




iii 
 

DEDICATIONS 

 

 

 

 

 

 

Dedicated to  

Dr. Mohamed Younis 

& 

My family Members  

Without them it should never have been completed 

 

 

  



iv 
 

ACKNOWLEDGMENT 

 

 
All praises, all glory and all thanks are due to Allah, The Majestic, The Almighty for 

bestowing me with knowledge, guidance, patience, courage and health to achieve this 

work. May peace and blessings be upon prophet Mohammed (PBUH), his family and his 

companions. 

 

I would like to acknowledge the King Fahd University of Petroleum & Minerals for the 

support extended towards my research and providing me the opportunity to pursue 

graduate studies. 

 

I wish to express my sincere gratitude and appreciation to Dr. Uthman A. Baroudi who 

served as my thesis advisor, provided me substantial motivation, technical knowledge 

and philosophical guidance and supported me all the way relentlessly. I also wish to 

thank the other members of my thesis committee Dr. Mayez A. Al-Mouhamed and Dr. 

Wasfi G. Al-Khatib for their constructive support and encouragement. 

 

I am really grateful to my source of inspiration, mentor and friend Dr. Mohamed Younis 

for his constant endeavor, guidance, positive criticism and the numerous moments of 

attention that he devoted throughout my research work. His valuable suggestions made 

the research work interesting and knowledgeable for me. 

 



v 
 

Very special thanks to my beloved mother and father. Both have been a source of 

encouragement and inspiration to me throughout my life. I am very grateful for the 

myriad of ways in which, throughout my life, they both have actively supported me in my 

determination to find and realize my potential. 

 

A very special thanks to my dear wife, who remains willing to engage with the struggle, 

and ensuing discomfort, of having a partner who is busy with the studies, research, work 

and business even when she needs him on her side. I am really grateful for her continuous 

practical and emotional support to the competing demands of business, work, study and 

personal development. Love and thanks to dear Maria, Hala and Marwa for being so 

supportive and tolerant - even when being „without father‟ was hard.  

 

Finally, I thank to all my family members for their continuous love, encouragement, 

prayers, emotional and moral support throughout my life. Words fall short in conveying 

my gratitude towards them. A prayer is the simplest way I can repay them – May Allah 

(S.W.T) give them good health and give me ample opportunity to be of service to them 

throughout my life. 

 

 

 

  



vi 
 

TABLE OF CONTENTS 
 

DEDICATIONS ............................................................................................................................................ III 

ACKNOWLEDGMENT .............................................................................................................................. IV 

TABLE OF CONTENTS ............................................................................................................................. VI 

LIST OF TABLES ......................................................................................................................................... X 

LIST OF FIGURES ...................................................................................................................................... XI 

THESIS ABSTRACT (ENGLISH) ............................................................................................................ XIV 

THESIS ABSTRACT (ARABIC) ............................................................................................................... XV 

CHAPTER 1 .................................................................................................................................................... 1 

INTRODUCTION ........................................................................................................................................... 1 

1.1 CONNECTIVITY ISSUE FOR WIRELESS SENSOR-ACTOR NETWORKS ................................................ 2 

1.2 CONTRIBUTION OF THESIS ............................................................................................................. 5 

1.3 SYSTEM MODEL ............................................................................................................................. 6 

1.4 PROBLEM FORMULATION & METHODOLOGY ................................................................................. 9 

1.4.1  Topology Repair With Application Level Constraints On Mobility ....................................... 9 

1.4.2  Least Disruptive Topology Repair......................................................................................... 12 

1.4.3  Least Movement Topology Repair ........................................................................................ 15 

1.5 ORGANIZATION OF THESIS ........................................................................................................... 17 

CHAPTER 2 .................................................................................................................................................. 18 

LITERATURE REVIEW .............................................................................................................................. 18 

2.1 RECOVERY THROUGH NODE REPOSITIONING ............................................................................... 19 

2.2 RECOVERY BY PLACEMENT OF RELAY NODES ............................................................................ 25 

CHAPTER 3 .................................................................................................................................................. 27 

EXPERIMENTAL SETUP & PERFORMANCE METRICS....................................................................... 27 

3.1 INTRODUCTION ............................................................................................................................. 27 

3.2 OVERVIEW OF WSAN SIMULATOR ............................................................................................... 27 

3.2.1  General -Purpose ................................................................................................................... 28 



vii 
 

3.2.2  Design .................................................................................................................................... 28 

3.2.3  Extensible .............................................................................................................................. 30 

3.2.4  Graphical User Interface (GUI) ............................................................................................. 30 

3.3 NETWORK TOPOLOGIES & ENVIRONMENT ................................................................................... 32 

3.4 SIMULATION ASSUMPTIONS .......................................................................................................... 34 

3.5 PERFORMANCE METRICS .............................................................................................................. 35 

CHAPTER 4 .................................................................................................................................................. 37 

CONNECTIVITY RESTORATION WITH APPLICATION MOBILITY CONSTRAINTS ..................... 37 

4.1 INTRODUCTION ............................................................................................................................. 37 

4.2 DETAILED C
2
AM STEPS ............................................................................................................... 38 

4.2.1  Maintaining a List of 2-hop Neighbors ................................................................................. 38 

4.2.2  Detecting a Failure and Initiating the Recovery Process ....................................................... 39 

4.2.3  Application-Aware Qualification for Movement Test ........................................................... 40 

4.2.4  Cascaded Relocation & Algorithm Termination ................................................................... 41 

4.3 APPLICATION-AWARE RECOVERY: EXAMPLES ............................................................................. 42 

4.4 C
2
AM PSEUDO CODE ................................................................................................................... 44 

4.5 PERFORMANCE EVALUATION OF C
2
AM ....................................................................................... 46 

4.5.1  MRI Performance .................................................................................................................. 48 

4.5.2  Movement Performance ........................................................................................................ 50 

4.5.3  Communication overhead ...................................................................................................... 50 

4.6 CONCLUDING REMARKS ON C
2
AM............................................................................................... 51 

CHAPTER 5 .................................................................................................................................................. 52 

CONNECTIVITY RESTORATION WITH MINIMAL TOPOLOGY CHANGES .................................... 52 

5.1 INTRODUCTION ............................................................................................................................. 52 

5.2 MAJOR STEPS OF LEDIR ALGORITHM .......................................................................................... 54 

5.2.1  Failure Detection ................................................................................................................... 54 

5.2.2  Smallest Block Identification ................................................................................................ 55 

5.2.3  Replacing Faulty Node .......................................................................................................... 56 



viii 
 

5.2.4  Children Movement ............................................................................................................... 57 

5.3 EXAMPLE SCENARIOS OF LEDIR .................................................................................................. 59 

5.4 DISTRIBUTED LEDIR IMPLEMENTATION ....................................................................................... 61 

5.5 LEDIR PSEUDO CODE ................................................................................................................... 64 

5.6 ALGORITHM ANALYSIS................................................................................................................. 66 

5.7 PERFORMANCE EVALUATION OF LEDIR ....................................................................................... 74 

5.7.1  Overhead Related Metrics ..................................................................................................... 76 

5.7.2  Path Length Validation Metrics ............................................................................................. 81 

5.7.3  General Comments ................................................................................................................ 85 

5.8 CONCLUDING REMARKS ON LEDIR .............................................................................................. 86 

CHAPTER 6 .................................................................................................................................................. 87 

RESTORING CONNECTIVITY WITH MINIMAL NODE MOVEMENT ................................................ 87 

6.1 INTRODUCTION ............................................................................................................................. 87 

6.2 LEMOTOR – MAIN STEPS ............................................................................................................ 88 

6.2.1  Failure Detection ................................................................................................................... 89 

6.2.2  Smallest Block Identification ................................................................................................ 89 

6.2.3  Replacing the Faulty Node .................................................................................................... 89 

6.2.4  Children Movement ............................................................................................................... 90 

6.3 RECOVERY WITH MINIMAL NODE MOVEMENT: AN EXAMPLE ..................................................... 90 

6.4 DISTRIBUTED LEMOTOR IMPLEMENTATION ................................................................................ 92 

6.5 LEMOTOR PSEUDO CODE ............................................................................................................ 93 

6.6 PERFORMANCE EVALUATION OF LEMOTOR ................................................................................ 95 

6.7 CONCLUDING REMARKS ON LEMOTOR ..................................................................................... 100 

CHAPTER 7 ................................................................................................................................................ 101 

CONCLUSION & FUTURE WORK ......................................................................................................... 101 

7.1 CONCLUSION .............................................................................................................................. 101 

7.2 PUBLICATIONS ............................................................................................................................ 102 

7.3 FUTURE WORK ........................................................................................................................... 104 



ix 
 

APPENDIX A ............................................................................................................................................. 105 

REFERENCES ............................................................................................................................................ 108 

VITA ........................................................................................................................................................... 114 

 

  



x 
 

LIST OF TABLES 

TABLE 2.1: Node relocation schemes that use metrics other than connectivity .......................................... 19 

TABLE 4.1: Attributes of the actors in Figure 1.2-(a) .................................................................................. 43 

TABLE 4.2: Total # of Messages Sent by C
2
AM with varying # of actors................................................... 51 

TABLE 5.1: The Path Predecessor Matrix generated by the Floyd-Warhsell algorithm ‎[41] for the network 

topology of Figure 1.3-(a). For each pair of nodes v and w, the path matrix entry P[v,w] contains a node k 

which is the direct predecessor of w on the shortest path to v. ...................................................................... 55 

TABLE 5.2: # of Messages Sent by LeDiR with varying # of actors ........................................................... 79 

TABLE 5.3:  # of Messages Sent by LeDiR with varying actor radio range ................................................ 79 

TABLE 6.1: # of Messages Sent by LeMoToR with varying # of actors ..................................................... 99 

TABLE 6.2: # of Messages Sent by LeMoToR with varying actor radio range ........................................... 99 

TABLE A.1: Statistical Analysis of C
2
AM ................................................................................................. 106 

TABLE A.2: Statistical Analysis of LeDiR ................................................................................................ 106 

TABLE A.3: Statistical Analysis of LeMoToR .......................................................................................... 107 

  

file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242140
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242141
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242142
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242143
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242143
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242143
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242144
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242145
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242146
file:///G:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.3.docx%23_Toc296242147


xi 
 

LIST OF FIGURES 

Figure 1.1: An articulation of a WASN with a connected inter-actor network. .............................................. 7 

Figure 1.2: (a) Pre-failure network topology; (b) After A1 fails the network gets partitioned into three 

disjointed sub-networks; (c) By using ‎[10], node A3 replaced the faulty actor and reestablished connectivity 

between actors; (d) The topology after running C
2
AM with node A5 replacing A1, followed with cascaded 

motion of A6, A9 and A11. ............................................................................................................................... 11 

Figure 1.3: Illustration on how DARA ‎[10] restores connectivity (a) Initial 1-connected WSAN topology 

(b) Disjointed network with faulty node A10 and potential best candidates A3 , A9 , A11 , and A14 (c) Based on 

least node degree, node A11 has been selected as best candidate to replace the faulty node A10 (d) Repaired 

topology with the highlighted nodes  A11,  A12,  A2 and A13 that participated in the recovery process. ........... 13 

Figure 1.4: Illustrating how RIM ‎[11] restores connectivity after the failure of node A10 in the connected 

inter-actor topology of Figure 1.3-(a). Highlighted nodes are moved and get involved in the recovery 

process. .......................................................................................................................................................... 16 

Figure 2.1: In a), actor A1
 
is a dominatee and cannot be a cut vertex. A2 is a dominator and has a dominatee 

A1 which is not connected. Thus, A2 is a cut-vertex. A3 is also a cut vertex in a) but will not be a cut-vertex 

in b) ‎[12]. ....................................................................................................................................................... 21 

Figure 2.2: An example for how RIM restoration process; each shaded node moves based on the positions 

of its neighbors, denoted in double -lined circles ‎[11]. ................................................................................. 23 

Figure 3.1: High-level block diagram of WSAN simulator ‎[42]. .................................................................. 29 

Figure 3.2: Inter-actor 1-connected network topology in WSAN simulator. ................................................ 31 

Figure 3.3: Network topology with faulty cut-vertex actor node. Topology is disjointed into 3 sub-

networks. ....................................................................................................................................................... 33 

Figure 4.1: Pseudo code for the C
2
AM algorithm ......................................................................................... 45 

file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134709
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134710
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134710
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134710
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134710
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134711
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134711
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134711
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134711
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134712
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134712
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134712
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134713
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134713
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134713
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134714
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134714
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134715
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134716
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134717
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134717
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134718


xii 
 

Figure 4.2: Measure of disturbance of application with varying actor count (Radio Range = 100m) ........... 47 

Figure 4.3: Level of disturbance to the application under varying actor radio range (with 60 actors) .......... 47 

Figure 4.4: Total distance traveled with varying number of actors (Radio Range = 100m).......................... 49 

Figure 4.5: Travel distance with varying actor radio range (60 actors) ......................................................... 49 

Figure 5.1: Illustrating the movement of block Bs in LeDiR to restore the network connectivity and to keep 

intra-block paths unchanged; (a) that entire Bs moved r units (b) the collective effect of Bs participation in 

the recovery is stretching Bs towards F, and (c) Bs is both stretched and moved with links within the Bs 

stretched in order to minimize the total travel distance. r is the actor‟s communication range. .................... 58 

Figure 5.2: An example illustrating how LeDiR restores connectivity after the failure of node A10. ............ 60 

Figure 5.3: Pseudo code for the LeDiR algorithm ......................................................................................... 65 

Figure 5.4: LeDiR restores the network connectivity after the failure of a cut-vertex (critical node); (a) 

shows a WSAN before a cut-vertex fails and (b) shows the WSAN topology after applying LeDiR. .......... 67 

Figure 5.5: The worst case scenario topology where N = 7 and failure of A4 has partitioned the network into 

two (N-1)/2 nodes blocks.  LeDiR would involve maximum (N-1)/2 actors in the recovery process either A3 

or A5 selected to replace the faulty node followed by a series of inter-block node relocation. ..................... 69 

Figure 5.6: Assuming the worst case scenario presented in Figure 5.5, LeDiR selected A3 to replace the 

faulty node A4 by traveling distance r.  Once A3 moved to the new position, A2 will move behind it to 

maintain direct connectivity. Later, A1 will do the same. Since the network is 1-diamentional and nodes are 

located r units away from each other, the maximum distance travel by a node is r. ..................................... 72 

Figure 5.7: (a) Effect of the network size on the total distance traveled by actor nodes under RIM and 

LeDiR where CL is varying (with r=100);  (b) The impact of an increased actor‟s communication range on 

the relocation overhead for a network of 100 actor nodes. ............................................................................ 75 

file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134719
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134720
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134721
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134722
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134723
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134723
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134723
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134723
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134724
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134725
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134726
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134726
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134727
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134727
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134727
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134728
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134728
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134728
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134728
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134729
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134729
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134729


xiii 
 

Figure 5.8: Number of actors that moved during the recovery while varying (a) the communication range 

(with N = 100), and (b) the network size (with r = 100). .............................................................................. 77 

Figure 5.9: The number of extended paths per topology [average over 30 runs] after performing the 

recovery while varying (a) the communication range (with N=100), and (b) the network size (with r=100).

 ....................................................................................................................................................................... 80 

Figure 5.10: Percentage of shortest paths that are NOT extended per topology during the network recovery 

[average over 30 runs] while varying (a) the communication range (with N=100), and (b) the network size 

(with r=100). ................................................................................................................................................. 82 

Figure 5.11: (a) WSAN with a sparse 1-connected topology and a faulty node. (b) Topology recovered by 

using RIM (c) topology recovered by using DARA and (d) topology recovered by using LeDiR . ............. 84 

Figure 6.1: An example illustrating how LeMoToR restores connectivity after the failure of node A10. ...... 91 

Figure 6.2: Pseudo code of LeMoToR .......................................................................................................... 94 

Figure 6.3: The total distance traveled by actor nodes where (a) network size is varied (with r=100), (b) 

communication range is varied (with N=100) ............................................................................................... 96 

Figure 6.4: Number of actors that moved during the recovery while varying (a) the network size (with r = 

100), (b) the communication range (with N = 100). ...................................................................................... 98 

 

  

file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134730
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134730
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134731
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134731
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134731
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134732
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134732
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134732
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134733
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134733
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134734
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134735
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134736
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134736
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134737
file:///K:/KFUPM/MS%20Thesis/Thesis_v2/Ameer_COE_MS_Thesis_v2.5.docx%23_Toc297134737


xiv 
 

THESIS ABSTRACT (ENGLISH) 

 

NAME: Ameer Ahmed Abbasi 
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Wireless Sensor-Actor Networks 
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In Wireless Sensor-Actor Networks (WSANs), sensors probe their surroundings and inform actors which 

respond collaboratively to achieve some desired application missions. Since actors have to coordinate their 

operation, it is necessary to maintain a strongly connected network topology at all time. A WSAN may get 

partitioned into disjoint segments, if a critical actor, i.e., a cut-vertex node, fails and causes the loss of 

multiple inter-actor communication links. The other actors close to the faulty node often exploit their 

mobility to autonomously restore the lost inter-actor connectivity. We propose C
2
AM; a recovery algorithm 

that factors in application level constraints on actor‟s mobility while restoring the network connectivity. In 

addition to considering physical level requirements, C
2
AM accounts for application level concerns as well 

in order to avoid major disruptions to ongoing missions. Simulation results have validated the effectiveness 

of the proposed algorithm in maintaining both objectives. Moreover, we investigate the connectivity 

restoration problem subject to inter-actor communication path length constraints in order to handle the data 

latency and potential packet loss. We propose a Least-Disruptive topology Repair (LeDiR) algorithm. 

Unlike contemporary schemes that maintain 1 or 2-hop neighbor lists, LeDiR utilizes existing path 

discovery activities in the network in order to know the structure of the topology and avoids imposing 

additional pre-failure communication overhead. The performance of LeDiR is analyzed mathematically and 

validated via extensive simulation experiments. We extend LeDiR and name it Least-Movement Topology 

Repair (LeMoToR) algorithm. Like LeDiR scheme, LeMoToR is a distributed scheme that relies on the 

local view of a node about the network.  However, LeMoToR does not impose any constraint to sustain the 

path length between any pair of node at pre-failure status and apply itself recursively to maintain network 

connectivity. To restore connectivity, LeMoToR strives to relocate the least number of nodes and reduce 

the traveled distance and message complexity. The simulation results validate the effectiveness of 

LeMoToR. 
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THESIS ABSTRACT (ARABIC) 

 العباسي أحمد أمير :الاسم

  والأجهزة الفاعلة باستخدام تطبيقات التحريك والادراك الاستشعار اللاسلكية  استعادة الربط في شبكات :الرسالة عنوان

 هندسة الحاسب الآلي :خصصتال

 2011 حزيران : التخرج تأريخ

 

 بشكل تستجيب التي الفاعلة الأجهزة وابلاغ محيطها بفحص الاستشعار تقوم أجهزة  ،( WSANs) ،الميكانيكيةوالتشغيل  اللاسلكية الاستشعار شبكات في

 جميع في بقوة متصلة شبكة طوبولوجيا على الحفاظ الضروري فمن عملها، تنسيق بما أن من مهام الأجهزة الفاعلة. المطلوبة التطبيق بعثات بعض لتحقيق تعاوني

 من العديد وتسبب بفقدان فشل قد ، الرأس قطع عقدة أي ، الجهاز الفاعل الحساس كان إذا ، نفصلةم قطاعات إلى WSAN تقسيم يتم قد. الأوقات

مستقل  بشكل الحركة على قدرتها ذات العيوب عملها لاستعادة العقدة من القريبة الأخرى الفاعلة الأجهزة تستغل ما كثيرا. الأجهزة الفاعلة بين الاتصال وصلات

في قدرة  التطبيق مستوى على القيود تقوم بالأخذ بعين الاعتبار للإصلاح وهي خوارزمية ؛ C2AM نقترح. الأجهزة الفاعلة بين قودالمف واسترجاع الاتصال

 فأيضا بعين الاعتبار مخاو  C2AM تأخذ ، المادي المستوى متطلبات في النظر إلى بالإضافة. بالشبكة الاتصال استعادة الأجهزة الفاعلة على التنقل أثناء

 على الحفاظ المقترحة في الخوارزمية فعالية صحة من بالتحقق المحاكاة قد قامت نتائج. الجارية البعثات في كبيرة اضطرابات تجنب أجل من التطبيق مستوى

مع  التعامل أجل هزة الفاعلة منلطول المسارات بين الأج الاتصالات المقيدة بقيود استعادة الاتصال مشكلة في ذلك، نقوم بالتحقيق على علاوة. الهدفين هذين

 التي المعاصرة المخططات عكس على(. LeDiR) تخريبا الأقل باستخدام البنية للإصلاحخوارزمية  نقترح. بعض حزم البيانات فقدان واحتمال البيانات تأخر

 عن والابتعاد الطوبولوجيا هيكل لمعرفة الشبكة قة فيالساب المسار من أنشطة اكتشاف بالانتفاع LeDiR،تقوم  هوب للجيران – 2 أو 1 على قوائم  تحافظ

لقد قمنا . النطاق واسعة المحاكاة تجارب خلال من صحتها من والتحقق رياضيا LeDiR أداء تحليل تم. القائمة قبل الفشل للاتصالات إضافية أحمال فرض

 هو LeMoToR ، فإن LeDiR مخطط مثل(. LeMoToR) عدد من الحركات بأقل الطوبولوجيا بخوارزمية إصلاح وتسميته LeDiR بتوسعة

 زوج أي بين الطريق طول على للحفاظ قيود أي يفرض لا LeMoToR ، فإن ذلك ومع. للشبكة المقدم من عقد المحلي العرض على يعتمد موزع مخطط

 العقد من عدد أقل لنقل LeMoToR تسعى تصالالا لاستعادة. بالشبكة الاتصال على للحفاظ متكرر بشكل نفسه ويطبق الفشل العقد في حالة قبل من

 .LeMoToR فعالية من بالتحقق المحاكاة قامت نتائج. الرسالة وتقليل تعقيد المقطوعة المسافة وتقليل

 

 الماجيستير في العلوم درجة
 جامعة الملك فهد للبترول والمعادن

 بالمملكة العربية السعودية ،الظهران
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CHAPTER 1 

 

INTRODUCTION 

 

Wireless Sensor-Actor Networks (WSANs) have attracted lots of interest in recent years.  

WSANs can increase the effectiveness of numerous applications such as homeland 

security, battlefield reconnaissance, space exploration, search and rescue, etc. A typical 

WSAN consists of a larger set of miniaturized sensor nodes reporting their data to 

significantly fewer actor (actuator) nodes [1][2][3][4][5][6][7][8]. Sensors probe their 

surroundings and report their findings to one or multiple actors, which process the 

collected sensor reports and respond to emerging events of interest. An actor‟s response 

would depend on its capabilities, which varies based on the application and the expected 

role the actor plays. For example, an actor can deactivate a landmine, extinguish a fire 

and rescue a trapped survivor. It is worth noting that a heterogeneous set of actors may be 

employed and assigned complementary roles. 

 

In most application setups actors need to coordinate with each other in order to share and 

process the sensors‟ data, plan an optimal response and pick the most appropriate subset 

of actors for executing such a plan. For example in forest monitoring applications, actors 
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such as fire trucks and flying aircrafts need to collaborate with each other in order to 

effectively control a fire and prevent it from spreading. The selection of actors that need 

to be engaged can be based on many factors such as actor‟s capabilities, actor‟s proximity 

to the detected event and actor‟s current load. All of these factors would require a 

frequent update of the actor‟s state. To enable such interactions, actors need to stay 

reachable to each other. In other words, a connected inter-actor network has to be 

maintained at all time.  

 

In the following section we provide a brief overview of network connectivity issue for 

WSANs. Section 1.2 provides a summary of the contribution of thesis. System model has 

been explained in section 1.3 and section 1.4 discusses problem formulation and 

methodology. Organization of the rest of the thesis is stated under section 1.5. 

 

1.1 Connectivity Issue for Wireless Sensor-Actor Networks 

An actor failure can cause the loss of multiple inter-actor communication links and may 

partition the network if alternate paths among the affected actors are not available.  Such 

a scenario will hinder the actors‟ collaboration and thus have very negative consequences 

on the WSANs application. Therefore, the actors should be able to detect and recover 

from the failure of one of them. Given that the WSAN usually operates autonomously 

and unattended, the recovery should be a self-healing process for the network and should 

be performed in a distributed manner. In addition, the network recovery should be both 

quick and lightweight. Rapid recovery is desirable in order to maintain the WSAN 
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responsiveness to detected events. In addition, the overhead should be minimized in order 

to ensure the availability of actors‟ resources for application-level missions.  

 

However, actors are responsible for responding to the specific events and carry out tasks 

which must be consistent with the application goals [9]. Therefore unconstraint 

movement of actor(s) with the goal of achieving efficiency, in terms of reduced overhead, 

can cause a serious failure at application level. In other words, an application un-aware 

recovery of the inter-actor connectivity can be impractical in many scenarios. For 

example, consider the following scenario where an application un-aware recovery of the 

inter-actor connectivity can lead to a disastrous situation.  

 

Life support medical units are unmanned robotic vehicles that are equipped with the 

necessary life support equipment such as oxygen tanks and masks. These actor units are 

deployed in an area that got hit by a natural disaster like earthquake, hurricane, etc. 

Human body heat sensors are also deployed all over the area. The job of these sensors is 

to probe the existence of a live human being in the vicinity and report it to the actors. 

After receiving such a report, close by actors are responsible to reach the location and 

provide necessary life support until the rescue team arrives. At the time when a unit 

(actor) is busy in providing emergency help to a survivor under the rubbles, task 

termination and the mobility of this unit may cause serious damage to the operation. 

However, after completing the operation, the unit can be mobilized to any location 

without constraints. Thus, a recovery mechanism is needed to determine the best 

connectivity restoration scheme under application level tasks termination constraints. 
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On the other hand, most of the recently proposed schemes found in the literature require 

every node to maintain partial knowledge of the network state. To avoid the excessive 

state-update overhead and to expedite the connectivity restoration process, these schemes 

rely on maintaining 1 or 2-hop neighbor lists and predetermine criteria for node‟s 

involvement in the recovery [10][11][12]. Nonetheless, 1-hop based schemes often 

impose high node repositioning overhead and the repaired inter-actor topology using 2-

hop schemes may differ significantly from its pre-failure status.  

 

However, some WSAN applications require timely coordination among the actors. For 

example, during a combat operation timely interaction among actors would be required in 

order to accurately track and attack a fast moving target. Thus, extending the shortest 

path between two actors as a side effect of the recovery process would not be acceptable. 

Therefore, a network restoration scheme is required that must rely on the local view of a 

node about the network to relocate the least number of nodes and ensure that no path 

between any pair of affected nodes is extended relative to its pre-failure status.  

 

In some mission critical applications, node movement is not much appreciated and 

moving many actor nodes as a side effect of the recovery process could lead to an 

application mission failure. For example, moving away number of actor nodes while busy 

extinguishing a fire or life supporting natural disaster victims could lead to a disaster. 

Hence, a recovery algorithm is needed that strives to relocate the least number of nodes 

and reduce the total travel distance and communication overhead. 
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1.2 Contribution Of Thesis 

In this thesis we tackle the above stated problems. The aim is to find out a recovery 

mechanism that accounts for application level concerns in addition to considering 

physical level requirements. This is important in order to avoid major disruptions to 

ongoing missions. Moreover, we investigate the connectivity restoration problem subject 

to inter-actor communication path length constraints in order to meet the data latency 

requirements at the application-level. A technique to relocate the least number of nodes 

and reduce the traveled distance and message complexity is also considered. The 

contribution can be categorized as follows: 

 Connectivity restoration with application level constraints on actors’ mobility: An 

application un-aware recovery of the inter-actor connectivity can be impractical in 

many scenarios. We propose a distributed algorithm to restore inter-actor connectivity 

with application level constraints on actors‟ mobility. Unlike most of the published 

algorithms, our algorithm considers application level constraints on actor‟s mobility 

as a critical issue to be measured and factored in during the recovery. 

 Least disruptive topology repair: Considering the connectivity restoration problem 

subject to path length constraints and guaranteeing that no data path between any pair 

of affected nodes is extended relative to its pre-failure status is a great technical 

challenge. We propose a new distributed least disruptive topology repair algorithm 

that restores connectivity by careful repositioning of nodes. Our proposed algorithm 

re-establishes network connectivity after node failure and does not extend the length 

of any data path. It totally relies on the local view of the network and does not impose 

any pre-failure overhead. 
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 Least movement topology repair: Relocating the least number of actors to re-establish 

network connectivity after failure while utilizing existing path discovery activities to 

get and maintain topology related information and imposing no additional pre-failure 

communication overhead is very challenging. We propose a least movement topology 

repair distributed algorithm that relies on the local view of a node about the network. 

It actually is an extension to LeDiR. To restore connectivity, our proposed algorithm 

strives to relocate the least number of nodes and reduce the traveled distance and 

message complexity. 

 

1.3 System Model 

A WSAN involves two types of nodes: sensors and actors. Sensors are inexpensive, 

highly energy-constrained and having limited data processing capabilities. On the other 

hand, actors are generally moveable and more capable nodes with relatively more 

onboard energy supply and richer computation and communication resources. The 

transmission range of actors is finite and significantly less than the dimensions of the 

deployment area. Although, actors theoretically can reach each other via a satellite 

channel, frequent inter-actor interaction as required by WSANs applications would make 

the often-intermittent satellite links power-consuming and unsuitable. It is thus necessary 

for actors to rely mostly on contemporary inter-actor wireless links for coordination 

among themselves. The communication range of an actor refers to the maximum 

Euclidean distance that its radio can reach. Meanwhile, the action range of an actor is 

defined as how far it can be effective from its current position.  
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Figure 1.1: An articulation of a WASN with a connected inter-actor network. 
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Actors are assumed to be randomly deployed in an area of interest. In this work, network 

topology is considered to be a flat graph which is 1-connected and bi-directional. Upon 

deployment, actors are assumed to discover each other and form a 1-connected network 

using some of the existing techniques, such as [22]. An actor employs ranging 

technologies and localization techniques in order to determine its position relative to its 

neighbor [13]. We assume that the actors can move on demand in order to perform tasks 

on larger areas or to enhance the inter-actor connectivity. Given the application-based 

interaction, an actor is assumed to know how many actors are there in the network. 

Figure 1.1 articulates the considered WSAN model. An actor collects sensors data in its 

neighborhood and collaborates with other actors. Some of the actors can interact with a 

remote command center through a long haul communication link, e.g., through a satellite, 

to report on their activities and detected event/targets. It is worth noting that although we 

consider such a system model, our algorithms are also applicable to mobile robotic 

networks where no sensors are employed. 

 

As mentioned earlier, the focus of this work is on restoring strong connectivity at the 

level of inter-actor topology. It is assumed that a sensor node can reach at least one actor 

over multi-hop paths and will not be affected if the actors have to change their positions. 

Thus, sensor nodes are not part of recovery process. In the balance of the thesis, actor and 

node are used interchangeably. In addition, we assume that only non-simultaneous node 

failures will take place in the network. This, nonetheless, is not a limitation for our work. 

To the best of our knowledge, most recovery schemes found in the literature assumes no 

simultaneous faults. The rationale is that the probability for having multiple simultaneous 
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failures is very small. If “p” is the probability for a node failure, the probability for 2 

simultaneous faults is p
2
 and, p

3
 for 3, etc. With p being a small fraction, the probability 

of multiple faults diminishes.  In addition, the presentation of our work focuses on the 

algorithmic part of the recovery without focusing on the link layer issues. In general, any 

distributed medium access arbitration scheme would suffice. 

 

1.4 Problem Formulation & Methodology 

This work investigates means for restoring the connectivity of an inter-actor network that 

got partitioned due to the failure of a critical actor, i.e., cut-vertex node. In the following 

subsections, we define three different topology repair problems for WSANs and outline 

the solutions. 

 

1.4.1 Topology Repair With Application Level Constraints On Mobility 

Problem Definition: Actors in WSANs can move in various situations. However, these 

movements should not only be decided at the physical level and actors must not be free to 

move whenever / wherever they want. There must be some constraints on the 

repositioning of actors e.g., current task, delay bound and clustering issues. Keeping in 

mind such restrictions or at least application level task involvement restrictions on actors‟ 

movement, restoring inter-actor connectivity can be a challenging issue if an actor failure 

causes network partitioning. Figure 1.2-(a) presents a 1-connected inter-actor network 

topology. In this topology a non-critical actor failure such as A2, A8, and A5 will not hurt 

the inter-actor connectivity as there are other alternate paths available. In addition, an 

actor failure at network boundary such as A10, A15 and A12, where actor‟s node degree is 
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one, also would not damage the inter-actor connectivity. However, a cut-vertex (critical 

node) actor failure can partition the network. For example, failure of A1 can partition the 

network into three disjoint networks as shown in Figure 1.2-(b). The same is true for A9 

and A13. 

 

Solution Overview: We propose C
2
AM; a distributed algorithm to restore inter-actor 

Connectivity with application level Constraints on Actors‟ Mobility. We define two new 

indices: Mobility Readiness Index (MRI) and Mobility Potential index. Every actor in the 

network would maintain a Mobility Readiness Index (MRI) value in the range [0-l]. MRI 

is entirely based on the importance of current task, where the stringency of actor‟s 

mobility constraint increases as value of MRI increases from 0 to l. A MRI of 0 value 

means the actor is free to move; while a value of l means that the actor cannot move. In 

addition to MRI, every actor would also maintain a Mobility Potential (MP) value. MP is 

defined as the number of neighboring actors which can move (i.e., MRI < l). Every actor 

would calculate its MP value by tracking its 1-hop neighbors. Neighbors will know about 

an actor whether it is available to move or not by checking its MRI or MP value. It is 

worth noting that MRI has a priority over MP. The latter would be used to break the tie, if 

all actors participating in the recovery process have same MRI value. Every actor 

periodically transmits both values along with its node degree, location, and ID to its 

neighbors. 

 

Another important assumption in the deployed network topology is actors‟ redundancy. 

We assumed that most of the time there would be some available actors with MRI less 
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Figure 1.2: (a) Pre-failure network topology; (b) After A1 fails the network gets partitioned into three 

disjointed sub-networks; (c) By using [10], node A3 replaced the faulty actor and reestablished 

connectivity between actors; (d) The topology after running C
2
AM with node A5 replacing A1, 

followed with cascaded motion of A6, A9 and A11. 
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than l in the neighborhood of a failed actor which can participate in the recovery process. 

A free (redundant) actor with MRI of zero is the one which is not involved in any task at 

the time of the failure. Special attention will be needed when no free actor is available in 

the neighborhood of a failed actor. 

 

1.4.2 Least Disruptive Topology Repair 

Problem Definition: There are several real WSAN applications that can have very strict 

delay requirement and is sensitive to packet loss. Examples include combat robotic 

networks, search-and-rescue operation, etc. In such applications extending the shortest 

path between any pair (i, j) of actors as a side effect of the recovery process would not be 

acceptable. Therefore, considering the connectivity restoration problem subject to path 

length constraints is very important. The goal is to restore inter-actor connectivity in a 

WSAN without extending the length of the shortest path among nodes compared to the 

pre-failure topology. The following example illustrates the importance of the effect of 

contemporary recovery schemes on the path length between nodes. Let‟s consider Figure 

1.3-(a) and assume that node A10 fails. Connectivity restoration schemes that exploit node 

repositioning will replace A10 with one of its neighbors as shown in Figure 1.3-(b). For 

example, shown in Figure 1.3-(c), DARA [10] picks the neighbor with the least degree in 

order to limit the scope of relocation. Thus, A11 relocates to the position of A10. The 

connectivity restoration process will be repeated with repositioning A12 to replace A11, 

followed by relocating A2 to where A12 was. Finally, A13 replaces A2. The resulting 

topology is shown in Figure 1.3-(d). While A0 and A3 were directly reachable to A2 before 

the failure, the repaired topology in Figure 1.3-(d) makes the shortest path one hop longer 
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Figure 1.3: Illustration on how DARA [10] restores connectivity (a) Initial 1-connected WSAN 

topology (b) Disjointed network with faulty node A10 and potential best candidates A3 , A9 , A11 , and 

A14 (c) Based on least node degree, node A11 has been selected as best candidate to replace the faulty 

node A10 (d) Repaired topology with the highlighted nodes  A11,  A12,  A2 and A13 that participated in the 

recovery process. 
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by involving A13. As mentioned above, this will not be acceptable for delay sensitive 

applications. Moreover, increase in path length boosts the potential of packet loss. Thus, 

such scenario must be avoided by sustaining or even shortening the pre-failure path 

lengths. 

 

Solution Overview: We propose a novel Least-Disruptive topology Repair (LeDiR) 

algorithm. LeDiR relies on the local view of a node about the network to relocate the 

least number of nodes and ensure that no path between any pair (i, j) of affected nodes is 

extended relative to its pre-failure status.  LeDiR is a localized and distributed algorithm 

that leverages existing route discovery activities in the network and imposes no additional 

pre-failure communication overhead.  

 

To simplify the presentation, a centralized implementation of LeDiR is assumed, where 

every node is aware of the entire network topology prior to the failure and thus can build 

the shortest-path routing table (SRT) for every pair (i, j) of nodes. This assumption is 

eliminated later. LeDiR is a distributed scheme that does not need a network-wide state. 

The SRT can be populated through the route discovery activities in the network, e.g., 

when an on-demand routing protocol such as AODV is employed. 

 

The main idea for LeDiR is to pursue block movement instead of individual nodes in 

cascade. In order to limit the recovery overhead, in terms of the distance that the nodes 

collectivity travel, LeDiR identifies the smallest among the disjoint blocks. When a node 

fails, its neighbors will individually consult their possibly-incomplete SRT to decide on 
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the appropriate course of action and define their role in the recovery if any. If the failed 

node is a cut-vertex (critical node), i.e., a node that causes network to partition into 

disjoint blocks, the neighbor that belongs to the smallest block reacts. For the previous 

example when A10 fails, LeDiR will only involve the block of node A14.  In addition, 

LeDiR opts to limits the travel distance by stretching the links and moving a node only 

when it becomes unreachable to their neighbor.   

 

1.4.3 Least Movement Topology Repair 

Problem Definition: During the network restoration process, overall high node movement 

can have negative effect on movement-sensitive applications. Let‟s consider Figure 1.3-

(a) and assume that node A10 fails. Some connectivity restoration schemes that exploit 

node repositioning will recover the network by involving the neighbors of A10. For 

example, RIM [11] picks the 1-hop neighbors and moves them to r/2 unit away from the 

faulty node A10. Thus, A3, A9, A11 and A14 relocate to the new positions which are r/2 unit 

away from A10 and strongly reconnect the network. However, the connectivity restoration 

process triggers further relocations of the neighbors (children) of each moved node. The 

resulting topology is shown in Figure 1.4. Highlighted nodes are moved and somehow 

get involved in the recovery process. This will not be acceptable for movement-sensitive 

applications. Thus, such scenarios require least possible node movements while restoring 

network connectivity. Moreover, confining the node movement within the smallest 

portion of the network is desirable. 
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Figure 1.4: Illustrating how RIM [11] restores connectivity after the failure of node A10 in the 

connected inter-actor topology of Figure 1.3-(a). Highlighted nodes are moved and get involved in the 

recovery process. 
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Solution Overview: We extend our LeDiR algorithm and name it Least-Movement 

Topology Repair (LeMoToR). Like LeDiR algorithm, LeMoToR replaces the faulty node 

by selecting a neighbor node that belongs to the smallest disjointed block. However, 

LeMoToR is applied further recursively in case the node replacing the faulty node gets 

disconnected from its children i.e., neighbors within the block. This will not only move 

the least number of actor nodes but also limit the recovery overhead in terms of the 

distance that the nodes collectivity travels. For the previous example when A10 fails, 

LeMoToR will only involve the block of node A14.  In addition, LeMoToR opts to avoid 

the effect of the relocation on coverage by moving a node only when it becomes 

unreachable to their neighbor.  We assume that every node is aware of the entire network 

topology prior to the failure and thus can build the SRT for every pair of nodes. However, 

this assumption is eliminated later. Without loss of generality, hop count is used to 

calculate the inter-actor path cost. 

 

1.5 Organization Of Thesis 

The rest of this thesis is organized as follows. Chapter 2 surveys the related work. In 

Chapter 3, we report on the simulation tools and environment. Also, different 

performance metrics are discussed that are used in the simulation experiments to validate 

our proposed algorithms. Chapter 4 covers our new distributed algorithm C
2
AM. Chapter 

5 presents our novel LeDiR algorithm that overcomes the shortcomings of contemporary 

recovery schemes which either impose high node relocation overhead or extend some of 

the inter-actor data paths. Chapter 6 discusses an extension of LeDiR algorithm that we 

called LeMoToR. Chapter 7 concludes the thesis and discusses the future work. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

In WSAN, actors can move for any valid reason such as enhancing the network 

converge/connectivity or recovering from network partitioning. In [8], these movements 

are well surveyed and categorized into two major classes: initial deployment/application 

startup (post-deployment) and movement at any time (on-demand). Post-deployment 

movements are not the concern in this thesis since they are usually part of the network 

setup procedure. Nonetheless, most of these approaches focus on maintaining the 

network connectivity or enhancing sensor coverage.  Little has been done to consider the 

application requirements or the application mission while striving to meet their main 

goals. In fact, considering the application requirements in the network topology 

optimization may introduce resource conflicts and cause deadlock. In addition, while 

some schemes recover the network by repositioning the existing nodes, there exists others 

schemes that carefully place additional relay nodes[33][34][35][36]. 

 

On the other hand, some work on sensor relocation focuses on metrics other than 

connectivity which is not our focus in this thesis. Table 2.1 highlight such node relocation 

schemes along with their performance metrics. 
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2.1 Recovery Through Node Repositioning 

The main idea of this category of recovery schemes is to reposition some of the healthy 

nodes in the network in order to reinstate strong connectivity. Our work fits in this 

category. Some recent work, e.g., [24][25], have considered the application requirements 

when reconstructing the network topology.  In [24], deadlock avoidance algorithms are 

proposed to tackle the challenge of sharing resources among mobile sensors with multiple 

missions. Meanwhile, the focus of [25] is on topology control for mission critical 

applications in static wireless ad-hoc networks with the goal of increasing the available 

resources for a set of mission critical applications such as high priority services in a 

network. 

 

Furthermore, actors‟ movement can be in blocks [26] or in a cascaded fashion 

[10][27][28]. Block movement as defined in [26] is a solution based on the movement of 

all the nodes within a partition. Specifically, the neighbor of the failed node will lead the 

TABLE 2.1: Node relocation schemes that use metrics other than connectivity 

S. No. Node Relocation Scheme(s) Performance Matric(s) 

1 [14][15][16][17][18] Coverage 

2 [19] Network longevity 

3 [20] Asset safety 

4 [21][22][23] Self-spread the nodes after non-uniform deployment 
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partition and move towards the location of the failed node. During such movement, the 

remaining nodes in the partition maintain their current links and move in the same 

direction as the leader node (i.e., as a block). On the other hand, in cascaded node 

movement one of the neighbors of the faulty node replaces it. To maintain the 

connectivity, one of the children among the moved node is selected and relocates to the 

position of moved node. This process continues until every child is connected. 

 

In both cases, block and cascaded, moving actor(s) which are busy with conducting a task 

and forcing them to terminate current task(s) would have negative or severe effect at the 

application level. For example, forcing a group (block) of actors which are involved in 

extinguishing a fire to terminate the current task and move away to maintain connectivity 

can have severe negative effect at application mission. On the other hand, forcing an 

actor at a time in a cascaded fashion to terminate an important task and move to another 

location to restore connectivity would also have negative effect, although it would be 

minor compared to the block movement. We argue that the negative effect at application 

level can be further minimized by considering application level constraints in addition to 

the physical level requirements. Other similar studies has been reported by S. Das, et al. 

in [30][31]. 

 

Published approaches differ in the level of involvement expected from the healthy nodes, 

in the required network state that needs to be maintained, and in the goal of the recovery 

process. For example, both DARA [10] and PADRA [12] require every node to maintain 

a list of their 2-hop neighbors and determine the scope of the recovery by checking 
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Figure 2.1: In a), actor A1
 
is a dominatee and cannot be a cut vertex. A2 is a dominator and has a 

dominatee A1 which is not connected. Thus, A2 is a cut-vertex. A3 is also a cut vertex in a) but will not 

be a cut-vertex in b) [12]. 
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whether the failed node is a cut-vertex. DARA pursues the probabilistic scheme proposed 

in [12] to identify cut-vertices. A best candidate (BC) is selected from the 1-hop 

neighbors of the dead actor as a recovery initiator and to replace the faulty node. The BC 

selection criterion is based on the least node degree and physical proximity to the faulty 

node. The relocation procedure is recursively applied to handle any disconnected 

children. In other words, cascaded movement is used to sustain network connectivity. On 

the other hand, PADRA identifies a connected dominating set to determine a dominatee 

node. The dominatee does not directly move to the location of the failed node, instead a 

cascaded motion is pursued to share the burden. In [12], also the focus is on recovering 

from the failure of a cut-vertex. Only a special case is considered where the failure causes 

the network to split into two disjoint blocks. To re-link these blocks, the closest nodes are 

moved towards each other. The other nodes in the blocks follow in a cascaded manner. 

None of these approaches cares for the path length between nodes. While some of the 

proposed algorithm in this work also employs cascaded relocation, the criteria for 

selecting the lead node and other participants are different. 

 

In order to ensure that the recovery process converges in an efficient way, the approaches 

of [10][12][21] require each node in the network to be aware of its 2-hop neighbors. The 

availability of 2-hop list allows the nodes to detect cut-vertices with high probability and 

limits the scope of the recovery to cases in which the network becomes partitioned. RIM 

[11], on the other hand, defies that assumption and bases the recovery process on the 

knowledge of direct, i.e., 1-hop, neighbors. Simply the neighbors of a node “F” detect 

that “F” has failed and then move towards F until they can reach each other directly. Any 
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Figure 2.2: An example for how RIM restoration process; each shaded node moves based on the 

positions of its neighbors, denoted in double -lined circles [11].  
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lost link during the recovery will be reestablished through cascaded relocation. The 

collective effect seems like the network topology is shrinking inward. The advantage of 

RIM is obviously the reduced communication overhead which is nonetheless provided at 

the expense of overreacting to failure of nodes that are not cut-vertices.  We propose to 

utilize the partial knowledge of a node about the network topology, gained during route 

discovery, to decide on which node participates and which one does not. No recovery-

related explicit state update is required. 

 

Unlike our thesis, CRR [23] avoids replacing the faulty node with a healthy node since 

the failure might be caused by hazards that may damage the substitute node as well. 

Instead, CRR rearranges the network topology in the vicinity of the faulty node.  The 

network restoration is modeled as a Steiner tree approximation problem. A set of Steiner 

points are identified and the 1-hop neighbors of the faulty node are relocated at these 

points. In case the number of 1-hop neighbors are not enough, the approach progresses as 

the DARA approach, discussed above.  To get a bound on performance of recovery 

schemes, Al-Fadhly et al. [29] formulated the problem of finding the relocation schedule 

with the least travel distance and maximum coverage as an integer linear program. Such a 

centralized approach would fit more of a planned rather a reactive recovery scenario, as 

targeted by our thesis. 

 

In addition to network connectivity, coverage is also an important performance metric for 

WSANs. While restoring the network connectivity, coverage loss is possible either 

because of the failure itself or due to the connectivity-limited focus of the recovery. 
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Unlike the approaches discussed above, C
3
R [32] tackles the loss of both coverage and 

connectivity. C
3
R involves 1-hop neighbors of the faulty node in the recovery process. 

All the 1-hop neighbors take turn in relocating to the position of the faulty node and 

return back to their original position. This leads to intermittent connectivity and 

monitoring of all the originally covered spots.  Finally, node relocation has been pursued 

for optimizing the network performance, including boosting connectivity, not necessarily 

to deal with node failure. A survey of such work can be found in [8].  

 

2.2 Recovery By Placement Of Relay Nodes  

The above algorithms aim to restore the network connectivity by efficiently relocating 

some of the existing nodes. However, in some setups it is not feasible to move the 

neighbors of the failed node due to physical, logistical and coverage constraints. 

Therefore, some schemes establish connectivity among the disjoint network segments by 

placing new nodes. The published schemes generally differ in the requirements of the 

newly formed topology. For example, SpiderWeb [33] and DORMs [34] opt to not only 

re-establish the network connectivity but also achieve a certain quality in the newly 

formed topology. Basically, both schemes try to avoid the introduction of cut-vertices so 

that some level of robustness, i.e. load balancing and high node degree, is introduced in 

the repaired network topology. SpiderWeb and DORMS also strive to minimize the 

required number of relays. Both SpiderWeb and DORMS deploy relays inwards towards 

the center of the deployment area. The former considers the segments situated at the 

perimeter and establishes a topology that resembles a spider web. Meanwhile DORMS 

initially forms a star topology with all segments connected through a relay placed at the 
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center of area. Then adjacent branches are further optimized by forming a Steiner tree for 

connecting two segments and the center node in order to reduce the required relay count. 

 

Meanwhile, in [35] inter-segment connectivity ought to maintain some level of QoS 

while placing the least number of relay nodes. The proposed approach initially models 

the deployed area as a grid with equal-sized cells. Each cell is assessed based on the 

uncommitted capacity of the relay node residing in the cell. Finally, to meet the QoS 

requirement, optimization is done by finding the cell-based least cost paths and 

populating nodes along these paths. On the other hand, Zhang et al., [36] forms a bi-

connected inter-segment topology by placing redundant nodes so that the failure of a 

node can be tolerated and the network operation continues without interruption.  
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CHAPTER 3 

 

EXPERIMENTAL SETUP & 

PERFORMANCE METRICS 

 

3.1 Introduction  

This chapter describes the simulation tool, environment and performance metrics. The 

simulation experiments are performed on a WSAN simulator developed in Visual C++. 

The simulator has already been validated against extensive simulation experiments as 

well as existing approaches in the literature.  Section 3.2 provides a brief overview of 

WSAN simulator. Network topologies are described in section 3.3 and section 3.4 

provides simulation assumptions. In section 3.5, we explain the performance metrics. 

   

3.2 Overview of WSAN Simulator  

In the following we provide an overview of the wireless sensor-actor network simulator.  
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3.2.1 General -Purpose 

The simulator tool actually is a framework for general wireless sensor-actor networks. It 

provides an extensive framework to simulate the basic entities in the sensor-actor 

network. These entities are the sensor nodes, gateways (actors), packets, routes, targets 

etc. The basic characteristics of these entities such as communication range, action range, 

energy level etc. is also enumerated and a software equivalent is provided. A mechanism 

is provided to establish communication pathways between these pre-defined entities.  

 

3.2.2 Design 

As a whole, a typical wireless sensor-actor network consists of the following independent 

entities: 

 Sensor nodes 

 Gateways (actors) 

 Clusters 

 Packets 

 Packet Queues 

 Targets 

 User-interface 

 Events 

 Event Queues 

 

An object-oriented design approach is used to design the simulator where each entity is 

modeled by a separate object that encapsulates its functionality. These objects represent a 
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Figure 3.1: High-level block diagram of WSAN simulator [42].  
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high level decomposition of the sensor network allowing us to establish the interactions 

between the entities. At a lower level, each object is assigned attributes to capture the 

characteristics of the entity it is encapsulating. The interactions that were established 

earlier are then each assigned as methods to the object [42].  

 

3.2.3 Extensible  

The WSAN simulator is very easy to extend. Actually, the simulator provides a very 

basic functionality of the wireless sensor-actor network. New extensions such as changes 

in the routing and MAC protocols, topology management algorithms, etc. can be added to 

the basic simulator very easily and integrate seamlessly.  

 

3.2.4 Graphical User Interface (GUI) 

An intuitive and very useful feature is GUI of the simulator. An animated display of the 

working of the simulator provides a valuable visual clue to the events taking place in the 

sensor network. Following features of WSAN can be seen on GUI: 

 Positions of all the sensor nodes and gateways (actors) 

 States of the nodes, e.g. whether they are turned on or off, whether they are dead. 

 Communication between the nodes and gateways (actors) 

 Communication routes that are established by the gateway (actors) in the network 

 Inter-gateway (actor) network connectivity 
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Figure 3.2: Inter-actor 1-connected network topology in WSAN simulator. 
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3.3 Network Topologies & Environment 

In the simulation experiments, 1-connected network topologies have been created. Actors 

are placed in an area of 1000m x 600m using a uniform random distribution. For LeDiR 

and LoMoToR, the shortest path routing table (SRT) is formed using the Floyd-Warshall 

algorithm. This implicitly implies that every node is aware of the entire network 

topology.  

 

Let be the percentage of entries, i.e. routes between actor pair (i,j), that each node has 

acquired over time. Hereafter, we shall call this as Confidence Level (CL). For 

example, if 50% entries of node‟s Ai routing table are filled we say node Ai has 50% CL.  

We mimic the effect of Confidence Level (CL) by randomly removing (1 - α) % of 

entries from the copy of the global SRT stored at the individual nodes in order to capture 

the performance of a distributed implementation.  All cut-vertex nodes in the topology 

are identified and one of them is randomly picked as the failed node and one of the 

proposed algorithms is applied to restore connectivity. 

 

The following parameter is used to vary the characteristics of the WSAN topology in the 

experiments:  

 Number of Deployed Actors (N): This parameter affects the node density and the 

WSAN connectivity.  Increasing the value of N makes the WSAN topology highly-

connected.  When studying the effect of network size, the number of actors has been 

varied from 20 to 100 while fixing the radio range (r = 100m). 
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Figure 3.3: Network topology with faulty cut-vertex actor node. Topology is disjointed into 3 sub-

networks. 
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 Communication range (r): All actors have the same communication range r. The 

value of r affects the initial WSAN topology. While a small r creates a sparse 

topology, a large r boosts the overall network connectivity. The node count has been 

fixed at 100, while varying the communication range (25m to 200m). 

 

For each simulation setup 30 different network topologies are considered and the average 

values are reported. We observed that with 90% confidence level, the simulation results 

stay within 6% - 10% of the sample mean. A detailed statistical analysis is provided in 

Appendix A for interested readers. 

 

3.4 Simulation Assumptions 

In the simulator, underlying physical channel in the simulation environment is considered 

reliable and no message loss is observed. All the nodes i.e. sensors and actors are 

distributed in an open space area where radio coverage is expected to be circular. The 

sensor and actor antenna is Omni directional. It is worth to note that the circular radio 

coverage assumption is widely used in literature [38][39].  

 

As mention in Chapter 1, upon deployment, actors are assumed to discover each other 

and form a connected network using some of the existing techniques such as ‎[22]. An 

actor employs ranging technologies and localization techniques in order to determine its 

position relative to its neighbor [13]. We assume that the actors can move on demand in 

order to perform tasks on larger areas or to enhance the inter-actor connectivity. Given 

the application-based inter-action interaction, an actor is assumed to know how many 
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actors are there in the network. Without loss of generality, all actor nodes are assumed to 

have the same radio / communication range which is limited and that the communication 

links are symmetric. However, our proposed algorithms do not require such assumption.  

 

3.5 Performance Metrics 

In order to evaluate the performance of our proposed algorithms, we quantify the 

overhead of the recovery process using the following two metrics:  

 Total Distance Traveled: This metric reports sum of the distances traveled by the 

individual actors during the recovery. It indicates the energy incurred overhead and 

envisioned as a network-wide assessment of the efficiency of the applied recovery 

scheme. 

 Number of exchanged messages: tracks the total number of messages that have been 

exchanged among nodes. This metric captures the communication-related overhead. 

 

The following application disturbance related metric is specifically used to assess the 

performance of C
2
AM: 

 Total MRI value: This metric captures total MRI of all actors that moved to recover 

the network.  C2AM strives to move nodes with smaller MRI values. Thus, total MRI 

value is an important metric to know the degree of disturbance to the application level 

because of node movements. In summary, an increasing MRI value would indicate an 

increasing degree of disruption at application level. 

 

The following metrics are used to validate the path length performance of LeDiR:  
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 Number of shortest paths that got extended: reports the total number of shortest paths 

between pairs of nodes (i, j) that get extended as a result of the movement-assisted 

network recovery. Please note that shortest paths are calculated by using Floyd-

Warshall algorithm. This metric validates our claim that LeDiR avoid extending any 

shortest path between any pair (i, j) of node while restoring connectivity. Thus, for 

LeDiR, this metric must be zero in all experiments. 

 Average number of shortest paths that are NOT extended per topology: This metric 

assesses how serious the potential path extension concern for contemporary 

approaches and further validates the correctness of LeDiR (This metric should be 

100% all the time for LeDiR). 

 

In addition, the following node movement related performance matric is used in LeDiR 

and LeMoToR: 

 Number of relocated nodes: reports the number of nodes that moved during the 

recovery. This metric assesses the impact of the restoration algorithm on the ongoing 

activities by other actors as well as the scope of the connectivity restoration within the 

network. 
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CHAPTER 4 

 

CONNECTIVITY RESTORATION WITH 

APPLICATION MOBILITY 

CONSTRAINTS  

 

4.1 Introduction  

A WSAN may get partitioned into disjoint segments, if a critical actor, i.e., a cut-vertex 

node, fails and causes the loss of multiple inter-actor communication links. In such a case 

inter-actor collaboration would not be possible and most probably cause a fatal 

error/failure to the entire application mission. Since WSAN applications work 

autonomously and unattended, actors must have a quick, lightweight, self-healing and 

localized mechanism to deal with such a situation. Actors are responsible for responding 

to the specific events and carry out tasks which must be consistent with the application 

goals. Therefore unconstraint movement of actor(s) with the goal of achieving efficiency, 

in terms of reduced overhead, can cause a serious failure at application level. In other 
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words, an application un-aware recovery of the inter-actor connectivity can be 

impractical in many scenarios.  

 

This chapter provides the technical details and performance evaluation of our C
2
AM 

algorithm. Next section describes the steps of C
2
AM algorithm in detail. Section 4.3 

provides detailed worked-out examples on application-aware recovery. Pseudo code of 

C
2
AM is explained in section 4.4. Performance evaluation of C

2
AM is provided in 

section 4.5. Section 4.6 provides concluding remarks on C
2
AM. 

 

4.2 Detailed C
2
AM Steps 

C
2
AM is an application aware inter-actor connectivity restoration approach. It requires 

only 2-hop neighbor information and exploits the node‟s mobility in order to restore 

connectivity of a partitioned network. The entire recovery process progresses in a 

localized and distributed manner. However, each node is required to maintain a 2-hop 

neighbor information table, referred to thereafter as TwoHopTable. TwoHopTable allows 

a node to make movement-related decisions independently. The following describes the 

major steps of the C
2
AM algorithm.  

 

4.2.1 Maintaining a List of 2-hop Neighbors 

C
2
AM requires every actor to maintain an updated list of its neighbors. To keep the scope 

of the recovery local, actors store information about 1-hop and 2-hop neighbors only. To 

keep the list up to date, an actor will send heartbeat messages periodically to update 

neighborhood information to its reachable actors and to assure them about its proper 
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operation. Each entry in the TwoHopTable contains five parameters {Node_ID, MRI, MP, 

Node Degree, Relative position}, where Node_ID is a unique identifier for an actor at the 

network level. The information stored in TwoHopTable is critical for the successful 

network recovery since it allows a node to know which actor is the most qualified to 

perform the recovery. A node that has passed the qualification test would be considered 

as the most suitable replacement of the failed node. We shall thereafter refer to such an 

actor as APassed. The TwoHopTable would be updated immediately after APassed has 

reached to its new location. In addition, an actor that intends to change its position will 

inform its neighbors beforehand in order to avoid being wrongfully perceived as faulty. 

Also, it would inform its new 1-hop neighbors by broadcasting a HELLO message as 

soon as it arrives at its new location. 

 

4.2.2 Detecting a Failure and Initiating the Recovery Process 

To detect a failure, C
2
AM watches for repeated misses of the heartbeat messages in order 

to avoid overreacting to occasional packet losses over the wireless medium and to make 

sure that all neighbors of the failed node has a consistent assessment about Af. When a 

failure is detected, decision whether to activate recovery depends on the position of the 

failed actor‟s in the network topology.  Execution of C
2
AM will be triggered only if a 

critical node, i.e., cut-vertex, has failed. The TwoHopTable will be used to identify cut-

vertices in the network using distributed algorithms like the one proposed in [37]. This 

type of algorithms generally trade off the need for a network-wide state with the accuracy 

of identifying cut-vertices. It has been shown that the probability of missing a cut-vertex 

is zero while a very high percentage of the picked nodes are really cut-vertices. For 
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example, using 2-hop information, it was shown that the accuracy can reach 90% [27]. 

Since only 1-hop neighbors of a failed node will detect and participate in the recovery 

process, the entire detection and recovery is categorized as a localized process. We shall 

thereafter refer to the failed actor as Af. 

 

4.2.3 Application-Aware Qualification for Movement Test 

The connectivity restoration process in C
2
AM involves only 1-hop neighbors of Af. 

C
2
AM makes sure that only a single node among 1-hop neighbors of Af should be 

selected to substitute Af. Since application level constraints on an actor are a concern for 

C
2
AM, the challenging task is to pick a node that should not create much disturbance at 

the application functionality while replacing Af. To select the most appropriate node to 

replace Af, C
2
AM uses the following criteria in order: 

i. Least MRI Node: In order to minimize the total MRI, a node with least MRI value 

will get preference to move. A minimal total MRI would indicate that the application 

will be disturbed the least by the recovery process. 

ii. Highest MP value: A node with highest MP value would imply that more 1-hop 

neighbors of such a node would have MRI less than l. 

iii. Least Node Degree: C
2
AM prefers to replace Af with a neighbor that has the least 

node degree. Moving such a node would limit the scope of the cascaded motion.  

iv. Closest Proximity to Failed Actor: To minimize the motion overhead, the nearest 

neighbor of Af is favored. 

v. Highest Actor ID: This would be used as a last resort to avoid the situation that could 

come up if two or more neighbors of Af have identical MRI, MP, node degrees and 
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are equidistant to it. Thus, the actor with the highest ID will be picked to break the 

tie.  

 

The actors that are involved in the recovery process, i.e., 1-hop neighbors of Af , do not 

have to coordinate with each other; instead they execute C
2
AM concurrently. The criteria 

mentioned above guarantee that only one actor would pass the qualification test and all 

other nodes will abandon their participation. 

 

4.2.4 Cascaded Relocation & Algorithm Termination 

Before moving to the new location, APassed notifies its 1-hop neighbors. Those neighbors 

that are also siblings of APassed, i.e., 1-hop neighbors of both APassed and Af, will ignore the 

notification. We refer to those siblings thereafter as siblings(APassed, Af). In addition, a 

node that has already moved once before would ignore such notification message when 

received. In other words, only pure children of APassed that have not been moved before 

would participate in the cascaded relocation process. 

 

A pure child that has received the notification would first delete the siblings of Af from its 

TwoHopTable to avoid wrongly considering a sibling of Af as a better node to move and 

later it would perform the node qualification test. Among the pure children of APassed, one 

would pass the qualification test based on exactly the same criteria used for Af and would 

become the new APassed. Before moving to the new location, again the 1-hop neighbors of 

this new APassed at the children level would be notified. This process will continue until 

every child is connected or all nodes move in a cascaded manner. 
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4.3 Application-Aware Recovery: Examples 

Upon the failure of a neighbor, an actor checks its TwoHopTable to find out whether 

there is a better candidate than itself for conducting the recovery. Since all 2-hop 

neighbors know about each other in advance; an actor would not pass the qualification 

test while there is a better alternate available for recovery. 

 

To illustrate how C
2
AM algorithm works, consider the network topology presented in 

Figure 1.2-(a) by assuming the attribute values in Table 4.1. It is obvious from the 

network topology that actor A1 is a cut-vertex and its failure could cause the network to 

partition into three disjoint sub-networks. Figure 1.2-(b) depicts the situation with three 

sub-networks namely, {A3}, {A4, A12, A13, A14, A15} and {A2, A5, A6, A7, A8, A9, A10, A11}. 

In a physical level based network restoration process and by utilizing only 1-hop 

neighbors of A1, nodes A2, A3, A4 and A5 would participate in the recovery process; one of 

them would be selected based on a specific criteria to move to the location of failed node. 

Among children of that node, if any, one would be selected based on the same criteria 

and would follow it in a cascaded fashion. For example, following the approach in [10] 

the actor with the least node degree is picked to replace the faulty node. Applying such a 

criterion to the situation presented in Figure 1.2-(b), actor A3 will move to the location of 

A1 as it is the least node degree actor among all other actors participating in the recovery 

process. Note that, there is not any subsequent cascaded movement since A3 does not 

have children. The final topology is shown in Figure 1.2-(c). 
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However, C
2
AM pursues a different approach and looks first for the node with the least 

MRI among the 1-hop neighbors of the failed node. Note that among the 1-hop neighbors 

of A1 only actor A5 has least MRI which is 1. Thus, A5 qualifies for replacing A1. Since 

actor A6 is the only child of A5, it will move to the location of A5 despite the fact that it 

has MRI of 5. Nodes A7 and A9 are children of A6 and both have same MRI value of 3, 

thus A9 with the higher MP value qualifies to move to the location of A6. Among the 

children of A9, A11 qualifies for moving since it has a MRI value of 2 that is lower than 

that of A8 and A10. Since A11 is a boundary node and has no children, the restoration 

process will terminate. Figure 1.2-(d) depicts the network after successful recovery. It is 

worth noting that if A4 has MRI of zero it would be selected as a replacement of A1. Since 

A13 is the only child of A4, it simply would move to the location of A4. MRI and MP 

values of A12 and A14 are similar; therefore the node degree breaks the tie and A12 replaces 

TABLE 4.1: Attributes of the actors in Figure 1.2-(a) 

Node ID MRI MP Node Degree 

A2 5 1 2 

A3 5 0 1 

A4 3 1 2 

A5 1 0 2 

A6 5 3 2 

A7 3 0 1 

A8 4 1 2 

A9 3 3 3 

A10 3 1 1 

A11 2 1 3 

A12 5 0 1 

A13 5 1 3 

A14 5 0 2 

A15 5 0 1 
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A13. Obviously, C
2
AM is a greedy heuristic and sometimes does not yield a globally 

optimized recovery solution. For example, moving A3 rather than A5 would have resulted 

in smaller total MRI. However, it would have needed a network-wide analysis to assess 

the quality of such a choice. Nonetheless, as discussed in the performance evaluation 

section, the simulation experiments have shown that C
2
AM yields close to optimal 

performance. 

 

4.4 C
2
AM Pseudo Code  

Figure 4.1 shows the pseudo code for C
2
AM. The main procedure is outlined in lines 1-

19. Basically, an actor node “J” will track the failure of its neighbor Af. If node J detects a 

failure, it will further check whether the failed node Af is a cut-vertex (line 2). If so, J will 

check whether it qualifies for moving or there exists a more suitable candidate for 

performing the recovery (line 3). If node J qualifies, it will move to the location of Af 

after sending a movement notification message to its neighbors (line 15-16). The function 

“Notify_Neighbors (Apassed , J’s 2-hop neighbor table)” announces J‟s motion, new 

position and 2-hop neighbor table to all J‟s neighbors. Otherwise, node J checks whether 

it has to perform a cascaded motion (line 7). In case a node has not moved before or is 

not a sibling of Af (line 8-10), it will delete the siblings of Af from its 2-hop neighbors 

table and check whether it qualifies for performing the recovery (line 11-13). Deleting the 

siblings of Af from 2-hop neighbors table is important to avoid confusion as those siblings 

of Af have already been participating in the recovery process. If J qualifies to move 

(Apassed), it will move to the location of Af after notifying all neighbors. A node that has 

performed recovery movement shall conclude by updating its 2-hop neighbor table and 
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1. IF an actor node J detects a failure of its neighbor Af  

2. IF neighbor Af is a cut-vertex node 

3.     Initiate_QualificationTest(J);Apassed  J 

4.      ELSE 

5.     Exit; 

6.      END IF 
7. ELSE IF J receives a notification message from Apassed 

8.   IF Node_J_Moved_Once || Sibling of Af 

9.   Exit; 

10.   ELSE 

11.   DELETE siblings of Af from J’s TwoHopTable; 

12.   Initiate_QualificationTest(J);Apassed  J 

13.   END IF    

14. END IF 

15. Notify_Neighbors(Apassed, J’s TwoHopTable); 

16. Apassed moves to the location of neighbor Af    

17. UPDATE 2-hop neighbors table; 

18. Node_ Apassed _Moved_Once  TRUE; 

19. Exit; 

 

Notify_ Neighbors (J, J’s TwoHopTable)  

20. Send a message to inform about J’s motion, new position and 2-hop neighbors table to all neighbors 

EXCEPT that are J’s 2-hop neighbors 

 

 

 

Figure 4.1: Pseudo code for the C
2
AM algorithm 
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setting a flag that it has already moved and its involvement in the recovery process is 

completed. 

 

The function “Initiate_QualificationTest(J)” (line 3) is used to perform the node 

qualification test. According to this function, node J will not qualify to move if there is an 

available actor k in its 2-hop neighborhood with lower MRI value and J is connected to k 

via Af. However if all 1-hop neighbors of Af have the same MRI value, higher MP value 

will be used to select the best candidate. In case of a tie, a node with least node degree 

will be considered as a better choice to move. Again, if there is more than one actor with 

the same node degree, then the closest one to Af will be selected. The node ID will be 

used as a last resort to break the tie. 

 

4.5 Performance Evaluation of C
2
AM 

In the simulation experiments, C
2
AM is compared to DARA [10], the optimal cascading 

approach in terms of total distance traveled and the optimal cascading in terms of least 

total MRI. Both optimal cascading approaches are centralized and require full and 

updated knowledge of entire network. The former focuses on minimizing the total 

traveled distance, whereas the latter provides the least degree of disturbance at the 

application level. Identification of cut-vertices is done immediately after generating the 

topology and one of the cut-vertex is selected to be faulty at random. The results of the 

individual experiments are averaged over 30 trials. All results are found to stay within 

10% of the sample mean for a 90% confidence interval. 
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Figure 4.2: Measure of disturbance of application with varying actor count (Radio Range = 100m) 

 

 

 

 

Figure 4.3: Level of disturbance to the application under varying actor radio range (with 60 actors) 
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4.5.1 MRI Performance  

In order to assess the effectiveness of C
2
AM in terms of the total MRI, we conducted 

experiments with varying number of actors. The results, shown in Figure 4.3, confirm the 

effectiveness of the C
2
AM in minimizing the level of disturbance inflicted on the 

application as compared to the other application unaware schemes. It seems at the first 

glance that the performance of C
2
AM is significantly less than the MRI-based optimal 

approach. This is mainly due to C
2
AM‟s concern on travel distance. In other words, 

C
2
AM is not only caring for the application. This point will be revisited later in the 

section.  

 

Figure 4.2 also indicates that the total MRI values of C
2
AM get closer to those of the 

optimal approaches as the number of deployed actors increases. This is attributed to the 

fact that increasing the number of available actors would increase the connectivity and 

redundancy in the network. Thus, in the recovery process there would be more neighbors 

of a failed actor with diversified MRI values. As a result, there are higher chances that 

there would be more actors with small MRI values which not only would allow selecting 

a good candidate for replacing the failed node, but also require fewer cascaded 

movements to complete the restoration process. To verify our findings, we have repeated 

the same experiment with varying communication range of actors whereas the number of 

actors was fixed at 60. Increasing the actor radio range means an increase in the network 

connectivity. The results shown in Figure 4.3 indicate that the total MRI value decreases 

as the actor radio range increases, i.e., better network connectivity.  
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Figure 4.4: Total distance traveled with varying number of actors (Radio Range = 100m) 

 

 

 

 

Figure 4.5: Travel distance with varying actor radio range (60 actors) 
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4.5.2 Movement Performance 

In order to compare the movement overhead of C
2
AM to DARA and the two optimal 

approaches, we have captured the total distance traveled with varying number of actors. 

The results shown in Figure 4.4 indicate clearly that C
2
AM performs very close to DARA 

and the distance-based optimal cascading approach. As the network size grows the 

performance of C
2
AM improves which confirms its scalability. Again, such performance 

is attributed to the improvement in network connectivity which limits the scope of 

cascaded motions. Thus, less movement is required for the recovery. The MRI-based 

optimal cascading approach performs significantly worse than C
2
AM. When considering 

Figures 4.2 and 4.4 together, the results reveal that C
2
AM is balancing well between 

keeping the total degree of disturbance at application level as low as possible and 

reducing the total distance traveled during the connectivity restoration. The experiments 

are repeated with a constant number of actors and a varying radio range.  The results in 

Figure 4.5 also showed that C
2
AM performs very close to DARA and distance-based 

optimal cascading approach.  

 

4.5.3 Communication overhead 

We have also recorded the total messages exchanged in the network to compare the 

communication overhead. Table 4.2 provides the statistics with varying number of actors 

with the radio range set to 100m. It can be confirmed from the table that C
2
AM 

introduces significantly less inter-actor communication overhead than the optimal 

approaches. This is expected since the optimal approaches require complete knowledge 

of the network with each actor forced to flood the entire network that in turn produce the 
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message complexity of O(N
2
). In addition, the number of messages generated by C

2
AM 

is slightly higher than DARA due to caring for the actor‟s involvement in tasks. The table 

4.2 also indicates that the message complexity of C
2
AM is linear in the network size.  

 

4.6 Concluding Remarks on C
2
AM 

In this chapter, we discussed a new cross-layer approach (network and application layers) 

to tackle the problem of connectivity repair after a node failure. The proposed C2AM 

approach considers two main objectives: continuous sustenance of network connectivity 

and minimum application level disturbance. C2AM is a localized and distributed 

algorithm and would thus scale well and suit the WSANs. We have validated the 

effectiveness of C2AM via simulation. The experimental results have demonstrated that 

C2AM meets both goals of minimizing the actor travel distance and communication 

overhead and maintaining application-level goals in a localized manner. 

TABLE 4.2: Total # of Messages Sent by C
2
AM with varying # of actors 

# of Actors DARA C
2
AM 

Optimal Cascading 

By MRI By Distance 

20 86.5 87.7 400 400 

40 165.2 170.5 1600 1600 

60 247.2 249.9 3600 3600 

80 326.5 332.6 6400 6400 

100 404.7 409.5 10000 10000 
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CHAPTER 5 

 

CONNECTIVITY RESTORATION WITH 

MINIMAL TOPOLOGY CHANGES  

 

5.1 Introduction  

Given the collaborative actors‟ operation, a strongly connected inter-actor network 

topology would be required at all time. Actors usually coordinate their motion so that 

they stay reachable to each other. However, a failure of an actor may cause the network 

to partition into disjoint blocks and would thus violate such a connectivity requirement. 

The remote setup in which WSANs often serve makes the deployment of additional 

resources to replace failed actors impractical and repositioning of nodes becomes the best 

recovery option ‎[8]. In addition, tolerance of node failure cannot be orchestrated through 

a centralized scheme given the autonomous operation of the network. On the other hand, 

distributed recovery will be very challenging since some nodes will not be able to reach 

other actors. Therefore, contemporary schemes found in the literature require every node 

to maintain partial knowledge of the network state. To avoid the excessive state-update 

overhead and to expedite the connectivity restoration process, prior work rely on 
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maintaining 1 or 2-hop neighbor lists and predetermine some criteria for the node‟s 

involvement in the recovery [10][11][12]. However, 1-hop based schemes often impose 

high node repositioning overhead and the repaired inter-actor topology using 2-hop 

schemes may differ significantly from its pre-failure status.  

 

This chapter provides technical details and performance evaluation of our novel Least-

Disruptive topology Repair (LeDiR) algorithm. The focus of LeDiR is on nodes that are 

critical to the network connectivity, e.g., cut-vertices in a graph. Uncritical nodes can be 

handled at the network layer of the communication protocol stack by performing 

topology maintenance, which may also involve node relocation [8][22]. Tolerance of 

uncritical nodes is usually straightforward since the network stays connected and 

appropriate topology adjustment can be orchestrated among the healthy nodes. The 

failure of critical nodes on the other hand is very challenging since the network often gets 

partitioned into disjoint blocks. In summary, the goal for LeDiR is to handle a critical 

nodes failure and restore connectivity without extending the length of the shortest path 

among nodes compared to the pre-failure topology. The performance of LeDiR is 

validated both analytically and through simulation. The simulation results demonstrate 

that LeDiR outperforms existing schemes in terms of communication and relocation 

overhead. 

 

This chapter is organized as follows. Next section 5.2 highlights the major steps of 

LeDiR algorithm. Section 5.3 provides example scenarios of LeDiR and distributed 

implementation of LeDiR is discussed in section 5.4. Pseudo code of LeDiR is explained 
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in section 5.5. Algorithm analysis is provided under section 5.6. Section 5.7 discusses the 

performance evaluation of LeDiR and, finally, section 5.8 provides concluding remarks 

on LeDiR. 

  

5.2 Major Steps of LeDiR Algorithm 

We first give an overview of LeDiR as a centralized solution and then explain the 

distributed implementation. In the following subsections we highlight the major steps of 

LeDiR algorithm.  

 

5.2.1 Failure Detection 

Actors will periodically send heartbeat messages to their neighbors to ensure they are 

functional and also report changes to the 1-hop neighbors. Missing heartbeat messages 

can be used to detect the failure of actors. Once a failure is detected in the neighborhood, 

1-hop neighbors of failed actor would determine the impact, i.e., whether the failed node 

is critical to the network connectivity. This can be done using the SRT. Basically, a cut-

vertex F has to be on the shortest path between at least two neighbors of F. Consider 

Table 5.1 which lists the entries of the SRT for the network topology in Figure 1.3-(a). 

After the failure of actor A19, which is a cut-vertex, node A20 will check what nodes are 

reachable through A19, which are A8 and A9 in this example. Checking the entries for 

nodes A8 and A9 reveals that A1, A3, A7, and A10 will become consequently unreachable. 

The same is repeated and finally leads node A20 to conclude that only A21 is reachable and 

A19 is indeed a critical node. The SRT can make the same conclusion for a node that is 

not a cut-vertex but serves on the shortest path of all nodes. For example, in a wheel-
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shaped topology, the node at the center is not a cut-vertex, yet it serves on the shortest 

paths among many nodes on the outer ring. The SRT points out the criticality of such a 

node and motives the invocation of the recovery process. 

 

5.2.2 Smallest Block Identification 

LeDiR limits the relocation to nodes in the smallest disjoint block in order to reduce the 

recovery overhead. The smallest block is the one with the least number of nodes and 

would be identified by finding the reachable set of nodes for every 1-hop neighbor of the 

TABLE 5.1: The Path Predecessor Matrix generated by the Floyd-Warhsell algorithm [41] for the 

network topology of Figure 1.3-(a). For each pair of nodes v and w, the path matrix entry P[v,w] 

contains a node k which is the direct predecessor of w on the shortest path to v. 
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failed node and then picking the set with the fewest nodes. Since a critical node will be 

on the shortest path of two nodes in separate blocks, the set of reachable nodes can be 

identified through the use of the SRT after excluding the failed node.  In other words, two 

nodes will be connected only if they are in the same block. For example, let‟s again 

consider the network topology provided in Figure 1.3-(a) and assume node A19 failed. 

When nodes A8, A9 and A20 the 1-hop neighbors of A19 confirm that A19 is indeed a cut-

vertex (critical node), they will be able to identify the disjoint blocks. For A20 the analysis 

of the cut-vertex detection step discussed above will conclude that A20 can reach only A21, 

and thus A20 and A21 constitute a block. Now, A20 would check the column of A19 and find 

out that A8 and A9 are the other direct neighbors of A19. Node A20 will then repeat the 

analysis and identify the other disjoint block(s) and determine the smallest block after A19 

fails. Now A20 will lead the recovery effort if it happens to belong to the smallest block, 

which is the case in this example. Nodes A8 and A9 will perform the same analysis and 

conclude that they are not part of the smallest block.    

 

5.2.3 Replacing Faulty Node 

If node J is the neighbor of the failed node that belongs to the smallest block, J is 

considered the best candidate to replace the faulty node. Since node J is considered the 

gateway node of the block to the failed critical node (and the rest of the network), we 

refer to it as “parent”. A node is “child” if 2-hops away from the failed node, “grand-

child” if 3-hops away from the failed node and so on. The reason for selecting J to 

replace the faulty node is that moving a node and its children from the smallest block 

would most probably yield the least total travel distance if the entire block has to move. 
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As will be shown later, the overhead and convergence time of LeDiR is linear in the 

number of nodes, and thus engaging only the members of the smallest block will expedite 

the recovery and reduce the overhead. In case more than one actor fit the characteristics 

of a best candidate, the closest actor to the faulty node would be picked as a best 

candidate. Any further ties will be resolved by selecting the actor with the least node 

degree. Finally, least node ID would be used to resolve the tie.  

 

5.2.4 Children Movement 

When node J moves to replace the faulty node, possibly some of its children will lose 

direct links to it. In general we do not want this to happen since some data paths may be 

extended. Actually, in Figure 1.3-(d) the path between A2 and A3 got extended because A2 

lost its link to A12 after A12 had moved.  LeDiR opts to avoid that by maintaining the 

existing links. Thus, if a child receives a message that the parent is moving then the child 

would notify its neighbors and travels directly toward the new location of parent until it 

reconnects with the parent again. If a child receives notifications from multiple parents it 

would find a location from where it can maintain connectivity to all its parent nodes by 

applying the procedure used in RIM [11]. Briefly, suppose a child has two parents A and 

B that moves, RIM relocates the child to the closest point that lies within the 

communication ranges of A and B.  Thus, the new position of child is the closest 

intersection point of the two circles of radius r (which is the actor‟s communication 

range) and centered at A and B respectively. The idea also applies for more than 2 parent 

nodes since there must be an intersection point of 2 circles which lies within the 

communication ranges of all the moved nodes. It has been proven in [11] that this 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 5.1: Illustrating the movement of block Bs in LeDiR to restore the network connectivity 

and to keep intra-block paths unchanged; (a) that entire Bs moved r units (b) the collective effect 

of Bs participation in the recovery is stretching Bs towards F, and (c) Bs is both stretched and 

moved with links within the Bs stretched in order to minimize the total travel distance. r is the 

actor’s communication range. 
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relocation scheme sustains existing links in the connected component (block).  

 

5.3 Example Scenarios of LeDiR 

A simple example scenario is a 1-dimentional smallest block (Bs) where each node is r 

units away from each other, as presented in Figure 5.1-(a). Simply, each child would 

move to the location of its parent and thus the entire Bs would move r units towards node 

F. This would keep intra-block connectivity as is and would not extend any path within 

the Bs. However, in reality nodes within the Bs can be closer than r units to each other. In 

this scenario, movement of Bs would be performed in a way that intra-block paths remain 

unchanged or get shorter and total travel distance is minimized as depicted in Figure 5.1-

(b). Node A moves to the location of F and children B and C get disconnected. To regain 

the connectivity with A, nodes B and C move towards the new location of A until 

becoming r units away. As a side effect, connectivity within the Bs gets stronger and 

creates a new link between B and C. This makes the intra-block shortest path between B 

and C even shorter; however, pre-movement intra-block paths remain unchanged. In 

addition, to avoid unnecessary movement and minimize the total travel distance, node D 

does not move as it is still connected to its parent C. Also, it is worth to note that the 

shortest path from D to B has become 1-hop shorter after recovery. Figure 5.1-(c) shows 

the situation where the entire Bs moves to preserve the intra-block paths with links 

between nodes stretched in order to minimize the total travel distance. As explained 

earlier, nodes B and C move toward A until r units away. Since node D has two parent 

that move and break their links to D, node D relocates to the closest point that lay within 

the communication ranges of B and C. 



60 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 5.2: An example illustrating how LeDiR restores connectivity after the failure of node A10. 
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Figure 5.2 shows an example for how LeDiR restores connectivity after the failure of A10. 

Obviously, node A10 is a cut-vertex and A14 becomes the 1-hop neighbor that belongs to 

the smallest block (Figure 5.2-(a)-(c)).  In Figure 5.2-(d), node A14 notifies its neighbors 

and moves to the position of A10 to restore connectivity. Disconnected children, nodes A15 

and A16, follow through to maintain the communication link with A14 (Figure 5.2-(e)). 

Note that the objective of the children movement is to avoid any changes to the current 

routing table. Nodes A15 and A16 would notify their children, A17 and A18, before they 

move. Since A18 had communication links with nodes A15, A16 and A17, it moves to a new 

location where it can stay directly connected to these nodes (Figure 5.2-(f)). The links 

between A17 and nodes A16 and A18 are not affected by the relocation process and thus A17 

would not need to reposition. Figure 5.2-(f) shows the repaired network topology where 

the paths from nodes A14, A15, A16, A17, and A18 to the other nodes in the network are not 

extended. 

 

5.4 Distributed LeDiR Implementation 

The discussion above has assumed that nodes are aware of the network topology and can 

assess the impact of the failure and uniquely identify which node should replace the 

failed actor. If every node in the network is communicating with all other nodes, it would 

be possible to fully populate the routing table and for the individual nodes to reach 

consistent decisions without centralized coordination. However, in many setups, an actor 

may have only partial knowledge about the network with routes to some nodes missing in 

its SRT. This can happen due to changes in the topology caused by node mobility or due 

to the fact that a subset of actors do not need to interact and simply a route has not been 
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discovered yet. In general, a partially populated SRT can raise the following three issues 

for a distributed implementation of LeDiR:(i) a potential best candidate actor does not 

realize that its failed neighbor is a critical node, (ii) every neighbor of the faulty node 

assumes that it is not part of the smallest block leaving the network topology unrepaired, 

(iii) more than one neighbor in different blocks step forward as best candidate. In the 

balance of this section we discuss how LeDiR addresses these issues. 

 

As we mention in Chapter 3, Confidence Level (CL) is the percentage of entries, i.e. 

routes between actor pair (i, j), that each node has acquired over time. Since every node 

may potentially have different CL from others, upon the detection of a node failure the 

neighboring nodes may have an inconsistent assessment of the impact of the node loss on 

the network and on which actor is the best candidate for leading the recovery.  For 

example, in Figure 1.3-(a) if node A11 was never on a route that has nodes A14, A15, A16, 

A17 and A18 as sources or destinations, node A11 will not know that A10 is a cut-vertex. We 

argue nonetheless that this is rare in practice since the mobility pattern among actors is 

not typically high given their involvement in actuation activities. In addition, the 

operation in WSAN is collaborative in nature and an actor usually communicates with 

many others and thus the routing table would not be sparse. Specially, the neighbors of a 

cut-vertex would have more populated SRT compare to other nodes in the network as 

they would be passing packets among the actors in different blocks.   

 

Furthermore, LeDiR may employ probabilistic cut-vertex detection schemes that use 2-

hop information in order to boost the fidelity of the assessment [12][37]. It has been 
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shown that these probabilistic schemes can achieve accurate detection of cut-vertices up 

to 90%, i.e., no cut-vertex will be classified otherwise, and only 10% of the time a node is 

claimed to be a cut-vertex while it is not [12]. It is important to note that if LeDiR is 

applied while the failed node F turned out not to be a cut-vertex, e.g. due to the 

inaccuracy of the probabilistic detection scheme, the shortest path lengths between nodes 

will not change since LeDiR sustains the links between nodes in the same block and the 

network will be in fact connected, i.e., one block. Determining the block size is always 

based on the entries of the SRT that neighbors of F have, regardless whether F is a cut-

vertex or not. Now, if the analysis to determine the block size is based on inaccurate 

assertion about whether F is a cut-vertex, one of the neighbors F still becomes the best 

candidate and performs LeDiR successfully, i.e., proceeds to replace the faulty node. 

Child would follow best candidate to maintain connectivity and so on. 

 

The second and third issues above are related to determining the best candidate, i.e., the 

neighbor of the failed node that belongs to the smallest block. If global topological 

information is available, i.e., the node has a fully populated SRT, determining the 

smallest block is straightforward as we explained earlier. However, if a node has a low 

CL it may not be able to accurately determine the smallest block. For example, if node 

A14 does not have sufficient entries in its SRT it would not know that it belongs to the 

smallest block and would not thus initiate the recovery process by moving to replace A10. 

Since the neighbors of A10 cannot reach each other, a partially populated SRT may lead to 

a deadlock with none of the neighbors of A10 responding to the failure and leaving the 

network disconnected. To handle this issue, LeDiR imposes a time-out after which the 
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neighbor(s) belonging to the second largest block will move. This time multiple 

neighbors may be potentially moving towards A10. To avoid having more than one actor 

replacing A10, LeDiR requires these nodes to broadcast messages with their ID so that 

they pause as soon as reaching other neighbors of A10 that happen to be in a different 

block. The pause time would allow these neighbors to negotiate and pick the best 

candidate to continue on to the position of A10. We study the effect of the CL on the 

performance through simulation in section 5.7.  

 

5.5 LeDiR Pseudo Code  

Figure 5.3 shows the pseudo code for LeDiR. When an actor J detects the failure of a 

neighbor F that is considered as a cut-vertex (line 1-2); J checks its eligibility for 

replacing F in line 3 by consulting the SRT to find out whether it belongs to the smallest 

block. If J passes the test, it would move to the location of F after notifying all its 

children (Lines 4-10). Otherwise, node J checks whether it is to perform a movement to 

sustain current communication links (line 11), and if so it identifies a new position and 

notifies its children before moving (lines 15-20). Nodes only move once (line 12-14). The 

procedure Compute_newPosition(J) identifies where a node k (a child of J) would need to 

reposition based on the other notifications that it has received from nodes other than J. A 

new position for a node k would be computed only if k loses its direct communication 

link to one or multiple parent neighbors as we already mentioned in subsection 4.2.4 

under children movement. 



 

65 

 

// Every node builds its shortest path routing table (SRT) based  

// on the route discovery activities that it initiates or serve in, e.g. 

// while executing a distributed routing protocol.  

 

LeDiR(J) 

1 IF node J detects a failure of its neighbor F  

2      IF neighbor F is a critical node 

3         IF IsBestCandidate(J) 

4 Notify_Children(J); 

5 J moves to the Position of neighbor F; 

6 Moved_Once  TRUE; 

7 Broadcast(Msg(„RECOVERED‟)); 

8 Exit; 

9          END IF 

10     END IF 

11 ELSE IF J receives (a) notification message(s) from F  

12     IF Moved_Once || Received Msg(„RECOVERED‟) 

13  Exit;  

14     END IF 

15     NewPosition  Compute_newPosition(J);  

16     IF NewPosition != CurrentPosition(J)  

17          Notify_Children(J); 

18          J moves to NewPosition;  

19          Moved_Once  TRUE; 

20      END IF 

21 END IF 

 

IsBestCandidate (J) 

// Check whether J is the best candidate for tolerating the failure 

22 NeighborList[] GetNeighbors (F) by accessing column F in SRT; 

23 SmallestBlockSize  Number of nodes in the network; 

24 BestCandidate  J; 

25 FOR each node i in the NeighborList[] 

           //Use the SRT after excluding the failed node to find the set of 

           //reachable nodes;  

26       Number of reachable nodes  0; 

27       FOR each node k in SRT excluding i and F 

28 Retrieve shortest path from i to k by using SRT; 

29 IF the retrieved shortest path does not include node F  

30      No. of reachable nodes  No. of reachable nodes + 1; 

31 END IF  

32       END FOR 

33       IF Number of reachable nodes < SmallestBlockSize 

34 SmallestBlockSize  Number of reachable nodes;  

35 BestCandidate  i; 

36       END IF 

37 END FOR 

38 IF BestCandidate == J  

39     Return TRUE; 

40 ELSE  

41     Return FALSE; 

42 END IF 

   

Figure 5.3: Pseudo code for the LeDiR algorithm 
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5.6 Algorithm Analysis 

In this section, we prove the convergence and analyze the performance of the LeDiR 

algorithm. We introduce the following theorems: 

 

Theorem 1: “LeDiR guarantees a localized network recovery without extending the 

shortest data path between any pairs of nodes (i, j)”.  

 

Proof: We assume that the network is partitioned into m blocks because of a faulty node 

F which happens to be a critical node, e.g. a cut-vertex. The scenario is illustrated in 

Figure 5.4-(a), where Bs is the smallest block. The node ID is represented by N(b,i) where 

“b” is block number and “i” is the node number within the block. LeDiR involves only 1-

hop neighbors of F, denoted hereafter as Neighbors(F), in the process of block selection 

and moves only the node in Neighbors(F) that belongs to the Bs. Thus, the scope of the 

recovery is localized and affects only Bs.  

 

To prove that the shortest path between any arbitrary nodes is not extended, it is 

sufficient to show that the inter-block paths are not extended and the intra-block paths are 

not longer after the recovery than before the failure takes place. Since the blocks used to 

reach each other through F, the node F belongs to the shortest path between every pair of 

nodes N(p,i) and N(q,j) where pq. Thus, replacing F with a healthy node will not extend 

any of these paths if the intra-block part of the path is not extended. In other word, if the 

paths between N(p,i) and N(p,1), and between N(q,j) N(q,1) are not extended, LeDiR will 

sure achieve its goal for inter-block paths. Since other than Bs none of the blocks will 
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(a) 

 

 

(b) 

 

 

Figure 5.4: LeDiR restores the network connectivity after the failure of a cut-vertex (critical node); 

(a) shows a WSAN before a cut-vertex fails and (b) shows the WSAN topology after applying LeDiR. 
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experience any changes in their intra-block topologies, the path between any pair of 

nodes N(k,i) and N(k,j) will stay intact after the recovery for all ks.  Hence, to prove the 

theorem it will be sufficient to prove that the shortest paths between nodes in the moved 

block, Bs, are not extended. 

 

When the node N(s,1) moves to replace F, the links to Neighbors(N(s,1)) are maintained. 

If a neighbor N(s,t) of N(s,1) was also a neighbor of F,  the link between N(s,t) and N(s,1) 

is not affected. Otherwise N(s,t) travels towards F to stay directly connected to N(s,1). 

Cascaded relocation also ensures that every node stays connected to all its neighbors. To 

maintain pre-failure connectivity, a node which needs to move selects a new location that 

keeps it reachable to all its parents after the recovery. Since the motion of nodes in the Bs 

is inward towards F, it has the effect of shrinking the Bs towards node F and the pre-

failure links of a node to its siblings are maintained. This is proven by Lemmas 1 and 2 in 

[11]. 

 

The analysis above shows that LeDiR not only keeps the intra-block shortest path 

between any pair of nodes in the Bs but also may enhance the shortest path between 

blocks. Since F is no longer on paths between any pair of nodes N(p,i) and N(s,j),  some 

of these paths are shorter. The most intuitive example is the path between any node N(p,i) 

and N(s,1), which has replaced F. This proves that LeDiR achieves the objective to 

restore connectivity without extending the shortest data path between any pair of nodes in 

the network.  □ 
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Figure 5.5: The worst case scenario topology where N = 7 and failure of A4 has partitioned the 

network into two (N-1)/2 nodes blocks.  LeDiR would involve maximum (N-1)/2 actors in the 

recovery process either A3 or A5 selected to replace the faulty node followed by a series of inter-block 

node relocation. 

A1 A3 A4 A5 A6 A7A2
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Theorem 2: “The maximum number of nodes involved in the recovery process is O(N), 

where N is the number of actors in WSAN”.  

 

Proof: Consider the worst case scenario where 1-dimentional network is split into two 

equal blocks (sub-networks) and each block consists of (N-1)/2 nodes, as shown in Figure 

5.5. LeDiR involves only one of the two blocks in the recovery process, simply by 

moving only one block towards the other. Assuming that the network is sparse and nodes 

are r units away from each others, where r is the node‟s communication range, every 

node in the block would move and participate in the recovery process. Thus, the 

maximum number of nodes involve in the recovery process (N-1)/2 which is O(N). □ 

 

Theorem 3: “LeDiR strives to minimize the total travel distance and guarantees to 

terminate in O(N) iterations, where N is the number of actors in WSAN”. 

 

Proof: Theorem 1 proves that LeDiR selects the smallest block for recovery which is to 

minimize the total travel distance by moving the smallest number of nodes. Theorem 2 

proves that in the worst case scenario O(N) nodes are involved in the recovery. During 

the entire recovery process a node can move only once which means that LeDiR 

guarantees to terminate in O(N) iterations. □ 

 

Theorem 4: “The message complexity of LeDiR is O(N) where N is the number of actors 

in WSAN”.  
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Proof: LeDiR depends on the route discovery protocol to maintain the routing table on 

each node, thus no special messaging is required to know the neighbors or network 

topology. If a node got involved in the recovery process and decided to move, it 

broadcasts one message to its children to notify them about its movement.  Another 

message is broadcast to interact with the neighbors once a node has reached to the new 

position. In other words, every node participating in the recovery process would 

broadcast only two messages. In the worst case scenario only O(N) nodes would 

participate in the recovery process as proven in Theorem 3 above. Thus, the total number 

of messages sent is 2*(N) which is equal to O(N). □ 

 

Theorem 5: “The maximum distance a node travels in LeDiR is r where r is the actor 

radio range”.  

 

Proof: In the worst case (Figure 5.6), LeDiR can select a 1-hop neighbor to replace the 

faulty node that is at most r units away from it. When a node moves to replace the faulty 

node, possibly some of its children will lose direct links to it. If a child receives a 

message that the parent is moving then the child would notify its neighbors and travel a 

maximum of r units to restore its link to the parent. If a child receives notifications from 

multiple parents it would find a location from where it can maintain connectivity to all its 

parent nodes. In this case, the new location definitely is less than r, as proven in [11].  

Thus the maximum distance a node travels in LeDiR is r. □ 
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Figure 5.6: Assuming the worst case scenario presented in Figure 5.5, LeDiR selected A3 to replace 

the faulty node A4 by traveling distance r.  Once A3 moved to the new position, A2 will move behind it 

to maintain direct connectivity. Later, A1 will do the same. Since the network is 1-diamentional and 

nodes are located r units away from each other, the maximum distance travel by a node is r. 
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Theorem 6: “The maximum convergence time of LeDiR algorithm to restore inter-actor 

connectivity is O(N) where where N is the number of actors in WSAN”. 

 

Proof: Let‟s assume that no other failure occurs during the recovery process and s is the 

maximum time required for a node to find whether it belongs to the smallest block. The 

maximum time for a neighbor “A” of the failed node “F” to find out the block that it 

belongs to is O(N.d). Basically, a node will have to check the column for “F” in the SRT 

to identify all the other “d-1” neighbors of “F”. Node “A” then eliminates these “d-1” 

actors and all nodes that are reachable through them from its row in SRT. This step is 

applied at most N-1 times in a network of N actors, and node “A” is a leaf node in the 

network. To determine whether its block is the smallest, node “A” will repeat this process 

at most “d-1” times for the other neighbors of “F”. Thus, the maximum time s for a node 

to identify the smallest block is O(N.d
2
). 

 

Theorem 2 proves that the maximum number of nodes involved in the recovery process is 

O(N). In addition, Theorem 5 proves that the maximum distance a node travels in the 

recovery process is r. Suppose t is the time to travel distance r. Assuming the worst case 

scenario where the  node movement is sequential, the total time to restore network 

connectivity would be (N) * t. Thus, the maximum convergence time of LeDiR to restore 

inter-actor connectivity is s + (N) * t which is O(N[d
2
+t]). For a uniform actor 

distribution, the value of d depends only on r [40]. Thus, both d and t can be considered 

constant and the inter-actor connectivity would be restored in O(N). □ 
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5.7 Performance Evaluation of LeDiR 

As we mentioned earlier that LeDiR strives to restore the network connectivity while 

minimizing the recovery overheads and maintaining the shortest path lengths at their pre-

failure value. We group the results into two sets: (1) overhead related metrics and (2) path 

length validation metrics. We compare the performance of LeDiR to RIM [11] and 

DARA [10], which are the most effective published solutions for the tolerance of a single 

node failure in WSAN. 

 

The first set compares LeDiR, which runs in a distributed manner, to a centralized 

version that provides the least traveled distance. We also compare LeDiR to RIM in 

terms of the recovery overhead. LeDiR selects the smallest partition and tries to maintain 

the existing communication links between nodes within the block that will perform the 

recovery. The movement technique and operation is closer to RIM; in other words, RIM 

can achieve the same objective while DARA cannot guarantee it. Therefore, in the first 

set we compare LeDiR with RIM and not DARA. 

 

In addition to the centralized version of LeDiR and RIM, the second set of simulation 

experiments compares LeDiR to DARA. The reason is that both RIM and DARA are 

designed particularly to restore the network connectivity. However, RIM and DARA do 

not care whether a pre-failure shortest path gets extended or not. Therefore, the path 

length validation metrics would assess how frequent the shortest paths are affected by 

contemporary recovery schemes and assess the contribution of LeDiR to sustaining the 

pre-failure path lengths.  
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(a) 

 

 

(b) 

 

Figure 5.7: (a) Effect of the network size on the total distance traveled by actor nodes under RIM 

and LeDiR where CL is varying (with r=100);  (b) The impact of an increased actor’s 

communication range on the relocation overhead for a network of 100 actor nodes. 
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5.7.1 Overhead Related Metrics 

Figure 5.7 shows the distance that actor nodes collectively travel during the recovery 

under varying r and N, respectively. Figure 5.7-(a) shows that LeDiR scales well with 

dense topologies and outperforms RIM significantly. Although in sparse topologies 

LeDiR does not appear to have advantage over RIM, RIM does not prevent the paths 

from being extended, as shown later in this section. More specifically, in networks with 

low degree of connectivity most nodes have few neighbors and RIM often yields a 

topology that has some longer paths between pairs of nodes compared to the pre-failure 

topology. When the node count increases, LeDiR demonstrates distinct performance and 

dominates RIM despite the path length constraint.  Figure 5.7-(b) captures the impact of 

changing r for a network of 100 nodes. Obviously, LeDiR performs very well in highly 

connected networks and matches the performance of RIM for low ranges, yet meeting the 

inter-node path length goal.  

 

As we mentioned earlier, the decrease in the CL level means fewer entries in the actor‟s 

SRT and less information for actor to make the right assessment of the scope of the 

failure and define the most appropriate recovery plan. This leads to an increase in the 

likelihood of wrong decision making and results in more travel overhead. However, 

Figure 5.7 shows LeDiR stays robust and yields close to optimal results when CL is 70%. 

Even under very low CL scenarios, e.g. 30%, the performance of LeDiR is not far from 

the centralized version. 
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(a) 

 

 

(b) 

 

Figure 5.8: Number of actors that moved during the recovery while varying (a) the communication 

range (with N = 100), and (b) the network size (with r = 100). 
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While simulating LeDiR, initially we assume that all the nodes are deployed together and 

thus have almost same confidence level (CL). We have further tested the performance of 

LeDiR with heterogeneous CL, i.e. some nodes with 30%, some with 50%, some with 

70%. This mimics the case when nodes are deployed in batches and the case when the 

traffic density is different throughout the network. In Figure 5.7-(a) and (b), the curve for 

LeDiR with Random CL reflected the performance with heterogeneous CL values and the 

results are very close to those of a centralized implementation of  LeDiR. 

 

Figure 5.8 indicates clearly that LeDiR outperforms RIM by moving fewer nodes during 

the recovery, especially for dense and highly connected topologies. Unlike RIM, LeDiR 

try to relocate nodes that belong to the smallest block in order to avoid triggering large 

scale movement of child actors. In addition, networks with high node density or large 

radio range are highly connected; thus cut-vertices usually exist close to the network 

periphery. Determining the smallest block would then limit the scope of the recovery and 

make LeDiR more advantageous.  

 

With respect to the number of messages, LeDiR introduces significantly less messaging 

overhead in comparison to the centralized version and RIM as shown in Tables 5.2 and 

5.3. Actually, in the centralized version, each node must be aware of the complete 

network topology.  Thus, the messaging overhead grows dramatically as the nodes count 

increases. On the other hand, RIM requires maintaining 1-hop neighbor information. 

Conversely, LeDiR leverages the available route discovery process and does not impose 

pre-failure messaging overhead. The only communication cost incurred during the 
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recovery is when a node informs its children about its movement or broadcasts the 

successful relocation.  

 

 

TABLE 5.3:  # of Messages Sent by LeDiR with varying actor radio range 

Radio 

Range RIM 

LeDiR 

Centralized 

Distributed 

70% CL 50% CL 30% CL Rand. CL 

25 112 10010.9 11 11 13 12 

50 113 10009.4 14 14 9 16 

75 121 10010.7 21 15 24 17 

100 163 10017.3 17 23 26 22 

125 143 10013.4 25 25 23 26 

150 351 10016.2 71 29 87 33 

200 1072 10021.1 78 56 98 62 

 

TABLE 5.2: # of Messages Sent by LeDiR with varying # of actors 

# of Actors RIM 

LeDiR 

Centralized 

Distributed 

70% CL 50% CL 30% CL Rand. CL 

20 30 406 6 6 9 7 

40 56 1608 9 10 14 12 

60 85 3613 13 15 17 14 

80 115 6406 11 19 25 17 

100 152 10017 17 20 30 23 

 

 

 

 

 Table 1:  # of Messages Sent with varying actor radio range 

Radio 

Range 
 RIM 

LeDiR 

Centralized 
Distributed 

70% 

CL 

50% 

CL 

30% 

CL 

Rand.       

CL 

25 112 10010.9 11 11 13 12 

50 113 10009.4 14 14 9 16 

75 121 10010.7 21 15 24 17 

100 163 10017.3 17 23 26 22 

125 143 10013.4 25 25 23 26 

150 351 10016.2 71 29 87 33 

200 1072 10021.1 78 56 98 62 
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(a) 

 

 

(b) 

 

Figure 5.9: The number of extended paths per topology [average over 30 runs] after performing the 

recovery while varying (a) the communication range (with N=100), and (b) the network size (with 

r=100). 
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5.7.2 Path Length Validation Metrics 

Figure 5.9 validates that LeDiR does not extend the shortest path between any pair of 

nodes. We compare LeDiR to RIM and DARA. As expected, LeDiR achieves its design 

objective and does not extend any shortest path unlike RIM and DARA. RIM engages all 

neighbors of the failed node and triggers subsequent cascaded relocation. This can be 

tolerated in sparse topologies. However in highly connected networks, i.e. large N or r 

values, many nodes are involved in the recovery process as indicated by Figure 5.8. As a 

result the scope of node movement grows dramatically and the number of extended paths 

increases as shown in Figure 5.9. 

 

On the other hand DARA performs very close to LeDiR in highly connected topologies. 

In sparse networks DARA does not do well with significant number of extended paths. 

However, after a certain point the number of extended paths in the network started to 

decline. In Figure 5.9-(a) this started to happen when the number of actors reaches 80 and 

in Figure 5.9-(b) when the actor‟s radio range exceeds 75 meters. The reason is that in 

highly connected topologies, cut-vertices are found only at or near the network periphery. 

This particularly is very advantageous for DARA since the network would be partitioned 

into a very large block and few small blocks. In such a case, DARA would select the best 

candidate node, i.e., that with least node degree, from a small block since the large block 

would be highly connected.  

 

DARA performs significantly worse than LeDiR in sparse topologies.  This is attributed 

to the fact that DARA selects the neighbor with the least degree to replace the faulty 
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(a) 

 

 

(b) 

 

Figure 5.10: Percentage of shortest paths that are NOT extended per topology during the network 

recovery [average over 30 runs] while varying (a) the communication range (with N=100), and (b) 

the network size (with r=100). 
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actor. DARA does not care whether the selected node belongs to the smallest block. As a 

result, a node from a significantly large block may move to replace the faulty node. This 

cause many cascaded movements that extend many of the shortest paths between nodes.  

The graphs in Figure 5.10-(a) and (b) show the percentage of total number of shortest 

paths in a topology that do not get extended.  Clearly, for LeDiR, the curve stays at 

100%. DARA improves when adding more nodes or increasing the radio range since the 

network connectivity grows. However, RIM performs very close to LeDiR with sparse 

network and pretty poor with densely populated topologies, as also noted in Figure 5.9. 

 

Figure 5.11 illustrates the difference between LeDiR and the baseline approaches when 

the node density around the failed node is low. To restore connectivity after the failure of 

actor A14, LeDiR would move actor A17 from the smallest block. RIM would stretch the 

links from both disjoint blocks and move A11 and A17 toward A14, to reconnect the 

network. The cascaded relocation for either LeDiR or RIM would not increase any 

shortest path. However, when applying DARA, actor A11 will move to replace A14. 

Actors A12, A2 and A13 will move during the cascaded relocation. Thus, as a result many 

shortest paths got increased, e.g. the path from A3 to A17, causing DARA to perform 

poorly compared to LeDiR or RIM.  

  

Another very important question is whether increasing the size of the network has any 

effect on the level of path growth in the repaired topology. For example, if we could run 

DARA for a network of 200 actors, would that lengthens some paths by 3 hops or more? 

In our simulations experiments, we have observed that the extension in the path length is 
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(a) 

 

(b) 

 

(c) 

 

            (d) 

Figure 5.11: (a) WSAN with a sparse 1-connected topology and a faulty node. (b) Topology 

recovered by using RIM (c) topology recovered by using DARA and (d) topology recovered by 

using LeDiR . 
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independent of the number of nodes in the network and is entirely dependent on which 

node was selected to replace the faulty actor. For example, if node F fails and A, B and C 

are the 1-hop neighbors. One of them should replace F to re-establish the network 

connectivity. Now suppose C is also a leaf node, thus moving C to replace F would not 

increase any shortest path length and DARA would act like LeDiR no matter what the 

network size is. 

 

Basically in DARA, the length of the shortest path may grow because a parent moves to 

replace a faulty node and a child node is inserted in the path to bridge the gap that was 

created due to the parent departure. In addition, the cascaded nature of movement in 

DARA and RIM also plays a role since it may get a node to depart one shortest path and 

join another during the recovery operation. Thus, it is obvious that more paths get 

extended when the network grows. However, the increase in terms of number of hopes 

would remain low, i.e., 1 or 2 in many cases. The increase in path length boosts the 

potential of packet loss and data delivery delay, and negatively impacts the application.  

LeDiR strives to avoid that. 

 

5.7.3 General Comments 

We would like to make few additional notes about the performance and applicability of 

LeDiR. First, LeDiR is designed to recover from a single node failure. Simultaneous node 

failure may cause conflicting conditions for LeDiR to converge successfully. As 

mentioned earlier, the probability for multiple nodes to fail at the same time is very small 

and would not be a concern for LeDiR. Second, LeDiR tends to shrink the smallest block 
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inward towards the failed node, it may negatively affect the node coverage. In general, 

the impact on coverage would depend on the relationship between the radio and sensing 

ranges. One would argue that that unless the coverage range is significantly larger than 

the radio range, the loss of a node will have more dominant impact on the coverage than 

the connectivity restoration process. The focus of the LeDiR approach is on connectivity 

and does not factor in the impact on coverage. We plan to consider a joint connectivity 

and coverage recovery metric in the future. 

 

5.8 Concluding Remarks on LeDiR 

This chapter discusses an important problem in mission critical WSANs; that is re-

establishing network connectivity after node failure without extending the length of data 

paths. We have proposed a new distributed Least-Disruptive topology Repair (LeDiR) 

algorithm that restores connectivity by careful repositioning of nodes. LeDiR relies only 

on the local view of the network and does not impose pre-failure overhead. LeDiR can 

recover from a single node failure at a time. Generally, simultaneous node failures are 

very improbable unless a part of the deployment area becomes subject to a major 

hazardous event, e.g., hit by a bomb. The performance of LeDiR has been validated 

through rigorous analysis and extensive simulation experiments. The experiments have 

also compared LeDiR to a centralized version and to contemporary solutions in the 

literature. The results have demonstrated that LeDiR is almost insensitive to the variation 

in the communication range. LeDiR also works very well in dense networks and yields 

close to optimal performance even when nodes are partially aware of the network 

topology. 
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CHAPTER 6 

 

RESTORING CONNECTIVITY WITH 

MINIMAL NODE MOVEMENT  

 

6.1 Introduction  

Most of recovery schemes which required just 1-hop neighbor information are not 

efficient since they often involve many actors and require long travel distances. This 

chapter discusses LeMoToR which actually is an extension of LeDiR. Like LeDiR, 

LeMoToR utilizes existing path discovery activities to get and maintain topology related 

information and imposes no additional pre-failure communication overhead. In LeDiR, 

the routing cost is not counted towards communication overhead of the proposed 

algorithm since data has to be routed anyway regardless the proposed algorithm is 

applied or not. This is valid for LeMoToR as well. Like LeDiR, LeMoToR relies on the 

local view of a node about the network to orchestrate an autonomous restoration of the 

strong connectivity. On the other hand, LeMoToR does not impose the constraint to 

sustain the path length between any pair (i, j) of node at pre-failure status. The objectives 
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are to minimize the node relocation, total travel distance and communication overhead. 

Like LeDiR, LeMoToR opts to localize the recovery process and operates in a distributed 

manner. When a node fails, its neighbors will individually consult their possibly-

incomplete routing table to decide on the appropriate course of action and define their 

role in the recovery if any. If the failed node is a cut-vertex,  i.e., a node that causes the 

network to partition into disjoint blocks, the neighbor node that belongs to the smallest 

block reacts. However, the main difference is that unlike LeDiR, LeMoToR is applies 

recursively to sustain the intra-smallest-block connectivity. When a node moves, its 

neighbors repeat the LeMoToR connectivity restoration process. In brief, the goal of 

LeMoToR is to reconnect the disjointed network while keeping the node movement as 

minimum as possible and involving the least number of actor nodes in the recovery 

process.  

 

In the subsequent section, we give an overview of LeMoToR as a centralized solution. 

Section 6.3 provides a detail example on recovery with minimal node movement. 

Distributed implementation of LeMoToR is explained in section 6.4 and section 6.5 

explains the pseudo code. Section 6.6 provides discussion on performance evaluation of 

LeMoToR. Concluding remarks on LeMoToR are presented in section 6.7. 

 

6.2 LeMoToR – Main Steps 

The following subsections highlight the major steps in LeMoToR. 
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6.2.1 Failure Detection 

To detect a node failure in the neighborhood, an exchange of heartbeat messages is 

assumed in the network. After n missing heartbeats, a node F would be assumed faulty. If 

the failed node F is a cut-vertex, network recovery measures would be triggered on the 1-

hop neighbors of F. Similar to LeDiR, cut-vertex (critical node) detection is done by 

using the SRT.  

 

6.2.2 Smallest Block Identification  

As mentioned earlier, after a cut-vertex (critical node) failure the 1-connected network G 

is split into more than one connected component, i.e., sub-network sub(G). Each sub(G) 

consists of few nodes of G that are 1-connected to each other within the sub(G). 

Basically, each sub(G) is a separate “block” that was connected to the other blocks in G 

via faulty cut-vertex.  LeMoToR attempts to find a block among the disjoint blocks that 

consists of the least number of nodes, referred to hereafter as the “smallest block”. 

Actually, LeMoToR aims to confine the node movement within the smallest block to 

minimize the node movement. To identify the smallest block, every 1-hop neighbor of 

faulty node would identify the reachable set of nodes for itself and every other 1-hop 

neighbor of the failed node by using SRT. The block with the fewest nodes is identified 

as a smallest block. 

 

6.2.3 Replacing the Faulty Node  

To replace the faulty node F, a neighbor node J is selected from the smallest block. The 

reason is that LeMoToR strives to minimize the number of node movements during the 
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network recovery. Since LeMoToR is recursive in nature, moving a node and its children 

from the smallest block would most probably involve the fewest actor nodes in the 

recovery. In case more than one actor with such characteristics exists, the closest actor to 

the faulty node would be picked. Any furthers ties will be resolved by selecting the actor 

with the least ID. 

 

6.2.4 Children Movement  

When node J moves to replace the faulty node, possibly some of its children will become 

disconnected. To regain the connectivity, children would assume the moved parent node 

as a dead node and would apply LeMoToR at the children level. The smallest block at the 

children level would be identified. The child that belongs to the smallest block would 

proceed to the location of already moved parent node. This phenomenon would continue 

until all the nodes are reconnected with the network G. 

 

6.3 Recovery with Minimal Node Movement: An Example 

Figure 6.1 shows an example for how LeMoToR restores connectivity after the failure of 

A10. Obviously, node A10 is a cut-vertex and A14 becomes the 1-hop neighbor that belongs 

to the smallest block (Figure 6.1-(a)-(c)).  In Figure 6.1-(d), node A14 notifies its 

neighbors and moves to the position of A10to restore connectivity. Disconnected children, 

nodes A15 and A16, execute LeMoToR again to find out which one of them should move 

to the location of A14. Obviously, node A15 belongs to the smallest block and thus moves 

to the location of A14 to maintain the communication link (Figure 6.1-(e)). Note that the 

reason to execute LeMoToR recursively and to identify the smallest block even among
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(a) 

 

(b) 

 

(c) 

(d) (e) (f) 

 

Figure 6.1: An example illustrating how LeMoToR restores connectivity after the failure of node A10. 
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the children movement is to minimize the overall node movement. Nodes A15 would 

notify its only child A18, before it moves.  Since A18 is the only child, it simply belongs to 

the smallest block and moves to location of A15 (Figure 6.1-(f)). Figure 6.1-(f) shows the 

repaired network. 

 

6.4 Distributed LeMoToR Implementation 

Distributed implementation of LeMoToR is very similar to LeDiR. The assumptions and 

issues for a distributed implementation of LeDiR stated under section 5.4 are applicable 

to LeMoToR as well. Similar to LeDiR, every node in the topology may potentially have 

different CL from others. In such a case, upon the detection of a node failure the 

neighboring nodes may have an inconsistent assessment of the impact of the node loss on 

the network and on which actor is the best candidate for leading the recovery. We argue 

nonetheless that this is rare in practice since the mobility pattern among actors is not 

typically high given their involvement in actuation activities. In addition, the operation in 

WSAN is collaborative in nature and an actor usually communicates with many others 

and thus the routing table would not be sparse. 

 

As in LeDiR, the second issue is determining of the best candidate, i.e., the neighbor of 

the failed node that belongs to the smallest block. In case, a neighbor of faulty node that 

belongs to the smallest block does not have sufficient entries in its SRT it would not 

know that it belongs to the smallest block and would not thus initiate the recovery 

process by moving to replace the faulty node. Since the neighbors of faulty node cannot 

reach each other, a partially populated SRT may lead to a deadlock with none of the 
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neighbors of faulty node responding to the failure and leaving the network disconnected. 

To handle this issue, LeMoToR imposes a time-out after which the neighbor(s) belonging 

to the second largest block will move. This time multiple neighbors may be potentially 

moving towards faulty node. To avoid having more than one actor replacing faulty node, 

LeMoToR requires these nodes to broadcast messages with their ID so that they pause as 

soon as reaching other neighbors of faulty node that happen to be in a different block. 

The pause time would allow these neighbors to negotiate and pick the best candidate to 

continue on to the position of faulty node. 

 

6.5 LeMoToR Pseudo Code  

Figure 6.2 shows the pseudo code of LeMoToR. A node J would trigger LeMoToR, 

whenever a cut-vertex node failure is detected in the 1-hop neighborhood (line 1-2). Node 

J would test its eligibility to move to replace the faulty node by executing the 

IsBestCandidate() procedure (line 3). Basically, the procedure IsBestCandidate() finds 

whether node J belongs to the smallest disjointed sub-network block. If so, node J 

notifies its children (line 4-10) and moves to the location of the faulty node. Otherwise, 

node J checks whether it is to perform a movement to sustain current communication 

links (line 11), and if so it executes LeMoToR (line 15) to find whether it belongs to the 

smallest block. If so, it moves to the location of the already moved parent node to 

maintain the communication link. Nodes only move once (line 12-14). LeMoToR would 

be executed on the children node that loses direct communication link to the moved 

parent (neighbor). 
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// Every node builds its shortest path routing table (SRT) based  

// on the route discovery activities that it initiates or serve in, e.g. 

// while executing a distributed routing protocol.  

 

LeMoToR(J) 

1 IF node J detects a failure of its neighbor F  

2      IF neighbor F is a cut-vertex node 

3         IF IsBestCandidate(J)  

4 Notify_Children(J); 

5 J moves to the Position of neighbor F; 

6 Moved_Once  TRUE; 

7 Broadcast(Msg(„RECOVERED‟)); 

8 Exit; 

9          END IF 

10     END IF 

11 ELSE IFJ receives (a) notification message(s) from F  

12     IFMoved_Once || Received Msg(„RECOVERED‟) 

13  Exit;  

14     END IF 

15    LeMoToR(J) 

16 END IF 

 

IsBestCandidate (J) 

// Check whether J is the best candidate for tolerating the failure 

17 NeighborList[] GetNeighbors (F)accessing the column F in SRT; 

18 SmallestBlockSize  Number of nodes in the network; 

19 BestCandidate J; 

20 FOR each node i in the NeighborList[] 

//Use the SRT after excluding the failed node to find the 

//set of reachable nodes;  

21       Number of reachable nodes  0; 

22       FOR each node k in SRT excluding i and F 

23 Retrieve shortest path from i to k by using SRT; 

24 IF the retrieved shortest path does not include node F  

25      No. of reachable nodes  No. of reachable nodes + 1; 

26 END IF  

27       END FOR 

28       IF Number of reachable nodes < SmallestBlockSize 

29 SmallestBlockSize  Number of reachable nodes;  

30 BestCandidate i; 

31       END IF 

32 END FOR 

33 IF BestCandidate == J  

34     Return TRUE; 

35 ELSE 

36     Return FALSE; 

37 END IF 

 

Figure 6.2: Pseudo code of LeMoToR 
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6.6 Performance Evaluation of LeMoToR 

The performance of LeMoToR is validated through simulation. As we mentioned earlier 

LeMoToR strives to restore the network connectivity while minimizing the number of 

relocated nodes. We compare the performance of LeMoToR to LeDiR, and RIM [11]. 

The movement technique and operation of LeMoToR is closer to RIM than any other 

published scheme since it is designed particularly to restore the network connectivity 

with minimum messaging overhead. In addition, LeMoToR resembles LeDiR with the 

exception of the relaxation of the path-length constraint. 

 

Figure 6.3 shows the total travelled distance overhead under all considered approaches. It 

clearly indicates that LeMoToR and LeDiR have nearly similar performance and scale 

well as the network gets larger. However, in sparse topologies LeMoToR does not appear 

to have advantage over RIM. While RIM has outperformed all other schemes for small 

network size, its performance degrades steadily as the network size grows. Considering 

the effect of communication range on the total travelled distance, Figure 6.3-(b) shows 

that LeMoToR has a very stable behavior and confirms the pervious finding of minimum 

travelled distance. The efficiency of LeMoToR depends on the network traffic and 

activities since it directly affects how SRT is populated. Nonetheless, LeMoToR does 

still converge even if partial SRT is available. 

 

As stated earlier, the decrease in the CL level means fewer entries in the actor‟s SRT and 

less information for actor to make the right assessment of the scope of the failure and 

define the most appropriate recovery plan. This leads to an increase in the likelihood of 
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(a) 

 

 

(b) 

 

Figure 6.3: The total distance traveled by actor nodes where (a) network size is varied (with r=100), 

(b) communication range is varied (with N=100) 
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wrong decision making and results in more travel overhead. We noticed that this happen 

when the number of entries in the SRT is below 30% for all the nodes in the topology 

which is very rare. However, Figure 6.3 shows that LeMoToR stays robust and yields 

results close to the optimal with random CL. In other words, despite the incomplete SRT 

that some nodes have, i.e., LeMoToR's performance matches the centralized 

implementation that bases the decision on knowing the entire network topology. 

 

While simulating LeMoToR, initially we assume that all the nodes are deployed together 

and thus have almost same confidence level (CL). In other words, all nodes are placed in 

the topology with the same number of shortest path routing entries in their SRTs. 

Furthermore, we have tested the performance of LeMoToR with heterogeneous CL; 

means that in the same topology some nodes are missing 30% SRT entries, some missing 

50% SRT entries, and some missing 70% SRT entries. This mimics the case when nodes 

are deployed in batches and the case when the traffic density is different throughout the 

network. In Figure 6.3-(a) and (b), the curves for LeMoToR and LeDiR with Random CL 

reflect the performance with heterogeneous CL values and the results are very close to 

those of centralized implementations. 

 

Considering the number of relocated nodes during the recovery process, Figure 6.4 

indicates clearly that LeMoToR outperforms all other approaches by moving fewer nodes 

during the recovery, especially for dense and highly connected topologies. Unlike RIM, 

LeMoToR and LeDiR try to relocate nodes that belong to the smallest block in order to 

avoid triggering large scale movement of child actors. Furthermore, LeMoToR extends 
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(a) 

 

 

(b) 

 

Figure 6.4: Number of actors that moved during the recovery while varying (a) the network size 

(with r = 100), (b) the communication range (with N = 100). 
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the application of this mechanism to all child actors. This feature makes LeMoToR 

relocates the least number of actor nodes among contemporary approaches.  

 

With respect to the number of messages, again LeMoToR does very well by introducing 

noticeably less messaging overhead as shown in Tables 6.1 and 6.2. While RIM requires 

 

 

TABLE 6.2: # of Messages Sent by LeMoToR with varying actor radio range 

Radio 

Range RIM 

LeDiR LeMoToR 

Central. Dist. Rand. CL Central. Dist. Rand. CL 

25 112 10010.9 12 10005.4 8 

50 113 10009.4 16 10004.6 10.4 

75 121 10010.7 17 10007.4 10.6 

100 163 10017.3 22 10011.8 16.7 

125 143 10013.4 26 10010.2 12.8 

150 351 10016.2 33 10015 14.4 

200 1072 10021.1 62 10018.9 50.5 

 

TABLE 6.1: # of Messages Sent by LeMoToR with varying # of actors 

# of Actors RIM 

LeDiR LeMoToR 

Central. Dist. Rand. CL Central. Dist. Rand. CL 

20 30 406 7 402.8 4.6 

40 56 1608 12 1604.2 6.2 

60 85 3613 14 3605.75 5.2 

80 115 6406 17 6401.1 5.8 

100 152 10017 23 10010.5 6.1 

 

 

 

 

 Table 1:  # of Messages Sent with varying actor radio range 

Radio 

Range 
 RIM 

LeDiR 

Centralized 
Distributed 

70% 

CL 

50% 

CL 

30% 

CL 

Rand.       

CL 

25 112 10010.9 11 11 13 12 

50 113 10009.4 14 14 9 16 

75 121 10010.7 21 15 24 17 

100 163 10017.3 17 23 26 22 

125 143 10013.4 25 25 23 26 

150 351 10016.2 71 29 87 33 

200 1072 10021.1 78 56 98 62 
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maintaining 1-hop neighbor information, LeMoToR as well as LeDiR leverage the 

available route discovery process and do not impose pre-failure messaging overhead. The 

only communication cost incurred during the recovery is when a node informs its 

children about its movement or broadcasts the successful relocation. Nevertheless, 

LeMoToR requires fewer messages than LeDiR.  

 

6.7 Concluding Remarks on LeMoToR 

The collaborative and autonomous operation of the actors requires sustaining 

connectivity at all time and thus an actor failure must be tolerated in a distributed manner 

while imposing the least overhead. This chapter focuses on this important problem and 

proposed a new distributed Least-Movement Topology Repair (LeMoToR) algorithm. 

LeMoToR relies only on the local view of the network and does not impose pre-failure 

overhead. The performance of LeMoToR has been validated through extensive 

simulation experiments. We have also compared LeMoToR to a centralized version and 

to two other published schemes. The results have demonstrated that LeMoToR relocates 

the least number of actors to reestablish network connectivity after failure. LeMoToR 

also works very well in dense networks and matches the performance of the centralized 

implementation despite the partial knowledge that the nodes have about the network 

topology. 
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CHAPTER 7 

 

CONCLUSION & FUTURE WORK  

 

This chapter summarizes the thesis work and its contributions. In our research, we have 

tackled an important problem in mission critical WSANs; that is re-establishing 

movement-assisted and application-aware network connectivity after a critical node 

failure in WSANs. WSANs can serve applications in harsh environments, in which actor 

nodes may be subject to damage. The collaborative and autonomous operation of the 

actors requires sustaining connectivity at all time and thus an actor failure must be 

tolerated in a distributed manner while imposing the least overhead. 

 

7.1 Conclusion  

In this thesis, we propose three new distributed algorithms to restore movement-assisted 

and application-aware inter-actor network connectivity in WSANs. Firstly, we propose 

C
2
AM to tackle the problem of connectivity repair after a node failure. C

2
AM is a cross 

layer (network and application layers) approach that considers continuous sustenance of 

network connectivity and minimum application level disturbance. The experimental 

results demonstrate that C
2
AM meets both goals of minimizing the actor travel distance 
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and communication overhead and maintaining application-level goals in a localized 

manner. 

 

Secondly, we proposed a new distributed Least-Disruptive topology Repair (LeDiR) 

algorithm to re-establish network connectivity after a cut-vertex node failure without 

extending the length of data paths.  LeDiR does not impose pre-failure overhead and 

relies only on the local view of the network. The performance of LeDiR has been 

validated through rigorous analysis and extensive simulation experiments. The 

experiments compare LeDiR to a centralized version and to contemporary solutions in the 

literature. LeDiR works very well in dense networks and yields close to optimal 

performance even when nodes are partially aware of the network topology. 

 

Thirdly, we extend the LeDiR algorithm and call it Least-Movement Topology Repair 

(LeMoToR) to relocate the least number of nodes and reduce the traveled distance and 

message complexity. We compare LeMoToR to a centralized version and to two other 

published schemes. The results demonstrate that LeMoToR relocates the least number of 

actors to reestablish network connectivity after failure. In dense topologies, LeMoToR 

works very well and matches the performance of the centralized implementation. 

 

7.2 Publications  

It is worth to mention that all of three algorithms presented in this thesis have already 

been published in different well-known international IEEE and ACM conferences. In 

addition, we enhanced LeDiR further and a journal version has already been submitted to 
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IEEE Transection on Parallel and Distribute System. The citations of our published work 

are provided in the following: 

 

1. Ameer Abbasi, U. Baroudi, M. Younis, K. Akkaya, "C2AM: An Algorithm for 

Application-Aware Movement-Assisted Recovery in Wireless Sensor and Actor 

Networks", in the Proceedings of 5
th

 IEEE International Wireless Communications 

and Mobile Computing Conference (IWCMC-2009), Leipzig, Germany, June 2009. 

 

2. A. Abbasi, M. Younis, and U. Baroudi, “Restoring connectivity in wireless sensor-

actor networks with minimal topology changes,” in the Proceedings of 2010 IEEE 

International Conference on Communications (ICC), Cape Town, South Africa, May 

2010. 

 

3. A. Abbasi, M. Younis, and U. Baroudi, “Recovering from a Node Failure in Wireless 

Sensor-Actor Networks with Minimal Topology Changes”, submitted to IEEE 

Transactions on Parallel and Distributed Systems. 

 

4. Ameer Abbasi, M. Younis, U. Baroudi, " Restoring Connectivity in Wireless Sensor-

Actor Networks with Minimal Node Movement", in the Proceedings of 7
th

 IEEE 

International Wireless Communications and Mobile Computing Conference 

(IWCMC-2011), Istanbul, Turkey, July 2011. 
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7.3 Future Work 

After a critical node failure i.e. cut-vertex, movement-assisted network connectivity 

restoration is an important problem in mission critical WSANs especially when 

allocation-level constraints are also applicable on actors‟ mobility. In this thesis we 

proposed three new distributed algorithms to tackle such important issue in WSANs. 

However, all these three algorithms deal with the connectivity problems that occurred 

due to a single node failure and that can be handled locally by the 1-hop neighbors of the 

failed node. 

 

Considering a problem with multiple/concurrent node failure is more complex and 

challenging in nature. Multiple/concurrent node failures can disjoint the network into 

multiple blocks that cannot be handled locally. In addition, failed nodes may be adjacent 

to each other in a single block or belong to different adjacent blocks. Therefore, the 

proposed algorithms cannot be applied directly to this complex problem.  

 

To tackle such important and complex problem, initially, we plan to develop a centralize 

solution to handle multiple/concurrent node failures. This would also provide a baseline 

approach to validate distributed heuristics in the future. 

 

In addition, terrain obstacle and localization error are not considered in this work. We 

simply assume that actor nodes can move straight to any desired location. In future, we 

plan to consider such issues for actor movement. 
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APPENDIX A 

In this appendix A, we provide statistical analysis of our proposed algorithms. In our 

experiments, for each simulation setup 30 different network topologies are considered 

and the average values are reported. We observed that with 90% confidence level, the 

simulation results stay within 6% - 10% of the sample mean.  

 

As we know that to get an impression of the expectation μ, it is sufficient to give an 

estimate. The appropriate estimator is the sample mean [43]: 

 


n

i iX
n

X
1

1


 

We take  

90.01   

Assuming our samples follow normal distribution             and Z is normalized 

normal distribution       , and then we have 

90.01)( 2/12/1    zZzP  

Where   is standard deviation of our sample population and n is sample population 

which is 30 in our case. Then, 

645.12/1 z  

Thus, we get 

n
zXCIIntervalConfidence


 2/1)( 
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This might be interpreted as that with probability 0.90 we will find a confidence interval 

in which we will meet the parameter μ between the stochastic endpoints 

n
zX


       and      
n

zX


  

 

TABLE A.1: Statistical Analysis of C
2
AM 

# of Actors 
Sample Mean 

(μ) 

Standard Deviation 

( ) CI

 
% of  Sample 

Mean 

20 232.66923 47.44544 24.68085 10.60770 

40 300.24465 57.45613 29.88837 9.95467 

60 229.67860 29.45673 15.32322 6.67159 

80 215.52396 39.28372 20.43518 9.48163 

100 137.50551 22.23848 11.56833 8.41300 

 

 

 

TABLE A.2: Statistical Analysis of LeDiR 

# of Actors 
Sample Mean 

(μ) 

Standard Deviation 

( ) CI

 
% of  Sample 

Mean 

20 240.73833 35.45566 18.44384 7.66135 

40 203.09998 40.34346 20.98645 10.33386 

60 199.91418 35.43430 18.43273 9.22257 

80 164.66023 23.34234 12.14256 7.37428 

100 173.51990 32.24121 16.77170 9.66553 
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TABLE A.3: Statistical Analysis of LeMoToR 

# of Actors 
Sample Mean 

(μ) 

Standard Deviation 

( ) CI

 
% of  Sample 

Mean 

20 240.73833 45.98579 23.92755 9.93612 

40 203.09998 38.28778 19.91719 9.80616 

60 199.91418 25.85762 13.45079 6.87349 

80 164.66023 29.88876 15.54723 9.40094 

100 173.51990 35.45222 18.44074 10.62032 
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