149 research outputs found

    An Effective Approach for Recovering From Simultaneous Node Failures in Wireless Sensor Networks

    Get PDF
    In wireless sensor - actor networks, sensors probe their surroundings and forward their data to actor nodes. Actors collaboratively respond to achieve predefined application mission. Since actors have to coordinate their operation, it is nec essary to maintain a stron gly connected network topology at all times. Failure of one or multiple actors may partition the inter - actor network into disjoint segments, and thus hinders the network operation. Autonomous detection and rapid recovery procedures ar e highly desirable in such a case . One of the effective recovery methodologies is to autonomously reposition a subset of the actor nodes to restore connectivity. Contemporary recovery schemes either impose high node relocation overhead or extend some of th e inter - actor data pat hs. This paper overcomes these shortcomings and presents extended version of DCR named RAM, to handle one possible case of a multi - actor failure with Least - Disruptive topology Repair (LeDiR) algorithm for minimal topological changes . Upon failure detection , the backup actor initiates a recovery process that relocates the least num ber of nodes

    Distributed Fault-Tolerant Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are a set of tiny autonomous and interconnected devices. These nodes are scattered in a region of interest to collect information about the surrounding environment depending on the intended application. In many applications, the network is deployed in harsh environments such as battlefield where the nodes are susceptible to damage. In addition, nodes may fail due to energy depletion and breakdown in the onboard electronics. The failure of nodes may leave some areas uncovered and degrade the fidelity of the collected data. Therefore, establish a fault-tolerant mechanism is very crucial. Given the resource-constrained setup, this mechanism should impose the least overhead and performance impact. This paper focuses on recovery process after a fault detection phase in WSNs. We present an algorithm to recover faulty node called Distributed Fault-Tolerant Algorithm (DFTA).The performance evaluation is tested through simulation to evaluate some factors such as: Packet delivery ratio, control overhead, memory overhead and fault recovery delay. We compared our results with referenced algorithm: Fault Detection in Wireless Sensor Networks (FDWSN), and found that our DFTA performance outperforms that of FDWSN

    LOCALIZED MOVEMENT CONTROL CONNECTIVITY RESTORATION ALGORITHMS FOR WIRELESS SENSOR AND ACTOR NETWORKS

    Get PDF
    Wireless Sensor and Actor Networks (WSANs) are gaining an increased interest because of their suitability for mission-critical applications that require autonomous and intelligent interaction with the environment. Hazardous application environments such as forest fire monitoring, disaster management, search and rescue, homeland security, battlefield reconnaissance, etc. make actors susceptible to physical damage. Failure of a critical (i.e. cut-vertex) actor partitions the inter-actor network into disjointed segments while leaving a coverage hole. Maintaining inter-actor connectivity is extremely important in mission-critical applications of WSANs where actors have to quickly plan an optimal coordinated response to detected events. Some proactive approaches pursued in the literature deploy redundant nodes to provide fault tolerance; however, this necessitates a large actor count that leads to higher cost and becomes impractical. On the other hand, the harsh environment strictly prohibits an external intervention to replace a failed node. Meanwhile, reactive approaches might not be suitable for time-sensitive applications. The autonomous and unattended nature of WSANs necessitates a self-healing and agile recovery process that involves existing actors to mend the severed inter-actor connectivity by reconfiguring the topology. Moreover, though the possibility of simultaneous multiple actor failure is rare, it may be precipitated by a hostile environment and disastrous events. With only localized information, recovery from such failures is extremely challenging. Furthermore, some applications may impose application-level constraints while recovering from a node failure. In this dissertation, we address the challenging connectivity restoration problem while maintaining minimal network state information. We have exploited the controlled movement of existing (internal) actors to restore the lost connectivity while minimizing the impact on coverage. We have pursued distributed greedy heuristics. This dissertation presents four novel approaches for recovering from node failure. In the first approach, volunteer actors exploit their partially utilized transmission power and reposition themselves in such a way that the connectivity is restored. The second approach identifies critical actors in advance, designates them preferably as noncritical backup nodes that replace the failed primary if such contingency arises in the future. In the third approach, we design a distributed algorithm that recovers from a special case of multiple simultaneous failures. The fourth approach factors in application-level constraints on the mobility of actors while recovering from node failure and strives to minimize the impact of critical node failure on coverage and connectivity. The performance of proposed approaches is analyzed and validated through extensive simulations. Simulation results confirm the effectiveness of proposed approaches that outperform the best contemporary schemes found in literature

    Efficient Actor Recovery Paradigm For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor networks (WSNs) are becoming widely used worldwide. Wireless Sensor and Actor Networks (WSANs) represent a special category of WSNs wherein actors and sensors collaborate to perform specific tasks. WSANs have become one of the most preeminent emerging type of WSNs. Sensors with nodes having limited power resources are responsible for sensing and transmitting events to actor nodes. Actors are high-performance nodes equipped with rich resources that have the ability to collect, process, transmit data and perform various actions. WSANs have a unique architecture that distinguishes them from WSNs. Due to the characteristics of WSANs, numerous challenges arise. Determining the importance of factors usually depends on the application requirements. The actor nodes are the spine of WSANs that collaborate to perform the specific tasks in an unsubstantiated and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power fatigue of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. It is essential to keep inter-actor connectivity in order to insure network connectivity. Thus, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). For network recovery process from actor node failure, optimal re-localization and coordination techniques should take place. In this work, we propose an efficient actor recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balances the network performance. The packet is handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets (Either from actor or sensor). This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, we compare the performance of our proposed work with state-of the art localization algorithms. Our experimental results show superior performance in regards to network life, residual energy, reliability, sensor/ actor recovery time and data recovery

    Distributed computing manipulatives

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.Includes bibliographical references (p. 65-67).Distributed systems and the emergent properties that can arise out of simple localized interactions have fascinated scientists and artists alike for the last century. They challenge the notions of control and creativity, producing outcomes that can be beautiful, engaging and surprising at the same time. While extensive work has been done using computer simulations of such systems in fields like artificial life and generative art, their physically embodied counterparts are still in their infancy, in part due to the complexity of building and deploying such systems. In this thesis, I will discuss how simple tangible nodes can enable playful and creative experimentation with the concept of emergent behavior. Specifically, I will address how embodied interaction scenarios involving parallel systems can be implemented and how a range of sensing and actuating possibilities can be leveraged to generate novel and engaging experiences for the end users. In particular, the use of sound will be explored as a medium for representation. Finally, I will argue that there is value in making the transition from software simulations to a situated and manipulable instantiation of these concepts, both for the designer of a system and its users.by David Bouchard.S.M
    corecore