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Abstract

The use of a necessity modality in a typed ⁄-calculus can be used to sepa-
rate it into two regions. These can be thought of as intensional vs. extensional
data: data in the first region, the modal one, are available as code, and their
description can be examined. In contrast, data in the second region are only
available as values up to ordinary equality. This allows us to add non-functional
operations at modal types whilst maintaining consistency. In this setting, the
Gödel-Löb axiom acquires a novel constructive reading: it a�ords the program-
mer the possibility of a very strong kind of recursion which enables them to
write programs that have access to their own code. This is a type of com-
putational reflection that is strongly reminiscent of Kleene’s Second Recursion
Theorem.

1 Introduction

This paper is about putting a logical twist on two old pieces of programming lore:

• First, it is about using modal types to treat programs-as-data in a type-safe
manner.

• Second, it is about noticing that—in the context of intensional programming—
a constructive reading of the Gödel-Löb axiom, i.e. 2(2A æ A) æ 2A,
amounts to a strange kind of recursion, namely intensional recursion.

We will introduce a typed ⁄-calculus with modal types that supports both of these
features. We will call it Intensional PCF, after the simply-typed ⁄-calculus with Y

introduced by Scott [34] and Plotkin [32].

This is a revised version of the third chapter of [23], which is in turn based on a paper presented at
the 7th Workshop on Intuitionistic Modal Logic and Applications (IMLA 2017).
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1.1 Intensionality and Programs-as-data

To begin, we want to discuss our notion of programs-as-data. We mean it in a way
that is considerably stronger than the higher-order functional programming with
which we are already familiar, i.e. ‘functions as first-class citizens.’ In addition to
that, our notion hints at a kind of homoiconicity, similar to the one present in the
Lisp family of languages. It refers to the ability given to a programmer to quote
code, and carry it around as a datum; see [5] for an instance of that in Lisp. This
ability can be used for metaprogramming, which is the activity of writing programs
that write other programs. Indeed, this is what Lisp macros excel at [12], and
what the metaprogramming community has been studying for a long time; see e.g.
[37, 39]. Considering programs as data—but in an untyped manner—was also the
central idea in the work of the partial evaluation community: see [19, 16, 17].

But we would like to go even further. In Lisp, a program is able to process code
by treating it as mere symbols, thereby disregarding its function and behaviour. This
is what we call intensionality: an operation is intensional if it is finer than equality.
This amounts to a kind of non-functional computation. That this may be done type-
theoretically was suspected by Davies and Pfenning [31, 9], who introduced modal
types to programming language theory. A system based on nominal techniques that
fleshed out those ideas was presented by Nanevski [29]. The notions of intensional
and extensional equality implicit in this system were studied using logical relations
by Pfenning and Nanevski [30]. However, none of these papers studied whether the
induced equational systems are consistent. We show that, no matter the intensional
mechanism at use, modalities enable consistent intensional programming.

To our knowledge, this paper presents the first consistency proof for intensional
programming.

1.2 Intensional Recursion

We also want to briefly explain what we mean by intensional recursion; a fuller
discussion may be found in [1, 23]. Most modern programming languages support
extensional recursion: in the body of a function definition, the programmer may
make a finite number of calls to the definiendum itself. Operationally, this leads a
function to examine its own values at a finite set of points at which it has hopefully al-
ready been defined. In the untyped ⁄-calculus, with =— standing for —-convertibility,
this is modelled by the First Recursion Theorem (FRT) [4, §6.1]:

Theorem 1 (First Recursion Theorem). ’f œ �. ÷u œ �. u =— fu.

However, as Abramsky [1] notes, in the intensional paradigm we have described
above a stronger kind of recursion is attainable. Instead of merely examining the
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result of a finite number of recursive calls, the definiendum can recursively have
access to a full copy of its own source code. This is embodied in Kleene’s Second
Recursion Theorem (SRT) [24]. Here is a version of the SRT in the untyped ⁄-
calculus, where puq means ‘the Gödel number of the term u’ [4, §6.5, Thm. 6.5.9].

Theorem 2 (Second Recursion Theorem). ’f œ �. ÷u œ �. u =— f puq.

Kleene also proved the following, where �0 is the set of closed ⁄-terms:

Theorem 3 (Existence of Interpreter). ÷E œ �0. ’M œ �0. E pMq æú M

It is not hard to see that, using Theorem 3, the SRT implies the FRT for closed
terms: given f œ �0 we let F

def= ⁄y. f(E y), so that the SRT applied to F yields a
term u such that

u =— F puq =— f (E puq) =— f u

It is not at all evident whether the converse holds. This is because the SRT is a
first-order theorem that is about diagonalisation, Gödel numbers and source code,
whereas the FRT really is about higher types: see the discussion in [23, §2].

Hence, in the presence of intensional operations, the SRT a�ords us with a
much stronger kind of recursion. In fact, it allows for a certain kind of computa-
tional reflection, or reflective programming, of the same kind envisaged by Brian
Cantwell Smith [35]. But the programme of Smith’s reflective tower involved a
rather mysterious construction with unclear semantics [10, 42, 8], eventually leading
to a theorem that—even in the presence of a mild reflective construct, the so-called
fexpr—observational equivalence of programs collapses to –-conversion: see Wand
[41]. Similar forays have also been attempted by the partial evaluation community:
see [14, 15, 18].

We will use modalities to stop intension from flowing back into extension, so
that the aforementioned theorem in [41]—which requires unrestricted quoting—will
not apply. We will achieve reflection by internalising the SRT. Suppose that our
terms are typed, and that u : A. Suppose as well that there is a type constructor
2, so that 2A means ‘code of type A.’ Then certainly puq : 2A, and f is forced to
have type 2A æ A. A logical reading of the SRT is then the following: for every
f : 2A æ A, there exists a u : A such that u = f puq. This corresponds to Löb’s
rule from provability logic [7], namely

2A æ A

A

which is equivalent to adding the Gödel-Löb axiom to the logic. In fact, the punchline
of this paper is that the type of the Second Recursion Theorem is the Gödel-Löb axiom
of provability logic.
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To our knowledge, this paper presents the first sound, type-safe attempt at
reflective programming.

1.3 Prospectus

In §2 we will introduce the syntax of iPCF, and in §3 we will show that it satisfies
basic metatheoretic properties. Following that, in section §4 we will add intensional
operations to iPCF. By proving that the resulting notion of reduction is confluent,
we will obtain consistency for the system. We then look at the computational
behaviour of some important terms in §5, and conclude with two key examples of
the new powerful features of our language in §6.

2 Introducing Intensional PCF

Intensional PCF (iPCF) is a typed ⁄-calculus with modal types. As discussed before,
the modal types work in our favour by separating intension from extension, so that
the latter does not leak into the former. Given the logical flavour of our previous
work on categorical models of intensionality [22], we shall model the types of iPCF
after the constructive modal logic S4, in the dual-context style pioneered by Pfenning
and Davies [31, 9]. Let us seize this opportunity to remark that (a) there are also
other ways to capture S4, for which see the survey [20], and that (b) dual-context
formulations are not by any means limited to S4: they began in the context of
intuitionistic linear logic [3], but have recently been shown to also encompass other
modal logics: see [21].

iPCF is not related to the language Mini-ML that is introduced by [9]: that
is a call-by-value, ML-like language, with ordinary call-by-value fixed points. In
contrast, ours is a call-by-name language with a new kind of fixed point, namely
intensional fixed points. These fixed points will a�ord the programmer the full
power of intensional recursion. In logical terms they correspond to throwing the
Gödel-Löb axiom 2(2A æ A) æ 2A into S4. Modal logicians might object to this,
as, in conjunction with the T axiom 2A æ A, it will make every type inhabited. We
remind them that a similar situation occurs in PCF, where the YA : (A æ A) æ A
combinator allows one to write a term YA(⁄x : A. x) at every type A. As in the study
of PCF, we care less about the logic and more about the underlying computation: it
is the terms that matter, and the types are only there to stop basic type errors from
happening.

The syntax and the typing rules of iPCF may be found in Figure 1. These are
largely the same as Pfenning and Davies’ S4, save the addition of some constants
(drawn from PCF), and a rule for intensional recursion. The introduction rule for the

2290



Intensionality, Intensional Recursion, and the Gödel-Löb Axiom

modality restricts terms under a box (≠) to those containing only modal variables,
i.e. variables carrying only intensions or code, but never ‘live values:’

� ; · „ M : A

� ; � „ box M : 2A

There is also a rule for intensional recursion:

� ; z : 2A „ M : A

� ; � „ fix z in M : A

This will be coupled with the reduction fix z in M ≠æ M [box (fix z in M)/z]. This
rule is actually just Löb’s rule with a modal context, and including it in the Hilbert
system of a (classical or intuitionistic) modal logic is equivalent to including the
Gödel-Löb axiom: see [7] and [40]. Finally, let us record the fact that erasing the
modality from the types appearing in either Löb’s rule or the Gödel-Löb axiom
yields the type of YA : (A æ A) æ A, as a rule in the first case, or axiomatically
internalised as a constant in the second (both variants exist in the literature: see
[13] and [27]). A similar observation for a stronger form of the Löb axiom underlies
the stream of work on guarded recursion [28, 6]; we recommend the survey [25] for
a broad coverage of constructive modalities with a provability-like flavour.

3 Metatheory

iPCF satisfies the expected basic results: structural and cut rules are admissible.
This is no surprise given its origin in the well-behaved Davies-Pfenning calculus.
We assume the typical conventions for ⁄-calculi: terms are identified up to –-
equivalence, for which we write ©, and substitution [·/·] is defined in the ordinary,
capture-avoiding manner. Bear in mind that we consider occurrences of u in N
to be bound in let box u ≈ M in N . Contexts �, � are lists of type assignments
x : A. Furthermore, we shall assume that whenever we write a judgement like
� ; � „ M : A, then � and � are disjoint, in the sense that Vars (�) fl Vars (�) = ÿ,
where Vars (x1 : A1, . . . , xn : An) def= {x1, . . . , xn}. We write �, �Õ for the concatena-
tion of disjoint contexts. Finally, we sometimes write „ M : A whenever · ; · „ M : A.

Theorem 4 (Structural & Cut). The following rules are admissible in iPCF:

1. (Weakening)
� ; �, �Õ „ M : A

� ; �, x : A, �Õ „ M : A
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Ground Types G ::= Nat | Bool

Types A, B ::= G | A æ B | 2A

Terms M, N ::= x | ⁄x:A. M | MN | box M | let box u ≈ M in N |
‚n | true | false | succ | pred | zero? | ∏G | fix z in M

Contexts �, � ::= · | �, x : A

� ; � „ ‚n : Nat
(b œ {true, false})

� ; � „ b : Bool

� ; � „ zero? : Nat æ Bool
(f œ {succ, pred})

� ; � „ f : Nat æ Nat

� ; � „ ∏G : Bool æ G æ G æ G

(var)
� ; �, x:A, �Õ „ x : A

(2var)
�, u:A, �Õ ; � „ u : A

� ; �, x:A „ M : B
(æ I)

� ; � „ ⁄x:A. M : A æ B

� ; � „ M : A æ B � ; � „ N : A
(æ E)

� ; � „ MN : B

� ; · „ M : A
(2I)

� ; � „ box M : 2A

� ; � „ M : 2A �, u:A ; � „ N : C
(2E)

� ; � „ let box u ≈ M in N : C

� ; z : 2A „ M : A
(2fix)

� ; � „ fix z in M : A

Figure 1: Syntax and Typing Rules for Intensional PCF
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2. (Exchange)
� ; �, x : A, y : B, �Õ „ M : C

� ; �, y : B, x : A, �Õ „ M : C

3. (Contraction)
� ; �, x : A, y : A, �Õ „ M : A

� ; �, w : A, �Õ „ M [w, w/x, y] : A

4. (Cut)
� ; � „ N : A � ; �, x : A, �Õ „ M : A

� ; �, �Õ „ M [N/x] : A

Theorem 5 (Modal Structural & Cut). The following rules are admissible:

1. (Modal Weakening)
�, �Õ ; � „ M : C

�, u : A, �Õ ; � „ M : C

2. (Modal Exchange)
�, x : A, y : B, �Õ ; � „ M : C

�, y : B, x : A, �Õ ; � „ M : C

3. (Modal Contraction)

�, x : A, y : A, �Õ ; � „ M : C

�, w : A, �Õ ; � „ M [w, w/x, y] : C

4. (Modal Cut)
� ; · „ N : A �, u : A, �Õ ; � „ M : C

�, �Õ ; � „ M [N/u] : C

3.1 Free variables

In this section we prove a theorem regarding the occurrences of free variables in
well-typed terms of iPCF. It turns out that, if a variable occurs free under a box (≠)
construct, then it has to be in the modal context. This is the property that enforces
that intensions can only depend on intensions.

Definition 1 (Free variables).
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1. The free variables fv (M) of a term M are defined by induction on the structure
of the term:

fv (x) def= {x} fv (MN) def= fv (M) fi fv (N)

fv (⁄x : A. M) def= fv (M) ≠ {x} fv (box M) def= fv (M)

fv (fix z in M) def= fv (M) ≠ {z}

as well as

fv (let box u ≈ M in N) def= fv (M) fi (fv (N) ≠ {u})

and fv (c) def= ÿ for any constant c.

2. The unboxed free variables fv0 (M) of a term are those that do not occur under
the scope of a box (≠) or fix z in (≠) construct. They are formally defined by
replacing the following clauses in the definition of fv (≠):

fv0 (box M) def= ÿ fv0 (fix z in M) def= ÿ

3. The boxed free variables fvØ1 (M) of a term M are those that do occur under
the scope of a box (≠) construct. They are formally defined by replacing the
following clauses in the definition of fv (≠):

fvØ1 (x) def= ÿ fvØ1 (box M) def= fv (M)

fvØ1 (fix z in M) def= fv (M) ≠ {z}

Theorem 6 (Free variables).

1. For every term M , fv (M) = fv0 (M) fi fvØ1 (M).

2. If and � ; � „ M : A, then

fv0 (M) ™ Vars (�) fi Vars (�)
fvØ1 (M) ™ Vars (�)

Proof.

1. Trivial induction on M .

2. By induction on the derivation of � ; � „ M : A.
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4 Consistency of Intensional Operations

In this section we shall prove that the modal types of iPCF enable us to consistently
add intensional operations on the modal types. These are non-functional operations
on terms which are not ordinarily definable because they violate equality. All we
have to do is assume them as constants at modal types, define their behaviour by
introducing a notion of reduction, and then prove that the compatible closure of
this notion of reduction is confluent. A known corollary of confluence is that the
equational theory induced by the reduction is consistent, i.e. does not equate all
terms.

There is a caveat involving extension flowing into intension. That is: we need to
exclude from consideration terms where a variable bound by a ⁄ occurs under the
scope of a box (≠) construct. These will never be well-typed, but—since we discuss
types and reduction orthogonally—we also need to explicitly exclude them here too.

4.1 Adding intensionality

Davies and Pfenning [31] suggested that the 2 modality can be used to signify
intensionality. In fact, in [31, 9] they had prevented reductions from happening
under box (≠) construct, “ [...] since this would violate its intensional nature.” But
the truth is that neither of these presentations included any genuinely non-functional
operations at modal types, and hence their only use was for homogeneous staged
metaprogramming. Adding intensional, non-functional operations is a more di�cult
task. Intensional operations are dependent on descriptions and intensions rather
than values and extensions. Hence, unlike reduction and evaluation, they cannot
be blind to substitution. This is something that quickly came to light as soon
as Nanevski [29] attempted to extend the system of Davies and Pfenning to allow
‘intensional code analysis’ using nominal techniques.

A similar task was also recently taken up by Gabbay and Nanevski [11], who
attempted to add a construct is-app to the system of Davies and Pfenning, along
with the reduction rules

is-app (box PQ) ≠æ true
is-app (box M) ≠æ false if M is not of the form PQ

The function computed by is-app is truly intensional, as it depends solely on the
syntactic structure of its argument: it merely checks if it syntactically is an appli-
cation or not. As such, it can be considered a criterion of intensionality, albeit an
extreme one: its definability conclusively confirms the presence of computation up
to syntax.
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Gabbay and Nanevski tried to justify the inclusion of is-app by producing de-
notational semantics for modal types in which the semantic domain J2AK directly
involves the actual closed terms of type 2A. However, something seems to have
gone wrong with substitution. In fact, we believe that their proof of soundness is
wrong: it is not hard to see that their semantics is not stable under the second of
these two reductions: take M to be u, and let the semantic environment map u
to an application PQ, and then notice that this leads to JtrueK = JfalseK. We can
also see this in the fact that their notion of reduction is not confluent. Here is the
relevant counterexample: we can reduce like this:

let box u ≈ box (PQ) in is-app (box u) ≠æ is-app (box PQ) ≠æ true

But we could have also reduced like that:

let box u ≈ box (PQ) in is-app (box u) ≠æ let box u ≈ box (PQ) in false ≠æ false

This example is easy to find if one tries to plough through a proof of confluence: it
is very clearly not the case that M ≠æ N implies M [P/u] ≠æ N [P/u] if u is under
a box (≠), exactly because of the presence of intensional operations such as is-app.

Perhaps the following idea is more workable: let us limit intensional operations
to a chosen set of functions f : T (A) æ T (B) from terms of type A to terms
of type B, and then represent them in the language by a constant f̃ , such that
f̃(box M) ≠æ box f(M). This set of functions would then be chosen so that they
satisfy some sanity conditions. Since we want to have a let construct that allows us
to substitute code for modal variables, the following general situation will occur: if
N ≠æ N Õ, we have

let box u ≈ box M in N ≠æ N [M/u]

but also

let box u ≈ box M in N ≠æ let box u ≈ box M in N Õ ≠æ N Õ[M/u]

Thus, in order to have confluence, we need N [M/u] ≠æ N Õ[M/u]. This will only be
the case for reductions of the form f̃(box M) æ box f(M) if

f(N [M/u]) © f(N)[M/u]

i.e. if f is substitutive. But then a simple naturality argument gives that f(N) ©
f(u[N/u]) © f(u)[N/u], and hence f̃ is already definable by

⁄x : 2A. let box u ≈ x in box f(u)
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so such a ‘substitutive’ function is not intensional after all.
In fact, the only truly intensional operations we can add to our calculus will be

those acting on closed terms. We will see that this circumvents the problems that
arise when intensionality interacts with substitution. Hence, we will limit intensional
operations to the following set:
Definition 2 (Intensional operations). Let T0(A) be the set of (–-equivalence classes
of) closed terms M such that · ; · „ M : A. Then, the set of intensional operations,
F(A, B), is defined to be the set of all functions f : T0(A) æ T0(B).

We will include all of these intensional operations f : T0(A) æ T0(B) in our
calculus as constants:

� ; � „ f̃ : 2A æ 2B

with reduction rule f̃(box M) æ box f(M), under the proviso that M is closed.
Of course, these also includes operations on terms that might not be computable.
However, we are interested in proving consistency of intensional operations in the
most general setting. The questions of which intensional operations are computable,
and which primitives or mechanisms can and should be used to express them, are
beyond the scope of this paper, and largely still open.

4.2 Reduction and Confluence

We introduce a notion of reduction for iPCF, which we present in Figure 2. Unlike
many studies of PCF-inspired languages, we do not consider a reduction strategy
but ordinary ‘non-deterministic’ —-reduction. We do so because are trying to show
consistency of the induced equational theory.

The equational theory induced by this notion of reduction is a symmetric version
of it, annotated with types. It is easy to write down, so we omit it. Note the fact
that, like the calculus of Davies and Pfenning, we do not include the following
congruence rule for the modality:

� ; · „ M = N : A
(2cong)

� ; � „ box M = box N : 2A

In fact, the very absence of this rule is what will allow modal types to become
intensional. Otherwise, the only new rules are intensional recursion, embodied by
the rule (2fix), and intensional operations, exemplified by the rule (2int).

We note that it seems perfectly reasonable to think that we should allow reduc-
tions under fix, i.e. admit the rule

M ≠æ N

fix z in M ≠æ fix z in N
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(≠æ —)
(⁄x : A. M)N ≠æ M [N/x]

M ≠æ N
(cong⁄)

⁄x : A. M ≠æ ⁄x : A. N

M ≠æ N
(app1)

MP ≠æ NP

P ≠æ Q
(app2)

MP ≠æ MQ

(2—)
let box u ≈ box M in N ≠æ N [M/u]

(2fix)
fix z in M ≠æ M [box (fix z in M)/z]

M closed, M œ dom(f)
(2int)

f̃(box M) ≠æ box f(M)

M ≠æ N
(let-cong1)

let box u ≈ M in P ≠æ let box u ≈ N in P

P ≠æ Q
(let-cong2)

let box u ≈ M in P ≠æ let box u ≈ M in Q

(zero?1)
zero? ‚0 ≠æ true

(zero?2)
zero? [n + 1 ≠æ false

(succ)
succ ‚n ≠æ [n + 1

(pred)
pred ‚n ≠æ [n .≠ 1

(∏1)
∏G true M N ≠æ M

(∏2)
∏G false M N ≠æ N

Figure 2: Reduction for Intensional PCF
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as M and N are expected to be of type A, which need not be modal. However,
the reduction fix z in M ≠æ M [box (fix z in M)/z] ‘freezes’ M under an occurrence
of box (≠), so that no further reductions can take place within it. Thus, the above
rule would violate the intensional nature of boxes. We were likewise compelled to
define fv0 (fix z in M) def= ÿ in the previous section: we should already consider M to
be intensional, or under a box.

We can now show that

Theorem 7. The reduction relation ≠æ is confluent.

The easiest route to that theorem is to use a proof like that in [21], i.e. the
method of parallel reduction. This kind of proof was originally discovered by Tait
and Martin-Löf, and is nicely documented in [38]. Because of the intensional nature
of our box (≠) constructs, ours will be more nuanced and fiddly. The proof can of
course be skipped on a first reading.

Proof of confluence We will use a variant of the proof in [21], i.e. the method of
parallel reduction. This kind of proof was originally discovered by Tait and Martin-
Löf, and is nicely documented in [38]. Because of the intensional nature of our
box (≠) constructs, ours will be more nuanced and fiddly than any in op. cit. The
method is this: we will introduce a second notion of reduction,

=∆ ™ � ◊ �

which we will ‘sandwich’ between reduction proper and its transitive closure:

≠æ ™ =∆ ™ ≠æú

We will then show that =∆ has the diamond property. By the above inclusions, the
transitive closure =∆ú of =∆ is then equal to ≠æú, and hence ≠æ is Church-Rosser.

In fact, we will follow [38] in doing something better: we will define for each term
M its complete development, Mı. The complete development is intuitively defined
by ‘unrolling’ all the redexes of M at once. We will then show that if M =∆ N ,
then N =∆ Mı. Mı will then su�ce to close the diamond:

M

P Q

Mı
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(refl)
M =∆ M

M =∆ N P =∆ Q
(æ —)

(⁄x : A. M)P =∆ N [Q/x]

M =∆ N
(cong⁄)

⁄x : A. M =∆ ⁄x : A. N

M =∆ N P =∆ Q
(app)

MP =∆ NQ

P =∆ P Õ

(∏1)
∏G true P Q =∆ P Õ

Q =∆ QÕ

(∏2)
∏G false P Q =∆ QÕ

M =∆ N
(2—)

let box u ≈ box P in M =∆ N [P/u]

M =∆ N
(2fix)

fix z in M =∆ N [box (fix z in M)/z]

M closed, M œ dom(f)
(2int)

f̃(box M) =∆ box f(M)

M =∆ N P =∆ Q
(2let-cong)

let box u ≈ M in P =∆ let box u ≈ N in Q

Remark. In addition to the above, one should also include rules for
the constants, but these are restatements of the rules in Figure 2.

Figure 3: Parallel Reduction

The parallel reduction =∆ is defined in Figure 3. Instead of the axiom (refl) we
would more commonly have an axiom for variables, x =∆ x, and M =∆ M would
be derivable. However, we do not have a congruence rule neither for box (≠) nor
for Löb’s rule, so that possibility would be precluded. We are thus forced to include
M =∆ M , which slightly complicates the lemmas that follow.

The main lemma that usually underpins the confluence proof is this: if M =∆
N and P =∆ Q, M [P/x] =∆ N [Q/x]. However, this is intuitively wrong: no
reductions should happen under boxes, so this should only hold if we are substituting
for a variable not occurring under boxes. Hence, this lemma splits into three di�erent
ones:

• P =∆ Q implies M [P/x] =∆ M [Q/x], if x does not occur under boxes: this
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is the price to pay for replacing the variable axiom with (refl).

• M =∆ N implies M [P/u] =∆ N [P/u], even if u is under a box.

• If x does not occur under boxes, M =∆ N and P =∆ Q indeed imply
M [P/x] =∆ N [Q/x]

Lemma 1. If M =∆ N then M [P/u] =∆ N [P/u].

Proof. By induction on the generation of M =∆ N . Most cases trivially follow, or
consist of simple invocations of the IH. In the case of (æ —), the known substitution
lemma su�ces. Let us look at the cases involving boxes.

Case(2—). Then M =∆ N is let box v ≈ box R in S =∆ SÕ[R/v] with S =∆
SÕ. By the IH, we have that S[P/u] =∆ SÕ[P/u], so

let box v ≈ box R[P/u] in S[P/u] =∆ SÕ[P/u][R[P/u]/v]

and this last is –-equivalent to SÕ[R/v][P/u] by the substitution lemma.

Case(2fix). A similar application of the substitution lemma.

Case(2int). Then M =∆ N is f̃(box Q) =∆ box f(Q). Hence
1
f̃(box Q)

2
[P/u] © f̃(box Q) =∆ box f(Q) © (box f(Q)) [P/u]

simply because both Q and f(Q) are closed.

Lemma 2. If P =∆ Q and x ”œ fvØ1 (M), then M [P/x] =∆ M [Q/x].

Proof. By induction on the term M . The only non-trivial cases are those for M a
variable, box M Õ or fix z in M Õ. In the first case, depending on which variable M is,
use either (refl), or the assumption P =∆ Q. In the latter two, (box M Õ)[P/x] ©
box M Õ © (box M Õ)[Q/x] as x does not occur under a box, so use (refl), and similarly
for fix z in M Õ.

Lemma 3. If M =∆ N , P =∆ Q, and x ”œ fvØ1 (M), then

M [P/x] =∆ N [Q/x]

Proof. By induction on the generation of M =∆ N . The cases for most congruence
rules and constants follow trivially, or from the IH. We prove the rest.
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Case(refl). Then M =∆ N is actually M =∆ M , so we use Lemma 2 to infer
M [P/x] =∆ M [Q/x].

Case(2int). Then M =∆ N is actually f̃(box M) =∆ box f(M). But M

and f(M) are closed, so
1
f̃(box M)

2
[P/x] © f̃(box M) =∆ box f(M) ©

(box f(M)) [Q/x].

Case(∏i). Then M =∆ N is ∏G true M N =∆ M Õ with M =∆ M Õ. By the
IH, M [P/x] =∆ M Õ[Q/x], so

∏G true M [P/x] N [P/x] =∆ M Õ[Q/x]

by a single use of (∏1). The case for false is similar.

Case(æ —). Then (⁄xÕ:A. M)N =∆ N Õ[M Õ/xÕ], where M =∆ M Õ and N =∆
N Õ. Then

!
(⁄xÕ:A. M)N

"
[P/x] © (⁄xÕ:A. M [P/x])(N [P/x])

But, by the IH, M [P/x] =∆ M Õ[Q/x] and N [P/x] =∆ N Õ[Q/x]. So by (æ —)
we have

(⁄xÕ:A. M [P/x])(N [P/x]) =∆ M Õ[Q/x]
#
N Õ[Q/x]/xÕ$

But this last is –-equivalent to (M Õ[N Õ/xÕ]) [Q/x] by the substitution lemma.

Case(2—). Then let box uÕ ≈ box M in N =∆ N Õ[M/uÕ] where N =∆ N Õ.
By assumption, we have that x ”œ fv (M) and x ”œ fvØ1 (N). Hence, we have by
the IH that N [P/x] =∆ N Õ[Q/x], so by applying (2—) we get

(let box uÕ ≈ box M in N)[P/x] © let box uÕ ≈ box M [P/x] in N [P/x]
© let box uÕ ≈ box M in N [P/x]

=∆ N Õ[Q/x][M/uÕ]

But this last is –-equivalent to N Õ[M/uÕ][Q/x], by the substitution lemma and
the fact that x does not occur in M .

Case(2fix). Then fix z in M =∆ M Õ[box (fix z in M)/z], with M =∆ M Õ. As
x ”œ fvØ1 (fix z in M), we have that x ”œ fv (M), and by Lemma 5, x ”œ fv (M Õ)
either, so

(fix z in M)[P/x] © fix z in M
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and

M Õ[fix z in M/z][Q/x] © M Õ[Q/x][fix z in M [Q/x]/z] © M Õ[fix z in M/z]

Thus, a single use of (2fix) su�ces.

We now pull the following definition out of the hat:

Definition 3 (Complete development). The complete development Mı of a term
M is defined by the following clauses:

xı def= x

cı def= c (c œ {f̃ , ‚n, zero?, . . . })

(⁄x:A. M)ı def= ⁄x:A. Mı

1
f̃(box M)

2ı def= box f(M) if M is closed

((⁄x:A. M) N)ı def= Mı[Nı/x]

(∏G true M N)ı def= Mı

(∏G false M N)ı def= Nı

(MN)ı def= MıNı

(box M)ı def= box M

(let box u ≈ box M in N)ı def= Nı[M/u]

(let box u ≈ M in N)ı def= let box u ≈ Mı in Nı

(fix z in M)ı def= Mı[box (fix z in M)/z]

We need the following two technical results as well.

Lemma 4. M =∆ Mı

Proof. By induction on the term M . Most cases follow immediately by (refl), or by
the IH and an application of the relevant rule. The case for box M follows by (refl),
the case for fix z in M follows by (2fix), and the case for f̃(box M) by (2int).

Lemma 5 (BFV antimonotonicity). If M =∆ N then fvØ1 (N) ™ fvØ1 (M).

Proof. By induction on M =∆ N .
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And here is the main result:

Theorem 8. If M =∆ P , then P =∆ Mı.

Proof. By induction on the generation of M =∆ P . The case of (refl) follows by
Lemma 4, and the cases of congruence rules follow from the IH. We show the rest.

Case(æ —). Then we have (⁄x:A. M)N =∆ M Õ[N Õ/x], with M =∆ M Õ

and N =∆ N Õ. By the IH, M Õ =∆ Mı and N Õ =∆ Nı. We have that
x ”œ fvØ1 (M), so by Lemma 5 we get that x ”œ fvØ1 (M Õ). Hence, by Lemma 3
we get M Õ[N Õ/x] =∆ Mı[Nı/x] © ((⁄x:A. M) N)ı.

Case(2—). Then we have

let box u ≈ box M in N =∆ N Õ[M/u]

where N =∆ N Õ. By the IH, N Õ =∆ Nı, so it follows that

N Õ[M/u] =∆ Nı[M/u] © (let box u ≈ box M in N)ı

by Lemma 1.

Case(2fix). Then we have

fix z in M =∆ M Õ[box (fix z in M)/z]

where M =∆ M Õ. By the IH, M Õ =∆ Mı. Hence

M Õ[box (fix z in M)/z] =∆ Mı[box (fix z in M)/z] © (fix z in M)ı

by Lemma 1.

Case(2int). Similar.

5 Some important terms

Let us look at the kinds of terms we can write in iPCF.

From the axioms of S4 First, we can write a term corresponding to axiom K, the
normality axiom of modal logics:

axK
def= ⁄f : 2(A æ B). ⁄x : 2A. let box g ≈ f in let box y ≈ x in box (g y)
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Then „ axK : 2(A æ B) æ (2A æ 2B). An intensional reading of this is
the following: any function given as code can be transformed into an e�ective
operation that maps code of type A to code of type B.
The rest of the axioms correspond to evaluating and quoting. Axiom T takes
code to value, or intension to extension:

„ evalA def= ⁄x : 2A. let box y ≈ x in y : 2A æ A

and axiom 4 quotes code into code-for-code:

„ quoteA
def= ⁄x : 2A. let box y ≈ x in box (box y) : 2A æ 22A

The Gödel-Löb axiom: intensional fixed points Since (2fix) is Löb’s rule, we
expect to be able to write down a term corresponding to the Gödel-Löb axiom
of provability logic. We can, and it is an intensional fixed-point combinator :

YA
def= ⁄x : 2(2A æ A). let box f ≈ x in box (fix z in f z)

and „ YA : 2(2A æ A) æ 2A. We observe that

YA(box M) ≠æú box (fix z in (M z))

Undefined The combination of eval and intensional fixed points leads to non-
termination, in a style reminiscent of the term (⁄x. xx)(⁄x. xx) of the untyped
⁄-calculus. Let

�A
def= fix z in (evalA z)

Then „ �A : A, and

�A ≠æ evalA (box �A) ≠æú �A

Extensional Fixed Points Perhaps surprisingly, the ordinary PCF Y combinator
is also definable in the iPCF. Let

YA
def= fix z in ⁄f : A æ A. f(eval z f)

Then „ YA : (A æ A) æ A, so that

YA ≠æú ⁄f : A æ A. f(eval (box YA) f))
≠æú ⁄f : A æ A. f(YA f)
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6 Two intensional examples

No discussion of an intensional language with intensional recursion would be com-
plete without examples that use these two novel features. Our first example uses
intensionality, albeit in a ‘extensional’ way, and is drawn from the study of PCF
and issues related to sequential vs. parallel (but not concurrent) computation. Our
second example uses intensional recursion, so it is slightly more adventurous: it is a
computer virus.

6.1 ‘Parallel or’ by dovetailing

In [32] Gordon Plotkin proved the following theorem: there is no term por : Bool æ
Bool æ Bool of PCF such that por true M ⇣— true and por M true ⇣— true for any
„ M : Bool, whilst por false false ⇣— false. Intuitively, the problem is that por has to
first examine one of its two arguments, and this can be troublesome if that argument
is non-terminating. It follows that the parallel or function is not definable in PCF.
In order to regain the property of so-called full abstraction for the Scott model of
PCF, a constant denoting this function has to be manually added to PCF, and
endowed with the above rather clunky operational semantics. See [32, 13, 27, 36].

However, the parallel or function is a computable partial recursive functional [36,
26]. The way to prove that is intuitively the following: given two closed terms M, N :
Bool, take turns in —-reducing each one for a one step: this is called dovetailing. If
at any point one of the two terms reduces to true, then output true. But if at any
point both reduce to false, then output false.

This procedure is not definable in PCF because a candidate term por does not
have access to a code for its argument, but can only inspect its value. However, in
iPCF we can use the modality to obtain access to code, and intensional operations
to implement reduction. Suppose we pick a reduction strategy ≠æ r. Then, let us
include a constant tick : 2Bool æ 2Bool that implements one step of this reduction
strategy on closed terms:

M ≠ær N, M, N closed
tick (box M) ≠æ box N

Also, let us include a constant done? : 2Bool æ Bool, which tells us if a closed term
under a box is a normal form:

M closed, normal
done? (box M) ≠æ true

M closed, not normal
done? (box M) ≠æ false
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These two can be subsumed under our previous scheme for introducing intensional
operations. The above argument is now implemented by the following term:

por :© Y(⁄ por. ⁄x : 2Bool. ⁄y : 2Bool.
∏Bool (done? x) (lor (eval x)(eval y))

(∏Bool (done? y) (ror (eval x)(eval y))
(por (tick x)(tick y)))

where lor, ror : Bool æ Bool æ Bool are terms defining the left-strict and right-strict
versions of the ‘or’ connective respectively. Notice that the type of this term is
2Bool æ 2Bool æ Bool: we require intensional access to the terms of boolean type
in order to define this function!

6.2 A computer virus

Abstract computer virology is the study of formalisms that model computer viruses.
There are many ways to formalise viruses. We will use the model of Adleman [2],
where files can be interpreted either as data, or as functions. We introduce a data
type F of files, and two constants

in : 2(F æ F ) æ F and out : F æ 2(F æ F )

If F is a file, then out F is that file interpreted as a program, and similarly for in.
We ask that out (in M) ≠æ M , making 2(F æ F ) a retract of F . This might seem
the same as the situation where F æ F is a retract of F , which yields models of the
(untyped) ⁄-calculus, and is not trivial to construct [4, §5.4]. However, in our case
it is not nearly as worrying: 2(F æ F ) is populated by programs and codes, not by
actual functions. Under this interpretation, the pair (in, out) corresponds to a kind
of Gödel numbering—especially if F is N.

In Adleman’s model, a virus is given by its infected form, which either injures,
infects, or imitates other programs. The details are unimportant in the present
discussion, save from the fact that the virus needs to have access to code that it
can use to infect other executables. One can hence construct such a virus from its
infection routine, by using Kleene’s SRT. Let us model it by a term

„ infect : 2(F æ F ) æ F æ F

which accepts a piece of viral code and an executable file, and it returns either the
file itself, or a version infected with the viral code. We can then define a term

„ virus def= fix z in (infect z) : F æ F
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so that
virus ≠æú infect (box virus)

which is a program that is ready to infect its input with its own code.

7 Conclusion

We have achieved the desideratum of an intensional programming calculus with in-
tensional recursion. There are two main questions that result from this development.

First, does there exist a good set of intensional primitives from which all others
are definable? Is there perhaps more than one such set, hence providing us with a
choice of programming primitives? Previous attempts aiming to answer this question
include those of [33, 29].

Second, what is the exact kind of programming power that we have unleashed?
Does it lead to interesting programs that we have not been able to write before? We
have outlined some speculative applications for intensional recursion in [23, §§1–2].
Is iPCF a useful tool when it comes to attacking these?
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