5 research outputs found

    Deformation analysis of surface and bronchial structures in intraoperative pneumothorax using deformable mesh registration

    Get PDF
    The positions of nodules can change because of intraoperative lung deflation, and the modeling of pneumothorax-associated deformation remains a challenging issue for intraoperative tumor localization. In this study, we introduce spatial and geometric analysis methods for inflated/deflated lungs and discuss heterogeneity in pneumothorax-associated lung deformation. Contrast-enhanced CT images simulating intraoperative conditions were acquired from live Beagle dogs. The images contain the overall shape of the lungs, including all lobes and internal bronchial structures, and were analyzed to provide a statistical deformation model that could be used as prior knowledge to predict pneumothorax. To address the difficulties of mapping pneumothorax CT images with topological changes and CT intensity shifts, we designed deformable mesh registration techniques for mixed data structures including the lobe surfaces and the bronchial centerlines. Three global-to-local registration steps were performed under the constraint that the deformation was spatially continuous and smooth, while matching visible bronchial tree structures as much as possible. The developed framework achieved stable registration with a Hausdorff distance of less than 1 mm and a target registration error of less than 5 mm, and visualized deformation fields that demonstrate per-lobe contractions and rotations with high variability between subjects. The deformation analysis results show that the strain of lung parenchyma was 35% higher than that of bronchi, and that deformation in the deflated lung is heterogeneous

    Learning a Generative Motion Model from Image Sequences based on a Latent Motion Matrix

    Get PDF
    We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.Comment: accepted at IEEE TM

    Statistical deformation reconstruction using multi-organ shape features for pancreatic cancer localization

    Get PDF
    Respiratory motion and the associated deformations of abdominal organs and tumors are essential information in clinical applications. However, inter- and intra-patient multi-organ deformations are complex and have not been statistically formulated, whereas single organ deformations have been widely studied. In this paper, we introduce a multi-organ deformation library and its application to deformation reconstruction based on the shape features of multiple abdominal organs. Statistical multi-organ motion/deformation models of the stomach, liver, left and right kidneys, and duodenum were generated by shape matching their region labels defined on four-dimensional computed tomography images. A total of 250 volumes were measured from 25 pancreatic cancer patients. This paper also proposes a per-region-based deformation learning using the non-linear kernel model to predict the displacement of pancreatic cancer for adaptive radiotherapy. The experimental results show that the proposed concept estimates deformations better than general per-patient-based learning models and achieves a clinically acceptable estimation error with a mean distance of 1.2 ± 0.7 mm and a Hausdorff distance of 4.2 ± 2.3 mm throughout the respiratory motion

    Learning a Generative Motion Model from Image Sequences based on a Latent Motion Matrix

    Get PDF
    International audienceWe propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic spacethe motion matrix-which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation

    A Localized Statistical Motion Model as a Reproducing Kernel for Non-rigid Image Registration

    No full text
    Thoracic image registration forms the basis for many applications as for example respiratory motion estimation and physiological investigations of the lung. Although clear motion patterns are shared among different subjects, such as the diaphragm moving in superior and inferior direction, in current image registration methods such basic prior knowledge is not considered. In this paper, we propose a novel approach for integrating a statistical motion model (SMM) into a parametric non-rigid registration framework. We formulate the SMM as a reproducing kernel and integrate it into a kernel machine for image registration. Since empirical samples are rare and statistical models built from small sample size are usually over-restrictive we localize the SMM by damping spatial long-range correlations and reduce the model bias by adding generic transformations to the SMM. As an example, we show our methods applicability on the example of the Dirlab 4DCT lung images where we build leave-one-out models for estimating the respiratory motion
    corecore