7 research outputs found

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure

    Updates in a Rule based Language for Objects

    Full text link
    The integration of object-oriented concepts into deductive databases has been investigated for a certain time now. Various approaches to incorporate updates into deduction have been proposed. The current paper presents an approach which is based on object versioning; different versions of one object may be created and referenced during an update-process. By means of such versions it becomes possible to exert explicit control on the update process during bottom-up evaluation in a rather intuitive way. The units for updates are the result sets of base methods, i.e. methods, whose results are stored in the object-base and are not defined by rules. However, the update itself may be defined by rules. Update-programs have fixpoint semantics; the fixpoint can be computed by a bottom-up evaluation according to a certain stratification

    A Database Approach for Modeling and Querying Video Data

    Get PDF
    Indexing video data is essential for providing content based access. In this paper, we consider how database technology can offer an integrated framework for modeling and querying video data. As many concerns in video (e.g., modeling and querying) are also found in databases, databases provide an interesting angle to attack many of the problems. From a video applications perspective, database systems provide a nice basis for future video systems. More generally, database research will provide solutions to many video issues even if these are partial or fragmented. From a database perspective, video applications provide beautiful challenges. Next generation database systems will need to provide support for multimedia data (e.g., image, video, audio). These data types require new techniques for their management (i.e., storing, modeling, querying, etc.). Hence new solutions are significant. This paper develops a data model and a rule-based query language for video content based indexing and retrieval. The data model is designed around the object and constraint paradigms. A video sequence is split into a set of fragments. Each fragment can be analyzed to extract the information (symbolic descriptions) of interest that can be put into a database. This database can then be searched to find information of interest. Two types of information are considered: (1) the entities (objects) of interest in the domain of a video sequence, (2) video frames which contain these entities. To represent these information, our data model allows facts as well as objects and constraints. We present a declarative, rule-based, constraint query language that can be used to infer relationships about information represented in the model. The language has a clear declarative and operational semantics. This work is a major revision and a consolidation of [12, 13].This is an extended version of the article in: 15th International Conference on Data Engineering, Sydney, Australia, 1999

    Logical Foundations of Object-Oriented and Frame-Based Languages

    Get PDF
    We propose a novel logic, called Frame Logic (abbr., F-logic), that accounts in a clean, declarative fashion for most of the structural aspects of object-oriented and frame-based languages. These features include object identity, complex objects, inheritance, polymorphic types, methods, encapsulation, and others. In a sense, F-logic stands in the same relationship to the object-oriented paradigm as classical predicate calculus stands to relational programming. The syntax of F-logic is higher-order, which, among other things, allows the user to explore data and schema using the same declarative language. F-logic has a model-theoretic semantics and a sound and complete resolution-based proof procedure. This paper also discusses various aspects of programming in declarative object-oriented languages based on F-logic

    Acta Cybernetica : Volume 11. Number 1-2.

    Get PDF
    corecore