. v {.̂X}`w {.X}` u =⇒ v {.̂X}` u.

Proof. Easily confirmed by inspecting Definition 50 using Proposition 59 (iii).

Lemma 111. If u, v ∈ V `, then u {.̂X}` v =⇒ u .̂∅ v.

Proof. Straightforward case analysis on `, then on the form of u, using reflexivity and

context respecting property of .̂X .

Proof of Lemma 60.

Statement. e .̂X t =⇒ e [.̂X]t

Proof. Let ` = max(lv e, lv t) and e ≡ τ ei . Fix a σ and assume σe ;
`
n v. Inversion

gives some s ≡ τ si and Y where

(i) ∀i. ei .̂Y si (ii) s .X t (1)

60

and either Y \ {x} = X if e ≡ λx.e0 for some e0 or Y = X otherwise. We will show

σt ⇓` u ∧ v {.̂X}` u by lexicographic induction on (n, e) with case analysis on the

form of e. But before delving into the main induction, we note two simplifications.

Firstly, we may assume s ∈ E` without loss of generality, by thinking of the

induction scheme to be (n, e,m) rather than (n, e), where m
def
= lv s. Whenever m > `

we have σe ⇓m σe, σt ⇓m σt, and σei ⇓m
′
σei, all terminating in zero steps, and where

m′ =

m+ 1 if τ ≡ 〈•〉

m− 1 if τ ≡ ˜•

m+ 1 else

Then invoking IH on ei .̂Y si gives σsi ⇓m
′
wi and σei {.̂X}m

′
wi, from which

Lemma 111 gives σei .̂X wi. Given that m > 0, the only way in which ∀i. wi ∈ V m′

can fail to imply τ wi ∈ V m is to have m = 1, and τ ≡ ˜•, and w1 ≡ 〈s0〉 for some

s0. But then m > ` ≥ lv(˜e1) ≥ 1, so this does not happen. Hence ∀i. σei .̂Y wi,

τ wi .X σt, and τ wi ∈ V m = Em−1, so we have effectively lowered m—hence the

conclusion follows by IH.

Secondly, now having the assumption s ∈ E`, all that we need to establish is

σs ⇓` w for some w such that v {.̂X}`w. For then s .X t, or more to the point

s [.]Xt, gives ∃u. σt ⇓` u and w {.X}` u. Then by Lemma 110 it follows that

v {.̂X}` u.

To summarize, all we have to do is to fix σ : X|Var ⇀
fin

Arg and s ≡ τ si , assume

s ∈ E`, (1), and σe ;
`
n v where ` = max(lv e, lv t), then to show by lexicographic

induction on (n, e) that σs ⇓` w and u {.̂X}`w. Note that the only case where Y

may not equal X is when e has the form λx.e0.

[If e ≡ x] x ≡ τ ≡ e ≡ s, so the conclusion follows by noting that {.̂X}` is reflexive

since .̂X is.

61

[If e ≡ c] Same as preceding case.

[If e ≡ e1 e2] Noting that • σe2 ∈ ECtx`,` regardless of the value of ` or evaluation

strategy, we have

(i) σe1 ;`
ni v1 (ii) v1 ∈ V `

(iii) v1 (σe2) ;
`
n−n1 v (iv) n1 ≤ n

 by Lemma 94 (2)

(i) σs1 ⇓` w1 (ii) v1 {.̂X}
`w1 by IH on (2.i) using (2.iv) (3)

The rest of this case’s proof depends on `, the shape of v1, and the evaluation

strategy.

[If ` = 0, v1 ≡ λx.e′1, and we are in CBN]

(i) w1 ≡ λx.s′1 (ii) e′1 .̂{x} s
′
1 by Lemma 94 (4)

σe2 .̂∅ σs2 from (1.i) by Lemma 109 (5)

[σe2/x]e′1 .̂∅ [σs2/x]s′1 from (4.ii)(5) by Lemma 109 (6)

[σe2/x]e′1 ;`
n−n1−1 v from (4.iii) and v1 ≡ λx.e′1 (7)

The conclusion follows from IH on (6), justified by (7).

[Else] It must be the case that either ` > 0, v1 ≡ λx.e′1 where e′1 ∈ E0, or v1 ≡ c

for some c, so we have v1 • ∈ ECtx`,`. Therefore,

(i) σe2 ;`
n2 v2 (ii) v2 ∈ V `

(iii) v1 v2 ;`
(n−n1−n2) v (iv) n2 ≤ n

 from (2.iii) by Lemma 94 (8)

(i) σs2 ⇓` w2 (ii) v2 {.̂X}
`w2 by IH on (8.i) using (8.iv) (9)

[If ` > 0] We have v1 v2, w1 w2 ∈ V `, and:

vi .̂∅ wi (i = 1, 2) from (3.ii)(9.ii) since ` > 0 (10)

62

v1 v2 .̂∅ w1 w2 by context-respecting property

v1 v2 {.̂X}
`w1 w2 because ` > 0

[If ` = 0, v1 ≡ λx.e′1, and we are in CBV]

(i) w1 ≡ λx.s′1 (ii) e′1 .̂{x} s
′
1 by Lemma 94 (11)

v2 .̂∅ w2 from (9.ii) by Lemma 111 (12)

[v2/x]e′1 .̂∅ [w2/x]s′1 from (16.ii)(12) by Lemma 109 (13)

[v2/x]e′1 ;`
n−n1−n2−1 v from (16.iii) and v1 ≡ λx.e′1 (14)

The conclusion follows from IH on (13), justified by (14).

[If ` = 0, v1 v2 ≡ c d, and (c, d) ∈ dom δ]

w1 w2 ≡ c d by (3.ii)(9.ii) (15)

σe;
0
∗ v1 v2 ;0

∗ δ(c, d)

σs;
0
∗ w1 w2 ;0

∗ δ(c, d)

 by (3.ii)(9.ii) (16)

This concludes the case when e is an application.

[If e ≡ λx.e1]

[If ` = 0] This is the only case where Y \ {x} = X and not necessarily Y = X.

We have σe, σs ∈ V 0, so these expressions terminate to themselves and we are

to show σe {.̂X}0 σs.

σe1 .̂Y \X σs1 by (1.i) and Lemma 109 (17)

Y \X = {x} ∨ Y \X = ∅ from Y \ {x} = X (18)

σe1 .̂{x} σs1 from (17)(18) monotonicity of (.̂X)

λx.σe1 {.̂X}
` σλx.s1 by definition

σe ≡ σλx.e1 {.̂X}
` σλx.s1 ≡ σs by BVC

63

[If ` > 0] By BVC, σe ≡ λx.σe1 and σs ≡ λx.σs1. Thus, noting that λx.• ∈

ECtx`,`,

(i) σe1 ;`
n v′ (ii) v ≡ λx.v′ (iii) v ∈ V ` using Lemma 94 (19)

(i) σs1 ⇓` w′ (ii) v′ {.̂X}
`w′ (iii) w′ ∈ V ` by IH on (19.i) (20)

v′ .̂∅ w′ from (20.ii) and ` > 0

λx.v′ .̂∅ λx.w′ by Proposition 59 (ii)

λx.v′ {.̂X}
` λx.w′ immediately

[If e ≡ 〈e1〉] Noting that 〈•〉 ∈ ECtx`,`+1,

(i) σe1 ;
`+1

n′
v′ (ii) v′ ∈ V `+1 (iii) n′ ≤ n by Lemma 94 (21)

(i) σs′ ⇓`+1 w′ (ii) v′ {.̂X}
`+1 w′ (iii) w′ ∈ V `+1 by IH on (21.i) (22)

v′ .̂∅ w′ by (22.ii) (23)

〈v′〉 .̂∅ 〈w
′〉 by Proposition 59 (ii) (24)

〈v′〉 {.̂X}
` 〈w′〉 by (23) if ` = 0; or

by (24) if ` > 0

[If e ≡ ˜e1]

` > 0 because ˜e1 ∈ E` (25)

˜• ∈ ECtx`,`−1 by (25) (26)

(i) σe1 ;
`−1

n′
v′ (ii) v′ ∈ V `−1 (iii) n′ ≤ n by Lemma 94 using (26) (27)

(i) σs1 ⇓`−1 w′ (ii) v′ {.̂X}`−1w′

(iii) w′ ∈ V `−1

 by IH on (27.i) using (27.iii) (28)

Split cases on `.

[If ` = 1] Clearly ˜v′ 6∈ E0 = V 1, so ˜v′ must small-step at level 1.

(i) v′ ≡ 〈e′1〉 (ii) e′1 ∈ E0 = V 1 by inversion, using (27.ii) (29)

64

(i) w′ ≡ 〈s′1〉 (ii) s′1 ∈ E0 = V 1 (iii) e′1 .̂∅ s
′
1 by (28.ii)(29.i) (30)

˜s1 ;1
∗ ˜〈s′1〉 ⇓1 s′1 from (28.i)(30.i)

e′1 {.̂X}
1 s′1 from (30.iii)

[If ` > 1]

v′, w′ ∈ V `−1 = E`−2 because ` > 1

˜v′, ˜w′ ∈ V `−1 = E`−2 immediately

v′ .̂∅ w′ by (28.ii) and `− 1 > 0

˜v′ .̂∅ ˜w′ by Proposition 59 (ii)

˜v′ {.̂X}
` ˜w′ immediately

[If e ≡ ! e1] Noting that ! • ∈ ECtx`,`,

(i) σe1 ;`
n′
v′ (ii) v ∈ V ` (iii) n′ ≤ n by Lemma 94 (31)

(i) σs1 ⇓` w′ (ii) v′ {.̂X}
`w′ (iii) w′ ∈ V ` by IH on (31.i) (32)

Split cases on `.

[If ` = 0] Since ! v′ ∈ V 0, the ! v′ must small-step.

(i) v′ ≡ 〈e′1〉 (ii) e′1 ;0
n′′
v

(iii) e′1 ∈ E0 (iv) n′′ ≤ n− n′ − 1

 by inversion (33)

(i) w′ ≡ 〈s′1〉 (ii) e′1 .̂∅ s′1 (iii) s′1 ∈ E0 by (32.ii)(32.iii)(33.ii) (34)

(i) s′1 ⇓0 w (ii) v {.̂X}
0w by IH on (33.ii) using (33.iv) (35)

σ(! 〈s1〉) ;0
∗ ! 〈s′1〉;0 s′1 ⇓0 w by (32) and (36.i) (36)

[If ` > 0]

! v′, !w′ ∈ V ` by (31.ii)(32.iii)

65

v′ .̂∅ w′ by (32.ii)

! v′ .̂∅ !w′ by Proposition 59 (ii)

! v′ {.̂X}
` !w′ immediately

66

Appendix D

Summary of Notations

The following figures summarize the mathematical notations used in this document.

Table D.1 lists the syntax for relations and annotations. Entries are sorted in order

of appearance in the main text.

at level ` (constraint) e`, v`, etc.

hole •

term size size(e)

context size size(C)

syntactic equality e ≡ t

primitive reduction e
prim
;m t

small-step e;
`
t

observational equivalence e ≈ t

termination e ⇓`

divergence e ⇑`

reduction e −→ t

provable equality e = t

free variables FV (e)

reflexive-transitive closure R∗

transitive closure R+

finite iteration Rn

parallel reduction e →−→n t

erasure ‖e‖

CBN variant Rn

CBV variant Rv

careful reduction e −→v⇓ t

careful equality e =v⇓ t

observational order e / t

applicative simulation e .X t

applicative bisimulation e ∼X t

precongruence candidate e .̂X t

Table D.1 : Summary of notations.

