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Abstract—We show how to derive natural deduction systems
for the necessity fragment of various constructive modal logics by
exploiting a pattern found in sequent calculi. The resulting sys-
tems are dual-context systems, in the style pioneered by Girard,
Barber, Plotkin, Pfenning, Davies, and others. This amounts to a
full extension of the Curry-Howard-Lambek correspondence to
the necessity fragments of a constructive variant of the modal
logics K, K4, GL, T, and S4. We investigate the metatheory of
these calculi, as well as their categorical semantics. Finally, we
speculate on their computational interpretation.

I. INTRODUCTION

The study of modal λ-calculi, and the modal logics asso-
ciated with them through the Curry-Howard correspondence
[1]–[3] began at the dawn of the 1990s, heralded by the de-
velopments in Linear Logic. Early milestones include Moggi’s
monadic metalanguage [4], and the discovery of a constructive
S4 modality by [5]. This was followed by an explosion of
developments, as well as some first applications. This era is
surveyed by [6]. Since the early 2000s this field has been
commandeered by the programming language community, see
e.g. [7]–[10].

The major issue with modal proof theory is that its methods
are, at their best, kaleidoscopic: some types of calculi seem to
work better for certain logics, but fail to suit others. It is easy
to develop an intuition about these patterns, but it is much
harder to explain why a particular pattern suits a particular
modal logic.

In the sequel we propose an explanation that clarifies why
the necessity fragments of the most popular normal modal
logics—namely K, T, K4, GL and S4—are best suited to dual-
context calculi, as pioneered by [11]–[18]. The crux of the
argument is that separating assumptions into a modal zone
and an intuitionistic zone allows one to ‘mimic’ rules from
known cut-free sequent calculi for these logics.

Our investigation is structured as follows. We first define
and discuss the the aforementioned constructive modal logics,
and present a Hilbert system for each. We then show how to
systematically derive dual-context calculi from sequent calculi,
and we study the metatheory of the five resulting systems, as
well as a notion of reduction. The addition of a few commuting
conversions also yields the subformula property. Finally, we
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develop the category theory necessary to model these calculi,
and discover sound categorical semantics for them.

Our contribution is twofold. On the theoretical side, it
amounts to a full extension of the Curry-Howard-Lambek
isomorphism—based on the usual triptych of logic, compu-
tation and categories—to a handful of modal logics. Indeed,
only fragments of our dual-context formulations have appeared
before. The original formulation of dual-context S4 belongs
to Davies and Pfenning [18], who introduced dual contexts to
modal logic. However, their work mostly concerned the type
system and its applications to binding-time analysis, and they
did not discuss reduction in depth. An approach that is similar
in shape to ours for K and K4 was presented by Frank Pfenning
at the LFMTP ’15 workshop [19] in the context of a linear
sequent calculus for K, which seems to be closely related to the
work of [20] in elementary linear logic. However, the natural
deduction formulation of the (cartesian) modal version, as well
as the technical innovations regarding the term calculus that
are needed for K4 and GL, are new. The only previous work
on K4 and GL was the rather complicated (non-dual) natural
deduction calculus of Bellin [21], and the appreciably simpler
dual-context formulations are presented here for the first time.
Finally, the approach to T is entirely new. The reader is invited
to consult the survey [22] for a more detailed history of the
literature on modal λ-calculi.

On the other hand, the results in this paper are also meant
to provide a solid foundation for applications in programming
languages. Necessity modalities are a way to control data flow
within a programming language. As such, a clear view of the
landscape can help one pick the appropriate modal axioms to
ensure some desired correctness property.

Before we proceed any further, let us mention that the full
proofs for the present paper can be found in the accompanying
technical report, available on the author’s website.1 In addition,
the author has formalized most of the metatheoretic results in
AGDA. The proofs are available either from his website, or
his GitHub repository.2

II. THE LOGICS IN QUESTION

In the sequel we will study the necessity fragment of five
modal logics: constructive K (abbrv. CK), constructive K4
(abbrv. CK4), constructive T (abbrv. CT), constructive GL
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(abbrv. CGL), and constructive S4 (abbrv. CS4). In this
section we shall discuss the common characteristics amongst
these logics, define their syntax, and present a Hilbert system
for each.

A. Constructive Modal Logics

All of the above logics belong to a group of logics that
are broadly referred to as constructive modal logics. These
are intuitionistic variants of known modal logics which have
been cherry-picked to satisfy a specific desideratum, namely to
have a well-behaved Gentzen-style proof theory, and thereby
an associated computational interpretation through the Curry-
Howard isomorphism.

There are a few characteristics common to all these log-
ics, which are rather more appreciable when the possibility
modality (♦) is taken into consideration: the de Morgan duality
between � and ♦ breaks down, rendering those two modal-
ities logically independent. For that reason we shall mostly
refer to the � as the box modality, and ♦ as the diamond
modality. Second, the principles ♦(A ∨ B) → ♦A ∨ ♦B and
¬♦⊥ are not provable. (Recall that these two principles are
tautologies if we employ traditional Kripke semantics [23].)
But even if the diamond modality is essential in pinpointing
the salient differences between constructive modal logics and
other forms of intuitionistic modal logic (e.g. [24]), it seems
that its computational interpretation is not very crisp: the only
application we know of is that of Pfenning [25]. Hence, we
restrict our study to the more well-behaved box modality.

B. Hilbert Systems

The formulae of our logics are generated by the following
Backus-Naur form:

A,B ::= pi | ⊥ | A ∧B | A ∨B | A→ B | �A

where pi is drawn from a countable set of propositions. First,
we introduce a judgment of the form Γ ` A, where Γ is a
context, i.e. a list of formulae defined by the BNF

Γ ::= · | Γ, A

and A is a single formula. We shall use the comma to also
denote concatenation—e.g. Γ, A,∆ shall mean the concatena-
tion of three things: the context Γ, the context consisting of
the single formula A, and the context ∆.

The judgment Γ ` A is meant to be read as “from
assumptions Γ, we infer A.” The complete rules for generating
Γ ` A, including the carefully-stated rule of necessitation for
the box modality (for which see [26]), may be found in Figure
1.

C. Axioms

To obtain the aforementioned logics, all we need to do is
vary the set of axioms. We write

(A1)⊕ · · · ⊕ (An)

to mean the set of theorems A such that ` A is derivable from
all instances of the axiom schemata (A1), . . . , (An) under the

Fig. 1. Hilbert systems

(assn)
Γ, A ` A

A is an axiom
(ax)

Γ ` A
Γ ` A→ B Γ ` A

(MP )
Γ ` B

` A
(NEC)

Γ ` �A

rules in Figure 1. We write (IPL�) to mean all instances
of the axioms of intuitionistic propositional logic, but also
including formulas of the form �A in the syntax. We will use
the following axiom schemata:

(K) �(A→ B)→ (�A→ �B)

(4) �A→ ��A
(T) �A→ A

(GL) �(�A→ A)→ �A

We then define the following logics:

CK def
= (IPL�)⊕ (K)

CK4 def
= (IPL�)⊕ (K)⊕ (4)

CT def
= (IPL�)⊕ (K)⊕ (T)

CS4 def
= (IPL�)⊕ (K)⊕ (4)⊕ (T)

CGL def
= (IPL�)⊕ (K)⊕ (GL)

To indicate that we are using the Hilbert system for e.g.
CK, we annotate the turnstile, and write Γ `CK A. We simply
write Γ ` A when the statement under discussion pertains to
all of our Hilbert systems.

There are many interesting metatheoretic results about the
above systems, including the admissibility of various structural
and modal inference rules, but they are beyond the scope of
the paper.

III. FROM SEQUENT CALCULI TO DUAL CONTEXTS

A. The Perennial Issues

In this section we discuss the issues that one has to tackle
time and time again whilst devising modal λ-calculi for
necessity modalities.

A brief perusal of the survey [22] indicates that most work
in the subject is concentrated on the analysis of essentially two
kinds of calculi: (a) those with explicit substitutions, following
a style that was popularised by [5]; and (b) those employing
dual contexts, a pattern that was imported into modal type
theory by [17], [18].

Calculi with explicit substitutions suffer from multiple prob-
lems, mostly because they feature introduction rules for the
modality which also partially function as cut rules. This is
rather harmful when it comes to proof-theoretic harmony,
and in all cases weaker than S4 this pattern breaks down
the duality between introduction and elimination. Decoupling
the introduction and cut aspect of these rules is essential for
overcoming these problems.



The right intuition for achieving this ‘decoupling’ was
introduced by Girard [11] in his attempt to combine classical,
intuitionistic, and linear logic in one system. The gist of the
idea is simple and can be turned into a slogan: segregate
assumptions. This means that we should divide our usual
context of assumptions in two, or—even better—think of it
as consisting of two zones. We should think of one zone as
the primary zone, and the assumptions occuring in it as the
‘ordinary’ sort of assumptions. The other zone is the secondary
zone, and the assumptions in it normally have a different
flavour. In this context, the introduction rule explains the
interaction between the two contexts, whereas the elimination
rule effects substitution for the secondary context.

This idea has been most profitable in the case of the Dual
Intuitionistic Linear Logic (DILL) of [15], [16], where the
primary context consists of linear assumptions, whereas the
secondary consists of ordinary intuitionistic assumptions. The
‘of course’ modality (!) of Linear Logic is very much like a S4
modality, and—simply by lifting the linearity restrictions—
[17], [18] adapted the work of Barber and Plotkin to the
modal logic CS4 with considerable success. In this system,
hereafter referred to as Dual Constructive S4 (DS4), the
primary context consists of intuitionistic assumptions, whereas
the secondary context consists of modal assumptions.

However, the systems of Barber, Plotkin, Davies and Pfen-
ning do not immediately seem adaptable to other logics.
Indeed, the pattern may at first seem limited to modalities like
‘of course’ and the necessity of S4, which—categorically—
are comonads. Recall that a comonad can be decomposed into
an adjunction, which satisfies a universal property, and it may
seem that the syntax heavily depends on that.

In the rest of this section we argue that, not only does the
dual-context pattern not depend on this universal property at
all, but that it can easily be adapted to capture the necessity
fragments of all the other aforementioned logics.

B. Deriving dual-context calculi

We shall start with the usual suspect, namely the sequent
calculus. Gentzen introduced the sequent calculus in the 1930s
[27], [28] in order to study normalisation of proofs, known as
cut elimination in this context; see [2] for an introduction.

Proofs in the sequent calculus consist of trees of sequents,
which take the form Γ ` A, where Γ is a context. Thus in
our notation a sequent is a different name for a judgment,
like the ones of natural deduction.3 The rules, however, are
different, and they come in two flavours: left rules and right
rules. Broadly speaking, right rules are exactly the introduction
rules of natural deduction, as they only concern the conclusion
A of the sequent. The left rules play a role similar to that of
elimination rules, but they do so by ‘gerrymandering’ with the
assumptions in Γ.

3Fundamental differences arise in the case of classical logics, where
sequents are of the form Γ ` ∆ where both Γ and ∆ are lists of formulae. For
the purposes of intuitionistic logic ∆ consists of at most one formula—see
[2, §5.1.3].

1) The Introduction Rules: Let us consider the right rule
for the logic S4. In the intuitionistic case, the rule is

�Γ ` A
(�R)

�Γ ` �A
One cannot help but notice this rule has an intuitive compu-
tational interpretation, in terms of ‘flow of data.’ We can read
it as follows: if only modal data are used in inferring A, then
we may safely obtain �A. Only ‘boxed’ things can flow into
something that is ‘boxed.’

Let us now take a closer look at dual-context systems for
box modalities. A dual-context judgment is of the form

∆ ; Γ ` A

where both ∆ and Γ are contexts. The assumptions in ∆ are
to be thought of as modal, whereas the assumptions in Γ are
run-of-the-mill intuitionistic assumptions. A loose translation
of a judgment of this form to the ‘ordinary sort’ would be

∆ ; Γ ` A  �∆,Γ ` A

Under this translation, if we ‘mimic’ the right rule for S4 we
would obtain the following:

∆ ; · ` A

∆ ; · ` �A
where · denotes the empty context. However, natural deduction
systems do not have any structural rules, so we have to include
some kind of ‘opportunity to weaken the context’ in the above
rule. If we do so, the result is

∆ ; · ` A

∆ ; Γ ` �A
Under the translation described above, this is exactly the

right rule for S4, weakening included. Incidentally, it is also
exactly the introduction rule of [17] for their dual-context
system DS4.

This pattern can actually be harvested to turn the right rules
for box in sequent calculi to introduction rules in dual-context
systems. We proceed to tackle each case separately, except T,
which we discuss in §III-B6

2) K: The case for K is slightly harder to fathom at first
sight. This is because its sequent calculus only has a single
rule for the modality, which is known as Scott’s rule:

Γ ` A

�Γ ` �A
As [29] discuss, this rule fundamentally unsavoury: it is both
a left and a right rule at the same time. It cannot be split
into two rules, which is the pattern that bestows sequent
calculus its fundamental symmetries. Despite this, Scott’s rule
is reasonably well-behaved: see [30]–[32].

With the previous interpretation in mind, our introduction
rule should take the following form:

· ; ∆ ` A

∆ ; · ` �A



Indeed, we emulate Scott’s rule by ensuring that all the
intuitionistic assumptions become modal, at once. The final
form is reached again by adding opportunities for weakening:

· ; ∆ ` A

∆ ; Γ ` �A

3) K4: The right sequent calculus rule for the logic K4,
as well as the proof of cut elimination, is due to Sambin
and Valentini [33]. Using elements from his joint work with
Sambin, as well some counterexamples found in the work of
[30] on GL, Valentini’s key observation is that, due to axiom
4, anything derivable from ��A is derivable by �A. The
(single) rule for the modality encapsulates this insight:

�Γ,Γ ` A

�Γ ` �A

Thus, to derive �A from a bunch of boxed assumptions, it
suffices to derive A from two copies of the same assumptions,
one boxed and one unboxed. A direct translation, after adding
opportunities for weakening, amounts to the introduction rule:

∆ ; ∆ ` A

∆ ; Γ ` �A

4) GL: The correct formulation of sequent calculus for GL
is a difficult problem that receives attention time and time
again; see [34] for a recent approach. The Leivant-Valentini
sequent calculus rule for GL [33] is this:

�Γ,Γ,�A ` A

�Γ ` �A

The only difference between this rule and the one for K4
is the appearance of the ‘diagonal assumption’ �A. We
can straightforwardly use our translation to state it as an
introduction rule:

∆ ; ∆,�A ` A

∆ ; Γ ` �A

5) The Elimination Rule: As discussed before, in a dual-
context calculus we can consider one of these zones to be
primary, and the other secondary, depending of course on our
intentions. Assumptions in the primary zone are discharged
by λ-abstraction. Thus, the function space of DILL is linear,
whereas the function space of DS4 is intuitionistic. This mech-
anism provides for internal substitution for an assumption, by
first λ-abstracting it and then applying the resulting function
to an argument.

In contrast, substituting for assumptions in the secondary
zone is the capacity of the elimination rule. This is a customary
pattern for dual-context calculi: unlike primary assumptions,
substitution for secondary assumptions is essentially a cut rule.
In the term assignment system we will consider later, this takes
the form of an explicit substitution, a type of ‘let construct.’
The rationale is this: the rest of the system controls how

secondary assumptions arise and are used, and the elimination
rule uniformly allows one to substitute for them.4 To wit:

∆ ; Γ ` �A ∆, A ; Γ ` C
(�E)

∆ ; Γ ` C
A lot of cheek is involved in trying to pass a cut rule as an
elimination rule. Notwithstanding the hypocrisy, this is not
only common, but also the best presently known solution
to regaining the patterns of introduction/elimination in the
presence of modality. It is the core of our second slogan: in
dual-context systems, substitution is a cut rule for secondary
assumptions.

6) A second variable rule: We have conveniently avoided
discussing two things up to this point: (a) the left rule for �
in S4, which is the only one of our logics that has both left
and right rules, and (b) the case of T. These two are intimately
related.

The left rule for the box in S4 is

Γ, A ` B
(�L)

Γ,�A ` B
We can intuitively read it as follows: if A suffices to infer B,
then �A is more than enough to infer B. It is not hard to
see that this encapsulates the T axiom, namely �A → A.
This rule, put together with Scott’s rule, form a sequent
calculus where cut is admissible; this is mentioned by [35]
and attributed to [36].

One way of emulating this rule in our framework would be
to have a construct that makes an assumption ‘jump’ from
one context to another, but that is inelegant and probably
unworkable. We are in natural deduction, and we have two
kinds of assumptions: modal and intuitionistic. The way to
imitate the above is to include a rule that allows one to use a
modal assumption as if it were merely intuitionistic. To wit:

(�var)
∆, A,∆′ ; Γ ` A

This translates back to the sequent �∆,�A,�∆′,Γ ` A.
A rule like this was introduced by [15], [16] for dereliction

in DILL, and was also essential in Davies and Pfenning’s DS4.
In our case, we use it in combination with the introduction rule
for K in order to make a system for T.

IV. TERMS, TYPES & METATHEORY

In this section we collect all the observations we have
made in order to turn our natural deduction systems into term
assignment systems, i.e. typed λ-calculi. First, we annotate
each assumption A with a variable, e.g. x : A. Then, we
annotate each judgment ∆ ; Γ ` A with a term M reprsenting
the entire deduction that with that judgment as its conclusion—
see [2, §3] or [3], [37] for an introduction. We omit a treatment
of ∨, for it is largely orthogonal.

4Alternative approaches have also been considered. For example, one could
introduce another abstraction operator, i.e. a ‘modal λ.’ This has been adopted
by [25], in a dependently-typed setting.



Fig. 2. Definition and Typing Judgments

Types A,B ::= pi | A×B | A→ B | �A

Typing Contexts Γ,∆ ::= · | Γ, x:A

Terms M,N ::= x | λx:A. M |MN | 〈M,N〉
| π1(M) | π2(M)

| box M | let box u⇐M in N

| fix z in box M

Rules for all calculi:

(var)
∆ ; Γ, x:A,Γ′ ` x : A

∆ ; Γ `M : A ∆ ; Γ ` N : B
(×I)

∆ ; Γ ` 〈M,N〉 : A×B

∆ ; Γ `M : A1 ×A2

(×Ei)
∆ ; Γ ` πi (M) : Ai

∆ ; Γ, x:A `M : B
(→ I)

∆ ; Γ ` λx:A. M : A→ B

∆ ; Γ `M : A→ B ∆ ; Γ ` N : A
(→ E)

∆ ; Γ `MN : B

∆ ; Γ `M : �A ∆, u:A ; Γ ` N : C
(�E)

∆ ; Γ ` let box u⇐M in N : C

Rules for K, K4, GL:

· ; ∆ `M : A
(�IK)

∆ ; Γ ` box M : �A

∆ ; ∆⊥ `M⊥ : A
(�IK4)

∆ ; Γ ` box M : �A

∆ ; ∆⊥, z⊥ : �A `M⊥ : A
(�IGL)

∆ ; Γ ` fix z in box M : �A

Rules for S4:

(�var)
∆, u:A,∆′ ; Γ ` u : A

∆ ; · `M : A
(�IS4)

∆ ; Γ ` box M : �A

Rules for T: (�IK) and (�var)

The grammars defining types, terms and contexts, as well
as the typing rules for all our systems can be found in Figure
2. When we are at risk of confusion, we annotate the turnstile
with a subscript to indicate which system we are referring to;
e.g. ∆ ; Γ `DGL M : A refers to the system consisting of the
rules pertaining to all our calculi coupled with the introduction
rule (�IGL).

From this point onwards, we assume Barendregt’s conven-
tions: terms are identified by α-conversion, and bound vari-
ables are silently renamed whenever necessary. In let box u⇐
M in N , u is a bound variable in N . Finally, we write
N [M/x] to indicate capture-avoiding substitution of M for
x in N .

Furthermore, we shall assume that whenever we write a
judgment like ∆ ; Γ ` M : A, then ∆ and Γ are disjoint, in
the sense that VARS (∆) ∩ VARS (Γ) = ∅, where

VARS (x1 : A1, . . . , xn : An)
def
= {x1, . . . , xn}

This causes a mild technical complication in the cases K4
and GL. Fortunately, the solution is relatively simple, and we
explain it now.

A. Complementary variables
Naively annotating the rule for K4 would yield

∆ ; ∆ `M : A

∆ ; Γ ` box M : �A

This, however, violates our convention that the two contexts
must be disjoint: the same variables will appear at both modal
and intuitionistic positions. To overcome this we introduce
the notion of complementary variables. Let V be our set of
variables. A complementation function is an involution on
variables. That is, it is a bijection (−)⊥ : V

∼=−→ V which
happens to be its own inverse:(

x⊥
)⊥

= x

The idea is that, if u is the modal variable representing some
assumption in ∆, we will write u⊥ to refer to a variable
x, that is uniquely associated to u, and represents the same
assumption, but unboxed. For technical reasons, we would like
that x⊥ is the same variable as u.

We extend the involution to contexts:

(x1 : A1, . . . , xn : An)⊥
def
= x⊥1 : A1, . . . , x

⊥
n : An

We also inductively extend (−)⊥ to terms, with the exception
that it shall not change anything inside a box (−) construct.
It also need not change any bound modal variables, as for K4
and GL these shall only occur under box (−) constructs:

(λx : A.M)⊥
def
= λx⊥:A. M⊥

(MN)⊥
def
= M⊥N⊥

〈M,N〉 def
= 〈M⊥, N⊥〉

(πi(M))⊥
def
= πi(M

⊥)

(box M)⊥
def
= box M

(let box u⇐M in N)⊥
def
= let box u⇐M⊥ in N⊥



We use this machinery to maintain disjoint contexts. When
we encounter the introduction rule for the box and the modal
context ∆ gets ‘copied’ to the intuitionistic position, we will
complement all variables in the copy, as well as all variables
occuring in M , but not under any box (−) constructs:

∆ ; ∆⊥ `M⊥ : A

∆ ; Γ ` box M : �A

We extend complementation to finite sets of variables, by
setting

{x1, . . . , xn}
def
= x⊥1 , . . . , x

⊥
n

It is not hard to see that (a) the involutive behaviour of (−)⊥

extends to all these extensions and (b) most common oper-
ations, such as VARS (·), commute with (−)⊥. Furthermore,
there is a simple relationship between complementation and
substitution:

Theorem 1. If u⊥ 6∈ FV (M) then

(M [N/u])
⊥ ≡M⊥[N,N⊥/u, u⊥]

To conclude this section, we carefully define what it means
for a pair of contexts to be well-defined.

Definition 1 (Well-defined contexts). A pair of contexts ∆ ; Γ
is well-defined just if

1) They are disjoint, i.e. VARS (∆) ∩ VARS (Γ) = ∅.
2) In the cases of K4 and GL, no two complementary

variables occur in the same context; that is

VARS (Γ) ∩ VARS
(
Γ⊥
)

= ∅
VARS (∆) ∩ VARS

(
∆⊥
)

= ∅

The second condition is easy to enforce, and will prove
useful in some technical results found in the sequel.

B. Free variables: boxed and unboxed

Definition 2 (Free variables).
1) The free variables FV (M) of a term M are defined by

induction on the structure of the term in the usual manner,
along with the following two modal cases:

FV (box M)
def
= FV (M)

FV (let box u⇐M in N)
def
= FV (M) ∪ (FV (N)− {u})

and for GL we replace the clause for box (−) with

FV (fix z in box M)
def
= FV (M)− {z}

2) The unboxed free variables FV0 (M) of a term are those
that do not occur under the scope of a box (−) construct.
They are formally defined by replacing the clause for
box (−) in the definition of free variables by

FV0 (box M)
def
= ∅

and, for GL,

FV0 (fix z in box M)
def
= ∅

3) The boxed free variables FV≥1 (M) of a term M are
those that do occur under the scope of a box (−) con-
struct. They are formally defined by replacing the clauses
for variables and for box (−) in the definition of free
variables by

FV≥1 (x)
def
= ∅

FV≥1 (box M)
def
= FV (M)

and, for GL,

FV≥1 (fix z in box M)
def
= FV (M)− {z}

Theorem 2 (Free variables).
1) For every term M , FV (M) = FV0 (M) ∪ FV≥1 (M).
2) For every term M , FV0

(
M⊥

)
= FV0 (M)

⊥.
3) For every term M , FV≥1

(
M⊥

)
= FV≥1 (M).

4) If S ∈ {DK,DK4,DGL} and ∆ ; Γ `S M : A, then

FV0 (M) ⊆ VARS (Γ)

FV≥1 (M) ⊆ VARS (∆)

5) If S ∈ {DS4,DT} and ∆ ; Γ `S M : A, then

FV0 (M) ⊆ VARS (Γ) ∪ VARS (∆)

FV≥1 (M) ⊆ VARS (∆)

6) If ∆;Γ, x:A,Γ′ `M : A and x 6∈ FV (M), then ∆;Γ,Γ′ `
M : A.

7) If ∆, u:A,∆′ ; Γ `M : A and u 6∈ FV (M), then ∆,∆′ ;
Γ `M : A.

As expected, our systems satisfy the standard menu of
structural results: weakening, contraction, exchange, and cut
rules are admissible.

Theorem 3 (Structural & Cut). Weakening, exchange, and
contraction rules for the intuitionistic context are admissible
in all systems, as is the following cut rule:

∆ ; Γ ` N : A ∆ ; Γ, x:A,Γ′ `M : A

∆ ; Γ,Γ′ `M [N/x] : A

Theorem 4 (Modal Structural). Weakening, exchange and
contraction rules are admissible for the modal context in all
systems.

Theorem 5 (Modal Cut). The following rules are admissible:
1) (Modal Cut for DK)

· ; ∆ `DK N : A ∆, u:A,∆′ ; Γ `DK M : C

∆,∆′ ; Γ `DK M [N/u] : C

2) (Modal Cut for DK4)

∆ ; ∆⊥ `DK4 N
⊥ : A ∆, u:A,∆′ ; Γ `DK4 M : C

∆,∆′ ; Γ `DK4 M [N/u] : C

3) (Modal Cut for DGL)

∆ ; ∆⊥, z⊥ : �A `DGL N
⊥ : A

∆, u:A,∆′ ; Γ `DGL M : C

∆,∆′ ; Γ `DGL M [N [fix z in box N/z] /u] : C



4) (Modal Cut for DS4)

∆ ; · `DS4 N : A ∆, u:A,∆′ ; Γ `DS4 M : C

∆,∆′ ; Γ `DS4 M [N/u] : C

5) (Modal Cut for DT)

· ; ∆ `DT N : A ∆, u:A,∆′ ; Γ `DT M : C

∆,∆′ ; Γ `DT M [N/u] : C

Finally, in the cases where the T axiom is present, we may
move variables from the intuitionstic to the modal context.

Theorem 6 (Modal Dereliction). If S ∈ {DS4,DT}, then the
following rule is admissible:

∆ ; Γ,Γ′ `M : A

∆,Γ ; Γ′ `M : A

C. Equivalence to Hilbert systems

We can prove metatheoretic properties for the Hilbert sys-
tems presented in §II-A that essentially correspond to the
admissibility of the introduction rules of the dual-context
systems. These lead to the following theorems. Given a context
Γ ≡ x1 : A1, . . . , xn : An, write Γ̂ for the context consisting
only of the types, i.e. A1, . . . , An. Also, write DL for the dual-
context system corresponding to the logic L (e.g. if L ≡ CGL,
then DL ≡ DGL).

Theorem 7 (Hilbert to Dual). If Γ is a well-defined context and
Γ̂ `L A, then there exists a term M such that · ;Γ `DL M : A.

Theorem 8 (Dual to Hilbert). If ∆ ; Γ `DL M : A then
�∆̂, Γ̂ `L A.

The proof of these theorems is beyond the scope of the paper.

V. REDUCTION

In this section we study a notion of reduction for our dual-
context calculi. Our reduction relation,

−→ ⊆ Λ× Λ

is defined in Figure 3, and it is essentially the standard notion
of reduction previously considered by [18]. A similar notion
of reduction was studied in the context of Dual Intuitionistic
Linear Logic (DILL) by [38]. Unlike [38] we do not study
the full reduction including η-contractions and commuting
conversions.

Theorem 9 (Subject reduction). If ∆;Γ `M : A and M −→
N , then ∆ ; Γ ` N : A.

Our notion of reduction is rather well-behaved:

Theorem 10. The reduction relation −→ is confluent and
strongly normalizing.

Whereas confluence is easy to show (using e.g. parallel re-
duction), strong normalization is slightly harder to obtain. We
have done so by using the method of candidates of reducibility
(candidats de reducibilité), which is a kind of induction
on types, rather closely related to the technique of logical

Fig. 3. Reduction

(→ β)
(λx:A. M)N −→M [N/x]

(×β)
πi(〈M1,M2〉) −→Mi

M −→ N
(congπi

)
πi(M) −→ πi(N)

Mi −→ Ni and M1−i ≡ N1−i
(cong×)

〈M0,M1〉 −→ 〈N0, N1〉

M −→ N
(congλ)

λx:A. M −→ λx:A. N

M −→ N
(congbox)

box M −→ box N

M −→ N
(app1)

MP −→ NP

P −→ Q
(app2)

MP −→MQ

M −→ N
(congfix)

fix z in box M −→ fix z in box N

M −→ N
(letbox1)

let box u⇐M in P −→ let box u⇐ N in P

P −→ Q
(letbox2)

let box u⇐M in P −→ let box u⇐M in Q

Beta rule for non-GL:

(�β)
let box u⇐ box M in N −→ N [M/u]

Beta rule for GL:

let box u⇐ fix z in box M in N −→ N [M [fix z in box M/z] /u]



relations—or, in this particular case, logical predicates–see [2,
§14] for an introduction. The particular variant we use is a
mixture of the versions of Girard [39] and Koletsos [40], see
also [41], [42]. We hope that some of the details will appear
in the full version of the present paper.

A. Subformula Property

The notion of reduction we have studied in this section is
computationally interesting, but is logically weak, in the sense
that it does not satisfy the Subformula Property.

The gist of the subformula property is that, in a ‘normal’
proof of formula A from assumptions Γ (i.e. a proof that has
no detours), the only formulas involved should be either (a)
subexpressions of the conclusion A, or (b) subexpressions of
some premise in Γ. This is almost sufficient to say that the
proof has a very specific structure: it proceeds by eliminating
logical symbols of assumptions in Γ, and then uses the results
to ‘build up’ a proof of A using only introduction rules. See
[43] and [2] for a fuller discussion of these points.

Let us return to our systems. We define −→ c ⊆ Λ× Λ to
be the compatible closure of −→ that includes the following
clauses:

πi (let box u⇐M in N)

−→ c let box u⇐M in πi(N)

(let box u⇐M in P )Q

−→ c let box u⇐M in PQ

let box v ⇐ (let box u⇐M in N) in P

−→ c let box u⇐M in let box v ⇐ N in P

We can now prove the requisite property for this reduction
relation.

Theorem 11 (Subformula Property). Let ∆ ; Γ ` M : A,
and suppose M is a (−→ c)-normal form. Then, every type
occuring in the derivation of ∆ ; Γ ` M : A is either a
subexpression of the type A, or a subexpression of a type in
∆ or Γ.

We have thus established the notion of reduction −→ c,
which eliminates any structurally irrelevant occurences from
a proof of the formula. Of course, one should extend the
preceding analysis of −→ to this notion, but we think that
this may be harder than it sounds.

VI. MODAL CATEGORY THEORY

In order to formulate categorical semantics for our calculi,
we shall need—first and foremost—a cartesian-closed category
(CCC), for the underlying λ-calculus. For background on
categorical semantics please refer to [44]–[46].

We shall model the modality by a strong monoidal endo-
functor. In our case, the monoidal product will be the cartesian
product of the cartesian closed category. Its being strongly
monoidal corresponds to the isomorphism �(A × B) ∼=
�A × �B which is another way of stating the modal axiom
K. For want of space, we shall not treat the case of GL here.

In this section we develop a modest amount of monoidal
category theory. The basic definitions of monoidal categories,
lax monoidal functors and monoidal natural transformations
may be found MacLane [47, §XI.2] and the survey of Melliès
[48, §5].

Definition 3. A strong monoidal functor between two carte-
sian categories is a lax monoidal functor where the compo-
nents mA,B : F (A) × F (B) → F (A × B) and the arrow
m0 : 1→ F (1) are isomorphisms.

One may also show that if the underlying category is carte-
sian, then a strong monoidal functor is product-preserving.5

The natural transformations can be extended to more objects.
We write

∏n
i=1An for the product A1 × · · · ×An, where the

× associates to the left. We define, by induction:

m(0) def
= m0 : 1→ F1

m(n+1) def
= m ◦ (m(n) × id) :

n+1∏
i=1

FAi → F

(
n+1∏
i=1

Ai

)
The combination of a CCC with a strong monoidal endo-

functor is the quintessential structure in our development, so
we give it a name.

Definition 4. A Kripke category (C,×,1, F ) is a carte-
sian closed category C, considered as a monoidal category
(C,×,1), along with a strong monoidal endofunctor F : C −→
C.

Kripke categories are the minimal setting in which one can
the introduction rule for K by defining an operation

(−)• : C

(
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)
by

f•
def
= Ff ◦m(n)

When axiom 4 is involved, we will use the following structure,
which is “half a comonad.”

Definition 5. A Kripke-4 category (C,×,1, Q, δ) is a Kripke
category (C,×,1, Q) along with a monoidal natural trans-
formation δ : Q ⇒ Q2 such that the following diagram
commutes:

QA Q2A

Q2A Q3A

δA

δA δQ(A)

Q(δA)

Like Kripke categories, Kripke-4 categories are the minimal
setting in which one can model the introduction rule for K4. To
see this, let (C,×,1, Q, δ) be a Kripke-4 category, and write

n∏
i=1

Ai ×l
m∏
j=1

Bj

5Please refer to the full version for the proof.



to mean the left-associating product A1×· · ·×An×B1×· · ·×
Bm. Also, write 〈

−→
fi ,
−→gi ,
−→
hj〉 to mean the left-associating medi-

ating morphism 〈f1, . . . , fn, g1, . . . , gm, h1, . . . , gp〉. With this
notation we can now define a map of hom-sets

(−)# : C

(
n∏
i=1

FAi ×l
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)
by

f# def
= Ff ◦m(2n) ◦ 〈

−−−→
δAi

πi,
−→πi〉

Similarly, the following structure will be the categorical
analogue to the logic T.

Definition 6. A Kripke-T category (C,×,1, Q, ε) is a Kripke
category (C,×,1, Q) along with a monoidal natural transfor-
mation ε : Q⇒ Id.

Modelling the modal dereliction rule amounts to precompo-
sition with a product of a bunch of components of ε : Q⇒ Id.

Our final modality is that of S4. We will need the following
notion from monoidal category theory.

Definition 7. A monoidal comonad on a cartesian category C
is a comonad (Q, ε, δ) such that Q : C −→ C is a monoidal
functor, and ε : Q⇒ Id and δ : Q⇒ Q2 are monoidal natural
transformations.

Definition 8. A Bierman-de Paiva category (BdP category)
(C,×,1, Q, δ, ε) is a Kripke category (C,×,1, Q) whose func-
tor Q : C −→ C is part of a monoidal comonad (Q, δ, ε).

Bierman-de Paiva categories are—as before—the minimal
setting in which both the Four and T rules can be modelled.
This time, the Four rule is modelled by co-Kleisli extension:
we define the map

(−)∗ : C

(
n∏
i=1

FAi, B

)
→ C

(
n∏
i=1

FAi, FB

)
as follows:

f∗
def
= Ff ◦m(n) ◦

n∏
i=1

δAi

VII. CATEGORICAL SEMANTICS

In this section we use the modal category theory developed
in §VI to formulate a categorical semantics for our dual-
context calculi. This completes the circle in terms of the Curry-
Howard-Lambek correspondence, showing the following asso-
ciations:

CK ←→ DK ←→ Kripke categories
CK4 ←→ DK4 ←→ Kripke-4 categories
CT ←→ DT ←→ Kripke-T categories

CS4 ←→ DS4 ←→ Bierman-de Paiva categories

where the first bi-implication refers to provability, whereas
the second refers to soundness and completeness of the dual-
context calculus with respect to the type of category on the
right.

We begin by endowing our calculi with a equational theory,
and then proceed to show soundness for the semantics in §VI.

The equational theory we use is basic, and amounts to re-
moving orientation from the reduction relation, and annotating
with types. If we also add some commuting conversions to that
theory, it is not hard to obtain completeness for this semantics,
but we leave that to the full version. The rules for the theory
may be found in Figures 4 and 5.

We are now fully equipped to define the categorical seman-
tics of our dual-context systems, and we start by interpreting
types and contexts. Given any Kripke category (C,×,1, F ),
and a map I(−) associating each base type pi with an object
I(pi) ∈ C, we define an object JAK ∈ C for every type A by
induction:

JpiK
def
= I(pi)

JA×BK def
= JAK × JBK JA→ BK def

= JBKJAK

J�AK def
= F (JAK)

Then, given a well-defined context ∆ ; Γ where ∆ =
u1:B1, . . . un:Bn and Γ = x1:A1, . . . , xm:Am, we let

J∆ ; ΓK def
= F (B1)× · · · × F (Bn)×A1 × · · · ×Am

where the product is, as ever, left-associating.
We then extend the semantic map J−K to associate an arrow

J∆ ; Γ `M : AK : J∆ ; ΓK → JAK

of the category C to each derivation ∆ ; Γ ` M : A. The
definition for rules common to all calculi are the same. For
each logic we use x of the maps defined in §VI to interpret the
introduction rules for the modality. Thus we need more than
just a Kripke category: for K4 we need a Kripke-4 category,
for T we need a Kripke-T category, and for S4 we need a
Bierman-de Paiva category.

Most of the definitions are standard and may be found in
[45], [46]. The new cases are given in Figure 6. The map

π∆;Γ
∆ : J∆ ; ΓK → J∆ ; ·K

is the obvious projection. Moreover, the notation 〈−→π∆, f,
−→πΓ〉

stands for

〈−→π∆, f,
−→πΓ〉

def
= 〈π1, . . . , πn, f, πn+1, . . . , πn+m〉

We can then show that

Theorem 12 (Soundness). If ∆ ; Γ `DL M = N : A, then we
have that

J∆ ; Γ `M : AKL = J∆ ; Γ ` N : AKL

It is also relatively easy to argue that the above semantics
is complete, by using the method of Lindenbaum and Tarski.
However, that is not within the scope of the present paper.

VIII. CODA

We have achieved a full Curry-Howard-Lambek isomor-
phism for a handful of modal logics, spanning the logical
aspect (Hilbert systems and provability), the computational
aspect (a study of reduction), and the categorical aspect (proof-
relevant semantics).



Fig. 4. Equations for all systems

Function Spaces

∆ ; Γ, x:A `M : B ∆ ; Γ ` N : A
(→ β)

∆ ; Γ ` (λx:A.M)N = M [N/x] : B

∆ ; Γ `M : A→ B x 6∈ fv(M)
(→ η)

∆ ; Γ `M = λx:A.Mx : A→ B

Modality

∆ ; Γ `M : �A
(�η)

∆ ; Γ ` let box u⇐M in box u = M : �A

∆ ; Γ `M = N : �A ∆ ; Γ ` P = Q : C
(�let-cong)

∆ ; Γ ` let box u⇐M in P = let box u⇐ N in Q : B

Remark. In addition to the above, one should also include (a) rules that ensure that equality is an equivalence relation, and (b) congruence
rules for λ-abstraction and application.

Fig. 5. Equations for the modalities

For DK and DT:

· ; ∆ `M : A ∆, u : A ; Γ ` N : C
(�βK)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

· ; ∆ `M = N : A
(�congK)

∆ ; Γ ` box M = box N : �A

For DK4:

∆ ; ∆⊥ `M⊥ : A ∆, u:A ; Γ ` N : C
(�βK4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; ∆⊥ `M⊥ = N⊥ : A
(�congK4)

∆ ; Γ ` box M = box N : �A

For DS4:

∆ ; · `M : A ∆, u : A ; Γ ` N : C
(�βS4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; · `M = N : A
(�congS4)

∆ ; Γ ` box M = box N : �A

Fig. 6. Categorical Semantics

Definitions for all calculi

J∆ ; Γ ` let box u⇐M in N : CK def
= J∆, u:A ; Γ ` N : CK ◦ 〈−→π∆, J∆ ; Γ `M : �AK ,−→πΓ〉

Definitions for various modalities

q
∆, u:A,∆′ ; Γ ` u : A

y
T

def
= εA ◦ π :

q
∆, u:A,∆′ ; Γ

y
→ J�AK → JAK

J∆ ; Γ ` box M : �AKL
def
= (J· ; ∆ `M : AK)• ◦ π∆;Γ

∆ (for L ∈ {K,T})

J∆ ; Γ ` box M : �AKK4
def
=

(r
∆ ; ∆⊥ `M⊥ : A

z)#

◦ π∆;Γ
∆

J∆ ; Γ ` box M : �AKS4
def
= (J∆ ; · `M : AK)∗ ◦ π∆;Γ

∆



In order to achieve the first junction—that between logic
and computation—we have employed a systematic pattern
based on sequent calculus, namely a way to translate (right
or single) modal sequent calculus rules to introduction rules
for dual context systems. In all our cases this has worked
remarkably well. It is our hope that there is a deeper aspect to
this pattern—perhaps even a theorem to the effect that sequent
calculi rules for which cut elimination is provable can be
immediately translated to a strongly normalizing dual-context
system. Of course, this is rather utopian at this stage, but we
believe it is worth investigating.

We have also set the scene for a handful of different
necessity modalities, and begun to elucidate their computa-
tional behaviour. The present author believes that modalities
can be used to control the ‘flow of data’ in a programming
language, in the sense that they create regions of the language
which communicate in a very specific way. For example,
one can handwavingly argue that S4 guarantees that ‘only
modal variables flow into terms of modal type,’ whereas K
additionally ensures that no modal data flows into a term
of non-modal type. However, these examples are—at this
stage—mere intuitions. Making such intuitions rigorous and
proving them should amount to a sort of dataflow safety
property. A first result of this style is the free variables theorem
(Theorem 2), but the author finds it rather weak. We believe
that this might be made much stronger by making use of
the second junction, that between computation and categories:
investigating categorical models for these calculi can perhaps
give a succinct and rigorous expression to these intuitions.

Having such safety properties can make these calculi ex-
traordinarily useful for particular applications. For example, it
seems that K is stratified in two levels: ‘the world under a box,’
and ‘the world outside boxes.’ These seemingly two layers
of K resemble the two-level λ-calculi used in binding time
analyses [49] that Davies and Pfenning [50] safely embedded
in DS4. In op. cit. the authors remark they remark that the
necessary “fragment corresponds to a weaker modal logic, K,
in which we drop the assumption in S4 that the accessibility
relation is reflexive and transitive [...].” Thus, we may think
of K as the logic of program construction, i.e. a form of
metaprogramming that happens in one stage.

Another interpretation of K could be as the logic of homo-
morphic encryption. If we ‘identify’ box terms, i.e. consider
the M in box M to be invisible and indistinguishable, then
one may understand K as a server-side programming language
for homomorphic encryption (see e.g. [51]). Indeed, the term
axK that proves axiom K can be understood as the server-
side routine that applies an encrypted function to an encrypted
datum.

Let us also mention that the case of S4 corresponds to
programming with comonads, which are dual to monads.
Whereas monads broadly correspond to effectful computation
[4], comonads seem to correspond to contextual computation.
A lot of work has been based on this intuition, culminating in
the thesis of Orchard [52]. It is conceivable that there are also
similar ‘contextual’ structures which are not equipped with ei-

ther a Orchard’s current (co-unit) or disject (co-multiplication)
operation, and which could play the rôle of semantics for the
calculi in this paper, corresponding to the cases of K4 or T
respectively.
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