1,240 research outputs found

    Indoor Positioning for BIM

    Get PDF
    Building Informational Modeling (BIM) is very popular in the construction industry in Norway today, and Omega 365 has created a suite of tools for BIM, including a 3D visualising tool for 3D models of buildings, called a BIMViewer. This tool exists in multiple forms, and one of them is an app for mobile phones, which construction workers carry with them on construction sites. When determining one's own position in the BIMViewer, it may take time to find and select the correct position. This study aims to create a feature for the BIMViewer using new technology, IEEE802.11mc and comparing it with an old method, Wi-Fi received signal strength (RSS) with the Log Distance Path Loss model. In addition, GPS was tried in order to prove it was not usable for this use case and in order to compare it with the other two methods. The main goal is to find a method that is cheap for clients to implement in regards to equipment and installation, but is precise enough to provide a good user experience. Three experiments were conducted for this study, one using only GPS and two for the other two methods. One experiment used only a single floor and the other used two floors. Both of these experiments used only 6 access points and were conducted at NyeSUS, the new hospital in Stavanger which was an active construction zone during the experiments. The experiments showed that GPS was a bad choice for the use case and that both the other methods were usable. The round trip time (RTT) method, which used the IEEE802.11mc measurements was more precise than the RSS method, however suffered from the need for more access points than the RSS method. This study concludes that both the RTT and the RSS methods may be usable, however some improvements would be needed for a truly good user experience. The study also suggests that a mix of the two methods may be beneficial

    Doctor of Philosophy

    Get PDF
    dissertationThis work seeks to improve upon existing methods for device-free localization (DFL) using radio frequency (RF) sensor networks. Device-free localization is the process of determining the location of a target object, typically a person, without the need for a device to be with the object to aid in localization. An RF sensor network measures changes to radio propagation caused by the presence of a person to locate that person. We show how existing methods which use either wideband or narrowband RF channels can be improved in ways including localization accuracy, energy efficiency, and system cost. We also show how wideband and narrowband systems can combine their information to improve localization. A common assumption in ultra-wideband research is that to estimate the bistatic delay or range, "background subtraction" is effective at removing clutter and must first be performed. Another assumption commonly made is that after background subtraction, each individual multipath component caused by a person's presence can be distinguished perfectly. We show that these assumptions are often not true and that ranging can still be performed even when these assumptions are not true. We propose modeling the difference between a current set of channel impulse responses (CIR) and a set of calibration CIRs as a hidden Markov model (HMM) and show the effectiveness of this model over background subtraction. The methods for performing device-free localization by using ultra-wideband (UWB) measurements and by using received signal strength (RSS) measurements are often considered separate topic of research and viewed only in isolation by two different communities of researchers. We consider both of these methods together and propose methods for combining the information obtained from UWB and RSS measurements. We show that using both methods in conjunction is more effective than either method on its own, especially in a setting where radio placement is constrained. It has been shown that for RSS-based DFL, measuring on multiple channels improves localization accuracy. We consider the trade-o s of measuring all radio links on all channels and the energy and latency expense of making the additional measurements required when sampling multiple channels. We also show the benefits of allowing multiple radios to transmit simultaneously, or in parallel, to better measure the available radio links

    Multi-technology RF fingerprinting with leaky-feeder in underground tunnels

    Get PDF
    Techniques using RSS fingerprinting for localization have been studied over a number of ifferent technologies in many different scenarios. In the case of underground tunnels localization can be quite challenging, yet it is extremely important for safety reasons. In the specific case of the CERN tunnels, accurate and automatized localization methods would additionally allow the orkflow of some activities to become substantially faster. In a radiation area this would also have the added benefit of reducing the exposure time of personnel conducting so called radiation surveys which have to be carried out before access can be granted. In this paper Fingerprinting techniques for GSM and Wireless LAN are studied and enhanced to ake advantage of both network technologies simultaneously as well as the channels RSS differential and an observed effect in the radiated power in the leaky-feeder cables. Besides the higher accuracy achieved for a single technology, this methodology looks promising for scenarios where several types of wireless networks are available or expected to be installed at a later stage

    ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์„ ์œ„ํ•œ ๋ฌด์„  ์‹ค๋‚ด ์ธก์œ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ๊น€์„ฑ์ฒ .์‹ค๋‚ด ์œ„์น˜ ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋Š” ์Šค๋งˆํŠธํฐ์„ ์ด์šฉํ•œ ์‹ค๋‚ด์—์„œ์˜ ๊ฒฝ๋กœ์•ˆ๋‚ด, ์Šค๋งˆํŠธ ๊ณต์žฅ์—์„œ์˜ ์ž์› ๊ด€๋ฆฌ, ์‹ค๋‚ด ๋กœ๋ด‡์˜ ์ž์œจ์ฃผํ–‰ ๋“ฑ ๋งŽ์€ ๋ถ„์•ผ์— ์ ‘๋ชฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท ์‘์šฉ์—๋„ ํ•„์ˆ˜์ ์ธ ๊ธฐ์ˆ ์ด๋‹ค. ๋‹ค์–‘ํ•œ ์œ„์น˜ ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ •ํ™•ํ•œ ์œ„์น˜ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ์ ํ•ฉํ•œ ๊ฑฐ๋ฆฌ ๋ฐ ์œ„์น˜๋ฅผ ์ถ”์ • ๊ธฐ์ˆ ์ด ํ•ต์‹ฌ์ ์ด๋‹ค. ์•ผ์™ธ์—์„œ๋Š” ์œ„์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ์„ ์ด์šฉํ•ด์„œ ์œ„์น˜ ์ •๋ณด๋ฅผ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์™€์ดํŒŒ์ด ๊ธฐ๋ฐ˜ ์ธก์œ„ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ „ํŒŒ์˜ ์‹ ํ˜ธ ์„ธ๊ธฐ ๋ฐ ๋„๋‹ฌ ์‹œ๊ฐ„์„ ์ด์šฉํ•œ ์ •๋ฐ€ํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ถ”์ •์„ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ €, ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ ํ™˜๊ฒฝ์—์„œ์˜ ๊ฑฐ๋ฆฌ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์ธก์œ„์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€๋“€์–ผ ๋ฐด๋“œ ๋Œ€์—ญ์˜ ์‹ ํ˜ธ์„ธ๊ธฐ๋ฅผ ๊ฐ์‡„๋Ÿ‰์„ ์ธก์ •ํ•˜์—ฌ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์ธก์œ„ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•  ๋•Œ, ๊ฑฐ๋ฆฌ ์ถ”์ •๋ถ€ ๋‹จ๊ณ„๋งŒ์„ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ•™์Šต์„ ์ด์šฉํ•œ ๊นŠ์€ ์‹ ๊ฒฝ๋ง ํšŒ๊ท€ ๋ชจ๋ธ๋กœ ๋Œ€์ฒดํ•œ ๋ฐฉ์•ˆ์ด๋‹ค. ์ ์ ˆํžˆ ํ•™์Šต๋œ ๊นŠ์€ ํšŒ๊ท€ ๋ชจ๋ธ์˜ ์‚ฌ์šฉ์œผ๋กœ ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ฑฐ๋ฆฌ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฒฐ๊ณผ์ ์œผ๋กœ ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ ๋˜ํ•œ ๊ฐ์†Œ์‹œ์ผฐ๋‹ค. ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ์‹ค๋‚ด ๊ด‘์„ ์ถ”์  ๊ธฐ๋ฐ˜ ๋ชจ์˜์‹คํ—˜์œผ๋กœ ํ‰๊ฐ€ํ–ˆ์„ ๋•Œ, ๊ธฐ์กด ๊ธฐ๋ฒ•๋“ค์— ๋น„ํ•ด์„œ ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ์ค‘๊ฐ„๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ 22.3% ์ด์ƒ ์ค„์ผ ์ˆ˜ ์žˆ์Œ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์€ ์‹ค๋‚ด์—์„œ์˜ AP ์œ„์น˜๋ณ€ํ™” ๋“ฑ์— ๊ฐ•์ธํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ์—์„œ ๋‹จ์ผ ๋Œ€์—ญ ์ˆ˜์‹ ์‹ ํ˜ธ์„ธ๊ธฐ๋ฅผ ์ธก์ •ํ–ˆ์„ ๋•Œ ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ๊ฐ€ ๋งŽ์€ ์‹ค๋‚ด ํ™˜๊ฒฝ์—์„œ ์œ„์น˜ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹จ์ผ ๋Œ€์—ญ ์ˆ˜์‹ ์‹ ํ˜ธ์„ธ๊ธฐ๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ์•ˆ์€ ๊ธฐ์กด์— ์ด์šฉ๋˜๋Š” ์™€์ดํŒŒ์ด, ๋ธ”๋ฃจํˆฌ์Šค, ์ง๋น„ ๋“ฑ์˜ ๊ธฐ๋ฐ˜์‹œ์„ค์— ์‰ฝ๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋„๋ฆฌ ์ด์šฉ๋œ๋‹ค. ํ•˜์ง€๋งŒ ์‹ ํ˜ธ ์„ธ๊ธฐ์˜ ๋‹จ์ผ ๊ฒฝ๋กœ์†์‹ค ๋ชจ๋ธ์„ ์ด์šฉํ•œ ๊ฑฐ๋ฆฌ ์ถ”์ •์€ ์ƒ๋‹นํ•œ ์˜ค์ฐจ๋ฅผ ์ง€๋…€์„œ ์œ„์น˜ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์˜ ์›์ธ์€ ๋‹จ์ผ ๊ฒฝ๋กœ์†์‹ค ๋ชจ๋ธ๋กœ๋Š” ์‹ค๋‚ด์—์„œ์˜ ๋ณต์žกํ•œ ์ „ํŒŒ ์ฑ„๋„ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค๋‚ด ์œ„์น˜ ์ถ”์ •์„ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ, ์ค‘์ฒฉ๋œ ๋‹ค์ค‘ ์ƒํƒœ ๊ฒฝ๋กœ ๊ฐ์‡„ ๋ชจ๋ธ์„ ์ƒˆ๋กญ๊ฒŒ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ๊ฐ€์‹œ๊ฒฝ๋กœ ๋ฐ ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ์—์„œ์˜ ์ฑ„๋„ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ž ์žฌ์ ์ธ ํ›„๋ณด ์ƒํƒœ๋“ค์„ ์ง€๋‹Œ๋‹ค. ํ•œ ์ˆœ๊ฐ„์˜ ์ˆ˜์‹  ์‹ ํ˜ธ ์„ธ๊ธฐ ์ธก์ •์น˜์— ๋Œ€ํ•ด ๊ฐ ๊ธฐ์ค€ ๊ธฐ์ง€๊ตญ๋ณ„๋กœ ์ตœ์ ์˜ ๊ฒฝ๋กœ์†์‹ค ๋ชจ๋ธ ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํšจ์œจ์ ์ธ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ธฐ์ง€๊ตญ๋ณ„ ๊ฒฝ๋กœ์†์‹ค๋ชจ๋ธ ์ƒํƒœ์˜ ์กฐํ•ฉ์— ๋”ฐ๋ฅธ ์ธก์œ„ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•  ์ง€ํ‘œ๋กœ์„œ ๋น„์šฉํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. ๊ฐ ๊ธฐ์ง€๊ตญ๋ณ„ ์ตœ์ ์˜ ์ฑ„๋„ ๋ชจ๋ธ์„ ์ฐพ๋Š”๋ฐ ํ•„์š”ํ•œ ๊ณ„์‚ฐ ๋ณต์žก๋„๋Š” ๊ธฐ์ง€๊ตญ ์ˆ˜์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š”๋ฐ, ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ํƒ์ƒ‰์„ ์ ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ๋Ÿ‰์„ ์–ต์ œํ•˜์˜€๋‹ค. ์‹ค๋‚ด ๊ด‘์„ ์ถ”์  ๋ชจ์˜์‹คํ—˜์„ ํ†ตํ•œ ๊ฒ€์ฆ๊ณผ ์‹ค์ธก ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•œ ๊ฒ€์ฆ์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ œ์•ˆํ•œ ๋ฐฉ์•ˆ์€ ์‹ค์ œ ์‹ค๋‚ด ํ™˜๊ฒฝ์—์„œ ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋“ค์— ๋น„ํ•ด ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ์•ฝ 31% ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ ํ‰๊ท ์ ์œผ๋กœ 1.92 m ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ FTM ํ”„๋กœํ† ์ฝœ์„ ์ด์šฉํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ถ”์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธํฐ์˜ ๋‚ด์žฅ ๊ด€์„ฑ ์„ผ์„œ์™€ ์™€์ดํŒŒ์ด ํ†ต์‹ ์—์„œ ์ œ๊ณตํ•˜๋Š” FTM ํ”„๋กœํ† ์ฝœ์„ ํ†ตํ•œ ๊ฑฐ๋ฆฌ ์ถ”์ •์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋‚ด์—์„œ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์ถ”์ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค๋‚ด์˜ ๋ณต์žกํ•œ ๋‹ค์ค‘๊ฒฝ๋กœ ํ™˜๊ฒฝ์œผ๋กœ ์ธํ•œ ํ”ผํฌ ๊ฒ€์ถœ ์‹คํŒจ๋Š” ๊ฑฐ๋ฆฌ ์ธก์ •์น˜์— ํŽธํ–ฅ์„ฑ์„ ์œ ๋ฐœํ•œ๋‹ค. ๋˜ํ•œ ์‚ฌ์šฉํ•˜๋Š” ๋””๋ฐ”์ด์Šค์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๊ฑฐ๋ฆฌ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ FTM ๊ฑฐ๋ฆฌ ์ถ”์ •์„ ์ด์šฉํ•  ๋•Œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์˜ค์ฐจ๋“ค์„ ๊ณ ๋ คํ•˜๊ณ  ์ด๋ฅผ ๋ณด์ƒํ•˜๋Š” ๋ฐฉ์•ˆ์— ๋Œ€ํ•ด ์ œ์‹œํ•œ๋‹ค. ํ™•์žฅ ์นผ๋งŒ ํ•„ํ„ฐ์™€ ๊ฒฐํ•ฉํ•˜์—ฌ FTM ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์ „ํ•„ํ„ฐ๋ง ํ•˜์—ฌ ์ด์ƒ๊ฐ’์„ ์ œ๊ฑฐํ•˜๊ณ , ๊ฑฐ๋ฆฌ ์ธก์ •์น˜์˜ ํŽธํ–ฅ์„ฑ์„ ์ œ๊ฑฐํ•˜์—ฌ ์œ„์น˜ ์ถ”์  ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ์‹ค๋‚ด์—์„œ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฑฐ์น˜ ์ธก์ •์น˜์˜ ํŽธํ–ฅ์„ฑ์„ ์•ฝ 44-65% ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ ์ตœ์ข…์ ์œผ๋กœ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์„œ๋ธŒ๋ฏธํ„ฐ๊ธ‰์œผ๋กœ ์ถ”์ ํ•  ์ˆ˜ ์žˆ์Œ์„ ๊ฒ€์ฆํ–ˆ๋‹ค.Indoor location-based services (LBS) can be combined with various applications such as indoor navigation for smartphone users, resource management in smart factories, and autonomous driving of robots. It is also indispensable for Internet of Things (IoT) applications. For various LBS, accurate location information is essential. Therefore, a proper ranging and positioning algorithm is important. For outdoors, the global navigation satellite system (GNSS) is available to provide position information. However, the GNSS is inappropriate indoors owing to the issue of the blocking of the signals from satellites. It is necessary to develop a technology that can replace GNSS in GNSS-denied environments. Among the various alternative systems, the one of promising technology is to use a Wi-Fi system that has already been applied to many commercial devices, and the infrastructure is in place in many regions. In this dissertation, Wi-Fi based indoor localization methods are presented. In the specific, I propose the three major issues related to accurate indoor localization using received signal strength (RSS) and fine timing measurement (FTM) protocol in the 802.11 standard for my dissertation topics. First, I propose a hybrid localization algorithm to boost the accuracy of range-based localization by improving the ranging accuracy under indoor non-line-of-sight (NLOS) conditions. I replaced the ranging part of the rule-based localization method with a deep regression model that uses data-driven learning with dual-band received signal strength (RSS). The ranging error caused by the NLOS conditions was effectively reduced by using the deep regression method. As a consequence, the positioning error could be reduced under NLOS conditions. The performance of the proposed method was verified through a ray-tracing-based simulation for indoor spaces. The proposed scheme showed a reduction in the positioning error of at least 22.3% in terms of the median root mean square error. Next, I study on positioning algorithm that considering NLOS conditions for each APs, using single band RSS measurement. The single band RSS information is widely used for indoor localization because they can be easily implemented by using existing infrastructure like Wi-Fi, Blutooth, or Zigbee. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performance. This problem mainly arises because the single pathloss model cannot reflect diverse indoor radio wave propagation characteristics. In this study, I develop a new overlapping multi-state model to consider multiple candidates of pathloss models including line-of-sight (LOS) and NLOS states, and propose an efficient way to select a proper model for each reference node involved in the localization process. To this end, I formulate a cost function whose value varies widely depending on the choice of pathloss model of each access point. Because the computational complexity to find an optimal channel model for each reference node exponentially increases with the number of reference nodes, I apply a genetic algorithm to significantly reduce the complexity so that the proposed method can be executed in real-time. Experimental validations with ray-tracing simulations and RSS measurements at a real site confirm the improvement of localization accuracy for Wi-Fi in indoor environments. The proposed method achieves up to 1.92~m mean positioning error under a practical indoor environment and produces a performance improvement of 31.09\% over the benchmark scenario. Finally, I investigate accurate indoor tracking algorithm using FTM protocol in this dissertation. By using the FTM ranging and the built-in sensors in a smartphone, it is possible to track the user's location in indoor. However, the failure of first peak detection due to the multipath effect causes a bias in the FTM ranging results in the practical indoor environment. Additionally, the unexpected ranging error dependent on device type also degrades the indoor positioning accuracy. In this study, I considered the factors of ranging error in the FTM protocol in practical indoor environment, and proposed a method to compensate ranging error. I designed an EKF-based tracking algorithm that adaptively removes outliers from the FTM result and corrects bias to increase positioning accuracy. The experimental results verified that the proposed algorithm reduces the average ofthe ranging bias by 43-65\% in an indoor scenarios, and can achieve the sub-meter accuracy in average route mean squared error of user's position in the experiment scenarios.Abstract i Contents iv List of Tables vi List of Figures vii 1 INTRODUCTION 1 2 Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-BandWi-Fi 6 2.1 Motivation 6 2.2 Preliminary 8 2.3 System model 11 2.4 Proposed Ranging Method 13 2.5 Performance Evaluation 16 2.5.1 Ray-Tracing-Based Simulation 16 2.5.2 Analysis of the Ranging Accuracy 21 2.5.3 Analysis of the Neural Network Structure 25 2.5.4 Analysis of Positioning Accuracy 26 2.6 Summary 29 3 Genetic Algorithm for Path Loss Model Selection in Signal Strength Based Indoor Localization 31 3.1 Motivation 31 3.2 Preliminary 34 3.2.1 RSS-based Ranging Techniques 35 3.2.2 Positioning Technique 37 3.3 Proposed localization method 38 3.3.1 Localization Algorithm with Overlapped Multi-State Path Loss Model 38 3.3.2 Localization with Genetic Algorithm-Based Search 41 3.4 Performance evaluation 46 3.4.1 Numerical simulation 50 3.4.2 Experimental results 56 3.5 Summary 60 4 Indoor User Tracking with Self-calibrating Range Bias Using FTM Protocol 62 4.1 Motivation 62 4.2 Preliminary 63 4.2.1 FTM ranging 63 4.2.2 PDR-based trajectory estimation 65 4.3 EKF design for adaptive compensation of ranging bias 66 4.4 Performance evaluation 69 4.4.1 Experimental scenario 69 4.4.2 Experimental results 70 4.5 Summary 75 5 Conclusion 76 Abstract (In Korean) 89๋ฐ•

    Learning-based NLOS Detection and Uncertainty Prediction of GNSS Observations with Transformer-Enhanced LSTM Network

    Full text link
    The global navigation satellite systems (GNSS) play a vital role in transport systems for accurate and consistent vehicle localization. However, GNSS observations can be distorted due to multipath effects and non-line-of-sight (NLOS) receptions in challenging environments such as urban canyons. In such cases, traditional methods to classify and exclude faulty GNSS observations may fail, leading to unreliable state estimation and unsafe system operations. This work proposes a Deep-Learning-based method to detect NLOS receptions and predict GNSS pseudorange errors by analyzing GNSS observations as a spatio-temporal modeling problem. Compared to previous works, we construct a transformer-like attention mechanism to enhance the long short-term memory (LSTM) networks, improving model performance and generalization. For the training and evaluation of the proposed network, we used labeled datasets from the cities of Hong Kong and Aachen. We also introduce a dataset generation process to label the GNSS observations using lidar maps. In experimental studies, we compare the proposed network with a deep-learning-based model and classical machine-learning models. Furthermore, we conduct ablation studies of our network components and integrate the NLOS detection with data out-of-distribution in a state estimator. As a result, our network presents improved precision and recall ratios compared to other models. Additionally, we show that the proposed method avoids trajectory divergence in real-world vehicle localization by classifying and excluding NLOS observations.Comment: Accepted for the IEEE ITSC202
    • โ€ฆ
    corecore