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Abstract

Indoor location-based services (LBS) can be combined with various applications

such as indoor navigation for smartphone users, resource management in smart facto-

ries, and autonomous driving of robots. It is also indispensable for Internet of Things

(IoT) applications. For various LBS, accurate location information is essential. There-

fore, a proper ranging and positioning algorithm is important. For outdoors, the global

navigation satellite system (GNSS) is available to provide position information. How-

ever, the GNSS is inappropriate indoors owing to the issue of the blocking of the sig-

nals from satellites. It is necessary to develop a technology that can replace GNSS

in GNSS-denied environments. Among the various alternative systems, the one of

promising technology is to use a Wi-Fi system that has already been applied to many

commercial devices, and the infrastructure is in place in many regions. In this disserta-

tion, Wi-Fi based indoor localization methods are presented. In the specific, I propose

the three major issues related to accurate indoor localization using received signal

strength (RSS) and fine timing measurement (FTM) protocol in the 802.11 standard

for my dissertation topics. First, I propose a hybrid localization algorithm to boost

the accuracy of range-based localization by improving the ranging accuracy under

indoor non-line-of-sight (NLOS) conditions. I replaced the ranging part of the rule-

based localization method with a deep regression model that uses data-driven learn-

ing with dual-band received signal strength (RSS). The ranging error caused by the

NLOS conditions was effectively reduced by using the deep regression method. As

a consequence, the positioning error could be reduced under NLOS conditions. The

performance of the proposed method was verified through a ray-tracing-based sim-

ulation for indoor spaces. The proposed scheme showed a reduction in the position-

ing error of at least 22.3% in terms of the median root mean square error. Next, I

study on positioning algorithm that considering NLOS conditions for each APs, us-
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ing single band RSS measurement. The single band RSS information is widely used

for indoor localization because they can be easily implemented by using existing in-

frastructure like Wi-Fi, Blutooth, or Zigbee. However, range estimation with a single

pathloss model produces considerable errors, which degrade the positioning perfor-

mance. This problem mainly arises because the single pathloss model cannot reflect

diverse indoor radio wave propagation characteristics. In this study, I develop a new

overlapping multi-state model to consider multiple candidates of pathloss models in-

cluding line-of-sight (LOS) and NLOS states, and propose an efficient way to select

a proper model for each reference node involved in the localization process. To this

end, I formulate a cost function whose value varies widely depending on the choice

of pathloss model of each access point. Because the computational complexity to find

an optimal channel model for each reference node exponentially increases with the

number of reference nodes, I apply a genetic algorithm to significantly reduce the

complexity so that the proposed method can be executed in real-time. Experimental

validations with ray-tracing simulations and RSS measurements at a real site confirm

the improvement of localization accuracy for Wi-Fi in indoor environments. The pro-

posed method achieves up to 1.92 m mean positioning error under a practical indoor

environment and produces a performance improvement of 31.09% over the benchmark

scenario. Finally, I investigate accurate indoor tracking algorithm using FTM protocol

in this dissertation. By using the FTM ranging and the built-in sensors in a smartphone,

it is possible to track the user’s location in indoor. However, the failure of first peak

detection due to the multipath effect causes a bias in the FTM ranging results in the

practical indoor environment. Additionally, the unexpected ranging error dependent

on device type also degrades the indoor positioning accuracy. In this study, I consid-

ered the factors of ranging error in the FTM protocol in practical indoor environment,

and proposed a method to compensate ranging error. I designed an EKF-based track-

ing algorithm that adaptively removes outliers from the FTM result and corrects bias
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to increase positioning accuracy. The experimental results verified that the proposed

algorithm reduces the average ofthe ranging bias by 43-65% in an indoor scenarios,

and can achieve the sub-meter accuracy in average route mean squared error of user’s

position in the experiment scenarios.

keywords: Fine Timing Measurement, Indoor Localization, Range-based Localiza-

tion, Received Signal Strength, Trilateration, Wi-Fi Positioning

student number: 2015-20965
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Chapter 1

INTRODUCTION

Recently, several studies have been conducted on indoor location-based services (LBS).

LBS can be combined with various applications such as navigation for smartphone

users, resource management in smart factories, and autonomous driving of robots,

surveillance and security, among others. For various LBS, indoor positioning or the so-

called localization technique is a core technology. It is also indispensable for Internet

of Things services [1–4]. For outdoors, the global navigation satellite system (GNSS)

is available to provide position information. However, the GNSS is inappropriate in-

doors owing to the issue of the blocking of the signals from satellites. Several studies

have been conducted in order to estimate locations in GNSS-denied environments. In

particular, the method of using the received signal strength (RSS) from Wi-Fi commu-

nication is promising because it fits most commercial products [1,5,6]. For indoor en-

vironments, in which it is difficult to use GNSS, there have been studies that have used

various alternative systems to find the locations of devices. There are infrastructure-

less methods that avoid dependence on a specific infrastructure by measuring a passive

signal with a magnetometer, an inertial sensor, a microphone, or a light sensor [7–10].

On the other hand, some localization methods depend on the infrastructure, which

takes over the role of the satellites in the GNSS. Some studies used an ultra-wide-band

(UWB) tag [11], Bluetooth beacon [12, 13], or radio frequency identification tag [14].
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Because these methods have weaker signal strength and smaller coverage than Wi-Fi

systems in indoor environment with many walls. In addition, they require a deploy-

ment of the infrastructure. Although localization methods that use Wi-Fi also require

the placement of Wi-Fi APs, many Wi-Fi APs are already currently deployed. There-

fore, localization methods that use Wi-Fi have the advantage of being used without the

installation of additional infrastructure compared to other infrastructure-based meth-

ods.

Especially for smartphones, studies combining Wi-Fi and the other infrastructure-

less methods have been conducted. Several state-of-art approaches used a fine timing

measurement (FTM) protocol supported by a Wi-Fi system, which is a method of using

a measurement of the distance based on the round-trip time by exchanging packets

when both the AP and the device support the FTM protocol [15]. In particular, such

approaches showed high ranging accuracy under LOS conditions [16, 17], and these

studies using a fusion of FTM and other sensors showed high accuracy in tracking the

path of a pedestrian [18–20].

To reduce the dependency on infrastructure as much as possible, there are methods

that use the RSS of a Wi-Fi beacon’s signal. Wi-Fi RSS depends on the indoor wave

propagation characteristics, and especially the path-loss properties with respect to the

distance. Many studies have been conducted on indoor path loss, which has been inte-

grated into statistical models [21–23]. The ITU-1238 model in [22] assumes the PLM

in the indoor environment as a 1-slope model, and presents path loss parameters for

several open space and NLOS environments. The models introduced in [21, 23] are

based on 2-slope model, considering the complex indoor environment. However, these

channel models were used to analyze the quality of service in communication. Range-

based localization requires site-specific channel information. In particular, a detailed

model of the shadowing effect caused by walls is necessary. In [24], the propagation

loss for a common building material in the 2.4 and 5.2 GHz bands was analyzed.

In [25], the effects of walls on the propagation loss in complex indoor environments

2



were analyzed, and an effective wall loss model was proposed.

Meanwhile, most indoor localization studies that use RSS rely on a fingerprint-

based method. Existing single-band based fingerprinting techniques [6,26–28] demon-

strate good localization accuracy, but require a thorough site survey of the target space.

Channel state information (CSI) was also measured in [?,27,28]. Fingerprinting meth-

ods that use CSI provide high accuracy. However, there is a risk that they may not be

robust to AP location changes after a site survey because CSI is sensitive to spatial

configurations. In addition, CSI has a high data overhead and can only be acquired

with specific devices.

Some studies used dual-band RSS for fingerprint-based positioning [29–34]. Con-

sequently, the accuracy of these methods depends on site surveys, and vulnerable to en-

vironmental changes. In [31], rule-based localization was exploited by using dual-band

RSS with consideration of NLOS conditions. The channel conditions were evaluated

by comparing the RSS attenuation between the two bands, and different ranging func-

tions were applied according to the channel conditions. However, the authors of [31]

classified the channel conditions into three types, which were insufficient to reflect

indoor channel conditions. The use of deep learning has been attempted in order to

overcome the limitations of rule-based methods. The authors of [35–37] estimated po-

sitions by training a neural network with RSS vectors from multiple APs. These were

types of fingerprint-based methods that derived the location coordinates output from

the neural network, which was trained with RSS patterns. Therefore, similarly to other

fingerprint-based methods, there was a disadvantage in that they could only operate in a

pre-surveyed environment. Previous studies about indoor localization using Wi-Fi RSS

with deep learning techniques were mainly based on fingerprinting. The fingerprint-

based methods can achieve high positioning accuracy, but require heavy site surveys

and are vulnerable to minor environmental changes, such as changes in APs’ locations

or obstructions. For these reasons, the goal of this dissertation is to present a robust

indoor localization methods that minimize the need for site survey. I study on the three
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major issues related to accurate indoor localization using RSS and FTM protocol for

my dissertation topics. The first issue is about increasing the accuracy of RSS ranging

in the indoor environment. In the rang-based localization, the ranging accuracy has a

great influence on the location accuracy. In particular, RSS attenuation caused by wall

structures and obstacles in the indoor causes a degradation in the ranging accuracy. In

this dissertation, I propose a hybrid approach, which applies data-driven deep learning

to only the ranging part of a rule-based localization algorithm. This approach has the

advantage of being robust against changes in the AP locations and spatial structure.

A ray-tracing method was used to get the channel data for a complex NLOS environ-

ment, and the ranging performance of the proposed dual-band RSS was evaluated and

compared to that of existing methods.

The next issue deals with a positioning algorithm that accurately estimates the

location of a device in a complex indoor environment with measurements including

dynamic RSS ranging error. The overlapped multi-state PLM which is suitable for

location estimation is derived by analyzing RSS measurement in indoor environment

where LOS/NLOS states are mixed. When estimating device’s position using RSS

measurements from multiple APs, I designed an algorithm that accurately finds the

optimal PLM state combination for each AP and the location of the target device.

To reduce computational complexity to a realistic level, a genetic algorithm (GA) is

applied. And, I conducted a numerical analysis via ray-tracing based simulations for

indoor environments and with experiments at a general hospital.

Finally, I present a method to improve FTM-based ranging and location tracking

accuracy in the indoor environment. I analyzed the distance error characteristic that

occurs when the smartphone carried by the pedestrian in the practical indoor environ-

ment, and designed an algorithm to compensate the biased FTM ranging result. In the

indoor environment, since LOS is hard to be secured due to obstacles, the measured

ranging results are prone to be positively biased. In addition, an unexpected error de-

pending on the device types brings about outlier and degrades the tracking accuracy.
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These practical ranging errors are the main challenge in accurately tracking the indoor

location. I designed an extended Kalman filter (EKF)-based algorithm that adaptively

removes outlier and compensates the ranging bias. Measurement experiments were

conducted considering non-homogeneous AP set scenarios in an indoor environment,

and the performance of the proposed algorithm was evaluated.
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Chapter 2

Hybrid Approach for Indoor Localization Using Received

Signal Strength of Dual-Band Wi-Fi

2.1 Motivation

Indoor localization technology is indispensable for Internet of Things services. It can

be applied to a wide range of fields, such as navigation for smartphone users, resource

management in smart factories, and autonomous driving of robots, among others. Out-

doors, the global navigation satellite system (GNSS) is available to provide position

information. However, the GNSS is inappropriate indoors owing to the issue of the

blocking of the signals from satellites. Several studies have been conducted in order

to estimate locations in GNSS-denied environments. In particular, the method of using

the received signal strength (RSS) from Wi-Fi communication is promising because it

fits most commercial products [1, 5, 6].

Indoor localization methods that use RSS can be divided into two groups: fingerprint-

based methods and range-based methods [5]. The fingerprint-based methods are based

on a pattern-matching scheme. The RSS patterns from multiple access points (APs) at

a specific location were recorded in the offline stage. In the online stage, the measured

RSS pattern is compared with a recorded database to match a location. The offline
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stage requires time and effort for site surveys and is vulnerable to channel changes

(e.g., AP location changes and furniture structure changes) [6]. Range-based local-

ization methods estimates the distance between individual APs and a target node and

specify a location through geometric inference. The main problem in range-based lo-

calization using RSS is the ranging error. The RSS ranging error result from the non-

line-of-sight (NLOS) channel condition, antenna direction, and time-varying obstruc-

tion by crowds. Among these, the NLOS effect of indoor wall structures and obstacles

is the most important factor. The shadowing effect caused by wall structures makes

RSS ranging difficult, resulting in position inaccuracy [38, 39].

Therefore, improving the ranging accuracy is a key factor for range-based local-

ization. Typically, RSS ranging is based on a path-loss model (PLM), which represents

the relation between the RSS and the distance between communication nodes. The rep-

resentative model is the two-slope model presented in the IEEE 802.11 standard [21].

This is an expression for an universal indoor space and does not reflect a site-specific

environment. Therefore, the ranging accuracy based on this model is limited in prac-

tical cases. To solve this problem, studies have been conducted on the adjustment of

the parameters of the PLM [40–43] and the correction of ranging results through the

detection of NLOS by using RSS changes over time or characteristics of differences

in RSS in dual-frequency bands.

The method of adjusting the PLM’s parameters to fit into a specific environment

improves the statistical ranging accuracy; however, there is a limit to reflecting com-

plex indoor spaces with severe NLOS conditions. The method that uses the time-

varying RSS has a disadvantage in terms of time consumption. The dual-band scheme

is based on the wave propagation characteristics in an NLOS environment with a car-

rier frequency. In practice, many off-the-shelf Wi-Fi APs and mobile devices are com-

patible with dual-band operation.

In addition, many approaches use deep learning techniques. Most localization al-

gorithms that use deep learning can be regarded as data-driven methods, as they involve
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a neural network model that is trained with RSS input and the corresponding position

labels. Replacing the entire localization process with a deep learning model causes

problems regarding vulnerability to environmental changes, similarly to fingerprint-

based methods. In this study, I propose a hybrid approach, which applies data-driven

deep learning to only the ranging part of a model-based localization algorithm. By per-

forming nonlinear regression using a neural network for the dual-band RSS, the rang-

ing accuracy was significantly improved compared to that of the rule-based method. In

addition, the proposed localization method has the advantage of being robust against

changes in the AP locations and spatial structure. A ray-tracing method was used to get

the channel data for a complex NLOS environment, and the ranging performance of

the proposed dual-band RSS was evaluated and compared to that of existing methods.

A comparison with existing methods using single-band RSS or rule-based ranging

showed the advantages of the proposed method in terms of positioning accuracy. In

addition, changes in the neural network structure of the deep regression model were

analyzed.

The remainder of this paper is organized as follows. In the next section, I introduce

some related studies. Section 3 explains the background of the propagation character-

istics of electromagnetic waves indoors. Section 4 presents the system model and the

proposed hybrid localization method using dual-band RSS. Section 5 presents a per-

formance analysis of the proposed method compared to existing methods, and Section

6 outlines the conclusions of the study.

2.2 Preliminary

A free-space PLM can be represented based on the Friis transmission formula [44].

PLfs = 20 log10(d) + 20 log10(f) + 20 log10(
4π

c
)−GTx −GRx, (2.1)

where PLfs denotes the free-space loss on the decibel scale, d is the distance (m) be-

tween the transmitter and receiver, c is the speed of light, f is the frequency, and GTx
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and GRx are the antenna gains of the transmitter and receiver, respectively. The PLM

in a typical LOS environment is similar to that in free space, and the path-loss differ-

ence between the 2.4 and 5.2 GHz bands only has an offset according to the antenna

gain and the frequency difference. However, in an NLOS environment, the PLM be-

comes more complicated. The site-general models are presented in previous research

for indoor environments, [21–23]. Among them, I consider the IEEE 802.11 specifi-

cation [21], which suggest a 2-slope model for the indoor Wi-Fi systems. The general

model can be represented as shown in (2.2).

r(d) =


r(d0)− 10η0 · log10

d
d0

+X0, if d ≤ dBP

r(dBP )− 10η1 · log10(d− dBP ) +X1, if d > dBP,
(2.2)

where r(d) is the RSS at distance d, and r(d0) is the RSS at the reference distance d0.

dBP is the break-point distance, which divides two regions according to the distance

from the transmitter. The two regions are modeled using different path-loss exponents,

which are denoted by η0 and η1, and different shadowing factors, which are denoted

by X0 and X1, respectively. This model is not appropriate for positioning, as it is a

statistical model for analyzing the quality of service in general indoor environments.

When radio waves propagate in a space with obstacles, they are affected by various

phenomena, such as reflection, scattering, and diffraction. As a result, the path loss

in an NLOS environment becomes extremely complex, and the average attenuation

depends on the material of the obstacle and the radio wave frequency. For example,

a cement wall, which is the most popular type of wall, shows significant differences

in transmission and reflection properties for the 2.4 and 5.2 GHz frequencies [24].

Considering the influence of walls, Obeidat et al. [25] presented the following effective

wall loss model, which is consistent with practical indoor environments:

r(d) = r(d0)− 10ηf · log10(
d

d0
)− ΣV

v=1Wv, (2.3)

where ηf is the path-loss exponent, and Wv is the attenuation caused by the v-th wall

in the propagation path. Focusing on the fact that the wall attenuation differs for each
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frequency band, the NLOS mode can be estimated. Fig. 2.1 conceptually represents

the attenuation tendency of the walls for two frequency bands. In free space, the at-

tenuation in two bands is similar, but the difference in attenuation between two bands

increases as there are more obstacles since the attenuation in 5.2 GHz is larger than

that in 2.4 GHz for obstacles. In fig 2.1, the path loss is expressed according to the

number of walls as if the discrete steps are clearly separated; however, in a practical

environment, this is not clear because the attenuation varies depending on the wall

thickness, material, and map composition. The key point is that the attenuation in the

5.2 GHz band for the same geometric environment tends to be large at a certain rate

compared to that in the 2.4 GHz band, and this can be an indicator of the severity of

the NLOS condition. I assume that there is a nonlinear relation between the severity of

the NLOS condition and the difference in attenuation between two bands.

Figure 2.1: Indoor path loss for the different frequency bands.
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2.3 System model

In this study, I assumed a Wi-Fi communication environment that uses a dual-band fre-

quency. As shown in fig 2.2, when the RSS at the target point x = [x, y]T is measured

by three or more APs, the RSS of the i-th AP is represented as ri = [r2.4i , r5.2i ], where

r2.4i and r5.2i denote the RSS of 2.4 GHz and that of 5.2 GHz, respectively.

Figure 2.2: Range-based localization scenario.

The proposed hybrid localization scheme is illustrated in fig 2.3. The basic struc-

ture is the same as that of the typical range-based localization method. The distances

between APs and target devices are estimated based on the RSS measured at the rang-

ing stage, and the position of the target node is estimated using the n-distance estimates

of n AP locations. In the ranging stage, the conventional rule-based method estimates

the distance by using the inversion of the PLM, which represents the RSS attenuation

according to the distance. For example, using the PLM in (2.2), the distance estimate

d̂ for the RSS value r can be calculated as follows.

d̂(r) =


d0 · 10

r(d0)−r
10η0 , if r ≤ r(dBP)

dBP + 10
r(dBP)−r

10η1 , otherwise.
(2.4)

In this study, I replaced this ranging part with a regression model that used deep
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Figure 2.3: Proposed hybrid range-based localization scheme.

neural networks. The details of the proposed method of using a neural network are

explained in the next section. After the distances from each AP are estimated, the po-

sitions of the target nodes are specified in the positioning stage. By using the known po-

sitions of the fixed APs and the estimated distances, trilateration-based algorithms can

be applied. Among the various trilateration-based algorithms, the iterative least-square

(ILS) method estimates the target position to be close to the optimal solution [45, 46].

The position estimate using ILS can be expressed as follows:

x̂(k) =

x̂(k)
ŷ(k)

 = x̂(k−1) +

δx
δy

 , (2.5)

where δx
δy

 =


(x1−x̂(k−1))

d
(k−1)
1

(y1−ŷ(k−1))

d
(k−1)
1

...
...

(xN−x̂(k−1))

d
(k−1)
N

(yN−ŷ(k−1))

d
(k−1)
N


+ 

d̂1 − d(k−1)1

...

d̂N − d(k−1)N

 , (2.6)
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and

d
(k−1)
i =

√
(xi − x(k−1))2 + (yi − y(k−1))2, (2.7)

where, x̂(k) is the position estimate for the k-th iteration, and (xi, yi) is the position of

the i-th AP. The initial position estimate x̂(0) can be set as the center of the map. The

proposed scheme is a hybrid method that is similar to the existing rule-based method,

but only the ranging part was replaced with the data-driven deep learning method.

The risk of overfitting was minimized by the data-driven learning part. Ultimately, the

position accuracy is increased by improving the ranging accuracy.

2.4 Proposed Ranging Method

In this study, I propose a deep regression model for dual-band RSS ranging. The

model’s structure is shown in fig 2.4. The input of the model is the dual-band RSS

vector, ri. The model has several hidden blocks, each of which is composed of a fully

connected (FC) layer, a batch normalization layer, and a rectified linear unit (ReLU)

activation function. The FC layer is a structure in which one node is connected to

all other nodes in the adjacent layer. It allows for nonlinear regression along with a

nonlinear activation function. Although the FC layer is simple and powerful, it is vul-

nerable to overfitting.To solve this problem, a batch normalization layer was inserted

into each hidden block. The use of the batch normalization layer mitigates internal

covariate shift phenomenon, which is the changes in the input data distribution affect

the training procedure. Typically, batch normalization makes the neural network more

stable and prevents the overfitting problem and increases the learning efficiency [47].

When the number of nodes of the FC layer of the l-th hidden block isM (l), an input

is represented as al = [a1, . . . , aM(l) ]T, and the output of the FC layer is expressed as
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Figure 2.4: Neural network structure for deep regression.
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follows:

y(l) =


y
(l)
1

...

y
(l)
M

 = Wl · al + bl, (2.8)

where Wl is an M (l−1) ×M (l) matrix representing the weights of the nodes in the FC

layer, and bl is a vector representing biases. These are parameters that can be trained

using data-driven learning. With the mini-batch size KB , the batch normalization re-

sult ȳ(l)m for the j-th sample is expressed as follows:

ȳ(l)m = γ(l)m ·

(
y
(l)
m,j − µm,B√
σ2m,B + ε

)
+β(l)m , (2.9)

where j ∈ [1,KB], y(l)m,j is the m-th node of the FC layer in the l-th hidden block.

µB and σ2B denote the sample mean and sample variance of y(l)m in the mini-batch,

respectively. The parameters γ(l)m and β(l)m are the scaling factors and shift factors, re-

spectively, and these are also updated through the learning process. By re-centering

and re-scaling the data for each layer, after batch normalization, the ReLU activation

function is applied. The use of ReLU activation function mitigates the gradient vanish-

ing problem that may occur in the FC layer, and allows the neural network with deep

structure to be trained efficiently [48]. After the ReLU activation, the output of the l-th

hidden block is as follows:

o(l)m =

 0, if ȳ
(l)
m < 0

ȳ
(l)
m , otherwise

(2.10)

The regression layer after the total of L hidden blocks is the FC layer with one

node, which performs the linear combination of the L-th hidden block’s output. The

proposed regression model can be trained with supervised learning by using the dual-

band RSS vector and the ground truth distance value as a label. Let the ground truth

distance be di, which corresponds to the i-th RSS vector; then, the mean square error

(MSE) E with the model output can be expressed as follows:
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E =
√

(yi − di)2. (2.11)

To train the proposed model, the gradient of the MSE in (2.11) with respect to each

parameter is computed by using the back-propagation algorithm, and the parameters

of the model are updated to minimize the average MSE for the training dataset.

The overall process of the proposed localization method is summarized in Algo-

rithm 1.

The number of hidden blocks and the number of hidden nodes constituting the

proposed model are user-defined hyperparameters. The deeper the neural network is,

the more complex the nonlinear function will be. However, there is a performance

limit when the structure is excessively complex compared to the input data. In the next

section, an analysis of the performance depending on the hyperparameters is presented.

2.5 Performance Evaluation

2.5.1 Ray-Tracing-Based Simulation

The proposed scheme assumes the installation of APs and the use of two frequency

bands in an indoor environment. For the simulation, a geometry-based channel was

created by using a ray-tracing method with real spatial information [49, 50]. Three

sites with different materials and structures were investigated. Fig 2.5 represents the

3D views and floor plans of the three sites, where (a) and (b) are academic buildings

(INMC and ASRI on the Seoul National University campus), and (c) is an apartment

building. The locations of the APs on each floor plan are marked with red circles. The

height of the APs was set to 1.5 m for each map. The Tx power was assumed to be 0

dBm, and the center frequency was set to 2.4 or 5.2 GHz.

Fig. 2.6 and fig.2.7 represent the RSS distribution according to the center frequency

when only one specific AP is considered in the map shown in fig 2.5a. Similarly to the

theoretical inference, the attenuation in the 5.2 GHz band is larger than that in the
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Algorithm 1 Proposed localization procedure.
<Offline stage>

Input

Training set R′: The set of dual-band RSS vector, ri = [r2.4i , r5.2i ],

and ground truth distance di for each sample

Validation set V′: The set of validation data, which are same kind of data as,

but not included in the training set

Initialize a neural network described in fig 2.4 with random weights, biases, and

normalization parameters.

for all training data grouped by mini-batch size of KB , do

Forward calculation for the NN

The output yi is a result of the last layer of the NN

Calculate the average MSE between yi and di in the mini-batch

Update parameters of the NN, by using back–propagation

end for

Find best–fit parameters of the NN that minimize MSE for the validation set

Output Trained NN as a deep regression model

<Online stage>

Input

Test data location of N APs and N RSS vector

Set a confidence threshold Thc

for each i-th AP do

Predict d̂i using the trained NN

end for

Find target position x̂, using Equation (2.5)–(2.7)

Output : Position estimate of target device x̂ = [x̂, ŷ]T
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(a)

(b)

(c)

Figure 2.5: The 3D maps and the top views of the environments: (a) INMC (academic

building), (b) ASRI (academic building), and (c) APT (residential space).
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2.4 GHz band, and the difference in attenuation between the two frequency bands is

verified to be larger under harsh NLOS conditions. For the evaluation of the ranging

and positioning performance, the RSS values from 12 APs were recorded at points on

a uniform grid approximately 1 m apart from each other for the three sites. The total

number of points evaluated for the three sites was 11,474, and the number of RSS–

distance pairs satisfying the noise floor condition was 74,912. All measurement points

were split into sets with the following proportions: 70% for the training set, 15% for

the validation set, and 15% for the test set; then, the deep regression model was trained

and evaluated by using the dual-band RSS and distance pairs.
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Figure 2.6: RSS map for an AP in the 2.4 GHz band.

Figure 2.7: RSS map for an AP in the 5.2 GHz band.
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2.5.2 Analysis of the Ranging Accuracy

Several existing ranging methods were used as benchmarks to verify the effectiveness

of the proposed method. Most previous RSS based ranging method used a single-band

RSS, To analyze the effect of using dual-band RSS, benchmarks 1 and 2 were set as a

rule-based raging method using only RSS in the 2.4 and 5.2 GHz bands, respectively.

These were based on a two-slope PLM as described in (2.2) that has been widely

used in existing studies. The PLM parameters for each frequency band were optimized

with linear regression to best fit the training data. For a single RSS measurement,

the distance can be estimated by PLM inversion as presented in (2.4). The ranging

accuracy of these methods can be affected by the accuracy of the PLM models. To

consider more complex PLM, benchmarks 4 and 5 used a non-linear regression model

using a neural network for single-band RSS data. Similar to the proposed method, deep

regression models were learned using the only RSS in the 2.4 and 5.2 GHz bands. The

benchmark 3 is the result of an existing rule-based ranging algorithm that uses the

dual-band RSS described in [31]. In the ranging method of Benchmark 3, the channel

states were divided into LOS, NLOS, and severe NLOS, and the path-loss exponents

were different for each state. The parameters of this rule-based methods were also

optimized to best fit the training data.

In fig 2.8, the results of benchmarks 1 and 2, which use the regression methods

based on the two-slope PLM, are represented by black lines, and the regression model

based on the neural network is expressed in green lines. The results in fig 2.8b,c show

the limitations of the ranging method using a single-band RSS. As only one distance

is mapped to one RSS value, the NLOS conditions cannot be distinguished. The re-

gression results of the two-slope PLM and the results of the neural network are similar

when using the single-band RSS. The ranging method using a neural network shows

an improvement in ranging accuracy. However, there is an upper limit for the ranging

method using the single-band RSS, regardless of how detailed the tuning applied is.

Fig 2.8d shows the ranging results of the existing rule-based ranging method using
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the dual-band RSS. In this method, two or more distances may correspond to the RSS

value of one band. The distance can be estimated by classifying the NLOS conditions,

but reflecting all of the various cases shown in (a) is difficult. In addition, because only

the path-loss exponent is adjusted to estimate the distance for the NLOS conditions,

there is a risk of amplifying the ranging error for misclassified cases.
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Figure 2.8: (a) Distance data of the ground truth, and the regression results of the (b)

2.4 GHz, (c) 5.2 GHz, and (d) dual-band frequencies.

The regression results of the proposed model are shown in fig 2.9. The NLOS con-

ditions were divided into several stages by using the dual-band RSS input. This reflects

the severe NLOS conditions, especially when there are multiple walls between anten-
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nas. The deep regression model was trained using data from various cases. Therefore,

it describes the ground truth of the test data better than the other rule-based models.

In the performance evaluation, the number of nodes in the hidden block was set to 64,

and the number of hidden blocks was set to 10.

Fig 2.10 shows the empirical cumulative distribution function (ECDF) of the rang-

ing errors according to the ranging methods. The key indicators of the results are sum-

marized in Table 2.1. In terms of the error between the estimated distance and the ac-

tual distance, the proposed method showed the best performance with a median error

of 1.49 m. This is approximately 36.1% lower than those of the benchmark techniques.

The benchmark results using the single-band RSS showed similar performances. This

is because there is a limit to the information that can be obtained from the single-band

RSS. The results of Benchmark 3, which used dual-band RSS, did not show good rang-

ing accuracy for the test environment. This is due to the limitation of the rule-based

ranging method in that it is difficult to reflect various cases in an indoor environment

with only three discrete channel states. Although the ranging accuracy improved in

some cases, the statistical performance of the total test samples was degraded because

ranging errors were amplified by misclassification in several other cases.
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Figure 2.9: Regression results of the distance–RSS data with the proposed method.
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Figure 2.10: Empirical cumulative distribution function (ECDF) of the ranging error.

Table 2.1: Ranging error results of each ranging method

Ranging Method
Ranging Error [m]

25%-tile 50%-tile 90%-tile Average

Benchmark1 0.96 2.60 9.75 4.05

Benchmark2 1.06 2.71 8.92 3.78

Benchmark3 1.05 2.57 9.67 4.580

Benchmark4 0.903 2.33 7.65 3.23

Benchmark5 0.88 2.68 7.85 3.471

Proposed method 0.53 1.49 6.28 2.52
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2.5.3 Analysis of the Neural Network Structure

The hyperparameters of the proposed deep regression model are adjustable variables.

There is a trade-off between the performance and computational complexity of the

neural network. I evaluated the average value of the ranging error by changing the

number of nodes and the number of hidden blocks, and fig 2.11 shows the results. The

ranging error is saturated to about 2.5 m, and having too many hidden blocks for the

small number of nodes decreases the ranging accuracy. The computational complexity

of the proposed model structure can be expressed as O(M2 ∗ L). Therefore, as the

structure becomes more complex, the computation increases excessively compared to

the performance gain. In this paper, I propose the use of 64 nodes in each layer and

eight hidden blocks, where the ranging accuracy is greater than the 95th percentile

value among the evaluated models, and the computational complexity is only 3.3%

compared to the model with the highest ranging accuracy.
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Figure 2.11: Average ranging error according to the structure of the neural network.
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2.5.4 Analysis of Positioning Accuracy

To analyze the effect of our proposed ranging technique on the range-based localiza-

tion accuracy, I used the ILS positioning method discussed in Section 2.2. In particular,

to reflect a change in the channel environment, I assumed a change in the AP deploy-

ment, as shown in fig 2.12. The fingerprint-based methods cannot be applied without a

new site survey, and the robustness of the proposed hybrid localization can be verified

in this scenario.

0 10 20 30 40 50

x [m]

-5

0

5

10

15

20

25

30

35

y
 [

m
]

Figure 2.12: A top view of the test environment.

Fig 2.13a shows the ECDF of the root mean square error (RMSE) between the

estimated and actual positions for a total of 1641 points. The key indicators are sum-

marized in Table 2.2. In terms of statistical results, the performance of the proposed

method was superior to that of the existing methods. The average RMSE of the pro-

posed method is similar to that of Benchmark 1 due to the outlier result of the ILS

positioning method. When comparing the median RMSEs, our proposed positioning

method showed a lower error than those of other existing methods by at least 22.3%.

Positioning results using the single-band RSS of 2.4 or 5.2 GHz had median errors of

2.73 m and 3.03 m, respectively, even when the deep regression method was applied.

These are 3.8% and 9% smaller errors, compared to the results of using 2-slope PLM-
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based method for each band. Meanwhile, the result of benchmarks 3, which was the

result of the existing rule-based method using the dual-band RSS, was 2.56 m. Addi-

tionally, the deep regression ranging method using the dual-band RSS could reduce the

median of positioning error to 1.99 m. It was a 22.3% improved result compared to the

result of benchmark 3. The effect of the deep regression method was more significant

with the dual-band RSS than with the single-band RSS.

Our proposed method is more effective for errors of the 50th percentile or less.

The histogram in fig 2.13b shows the distribution of spatial positioning errors. In each

histogram, the x-axis represents positioning RMSE, and the y-axis represents count.

The result shows that proposed method improved the overall positioning accuracy, and

increases the number of cases estimated within 2 m. This is because the proposed

algorithm effectively reduces the ranging error when the AP and the target device are

actually close to each other, but are blocked by walls.

27



0 1 2 3 4 5 6 7 8 9 10

RMSE of position [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l 
C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

Position error

Benchmark 1 + ILS

Benchmark 2 + ILS

Benchmark 3 + ILS

Benchmark 4 + ILS

Benchmark 5 + ILS

Proposed method + ILS

(a)

(b)

Figure 2.13: Empirical cumulative distribution function (a) and histogram (b) of the

positioning error.
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Table 2.2: Positioning error results for each ranging method

Ranging Method
Positioning Error [m]

25%-tile 50%-tile 90%-tile Average

Benchmark1 1.85 2.84 6.09 3.82

Benchmark2 2.11 3.33 6.63 4.98

Benchmark3 1.66 2.56 5.69 11.38

Benchmark4 1.67 2.73 5.70 28.38

Benchmark5 1.93 3.03 6.33 4.82

Proposed method 1.14 1.99 5.19 3.68

2.6 Summary

In this study, I proposed a hybrid localization algorithm that replaces only the ranging

part of the existing range-based localization method with a deep regression model that

uses data-driven learning. For the ranging part, the accuracy of distance estimation in

an indoor NLOS environment is improved by using the dual-band RSS, and this is

designed to cover various cases by using regression with a neural network. The im-

provements in the ranging and positioning accuracy of the proposed method were ver-

ified through a ray-tracing-based simulation for general indoor spaces. Furthermore,

the proposed localization method is compatible with various situations, even when the

indoor structure is changed. The prevailing fingerprint-based methods are cannot be

applied in the situation I assumed where the deployment of APs are different com-

pared to the offline stage.

Based on the results of ray-tracing based simulation, the use of dual-band RSS

could reduce the median of positioning error up to 2.56 m, which was a 9.9% smaller

error than the error obtained with the single-band RSS alone in the rule-based localiza-

tion. By applying the deep regression method to the ranging part, the median error of

1.99 m was obtained, which was a 22.3% improved result compared to the rule-based
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method. Considering that the use of deep regression with single-band RSS only caused

10% or less performance gain, the combination of the dual-band RSS and the deep re-

gression method was effective in improving the accuracy of range-based localization

using RSS.

The robustness of the proposed method encourages the use of RSS localization

because it can reduce the intensity of the site survey process. In addition, the proposed

method has the advantage that it can be implemented by using only the beacon signals

from APs, without any special communication overhead. This will be useful for small

IoT devices that are difficult to mount with multiple types of sensors or high cost

network interface controller.

However, some future research should be followed to apply the proposed method

in various situations. In this study, I considered the wall structure as a major factor of

the complex indoor channel. In the real environment, there are many small obstacles

that cannot be reflected in the ray-tracing based simulation, and the RSS fluctuations

caused by the multi-path effect. In addition, analysis of more diverse materials and

interior structures is required. After all, for a deep regression ranging model that oper-

ates robustly in various environments, as much experiments as possible are required to

train and to validate the model.

Nevertheless, the proposed method is still promising in that a properly trained

ranging model can be used even in an untrained environment. In practice, I expect to

increase the learning efficiency by using a transfer learning technique that tunes the

model trained through simulation with relatively small dataset from real experiments.

Furthermore, extending the research to the triple-band-based ranging method is possi-

ble by utilizing 6 GHz band communication, which is expected to be supported in the

Wi-Fi 6E standard.
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Chapter 3

Genetic Algorithm for Path Loss Model Selection in Sig-

nal Strength Based Indoor Localization

3.1 Motivation

Recently, several studies have been conducted on indoor location-based services (LBS).

LBS can be combined with various applications such as indoor guidance, resource

management, security, and surveillance. For various LBS, indoor positioning or the

so-called localization technique is a core technology. It is the one of the major internet

of things (IoT) enabling techniques [1–3] and is also a key technology for 5G based ap-

plications [4]. Several studies based on wireless communications have been conducted

to estimate locations in an indoor environment where hard to use global navigation

satellite systems (GNSS) due to the blockage and the degradation of GNSS signals.

Specifically, studies have been conducted using wireless local area network (WLAN)

standard (known as Wi-Fi) [3, 6, 26, 27, 51–60]. Currently, most mobile devices sup-

port Wi-Fi, which can provide received signal strength (RSS) information between a

device and access point (AP). Therefore, Wi-Fi RSS based localization method can

be implemented without any additional investment in the off-the-shelf systems. Wi-Fi

localization can be classified into range-free localization and range-based localization.
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The former provides an approximate location using only connectivity with APs [61,62]

or includes fingerprinting techniques [3, 6, 26, 51, 52, 58–60].

Wi-Fi fingerprinting methods are typically composed of two stages: offline and on-

line. In the offline stage, the signal patterns are measured at several reference points in

advance. In the online stage, the temporal signal pattern is compared with the existing

database to estimate the position. Various types of information are used as components

of the signal patterns. The pattern can be implemented by measuring the RSS from

multiple APs [54,55,58,59], time of arrival (TOA) based information [54], or channel

state information (CSI) which is more low-level information than RSS [26, 27]. These

methods commonly require considerable effort for reference data collection in the of-

fline stage and are prone to becoming a very site-specific algorithm. In other words, it

is difficult for these methods to perform consistently in areas where the wireless chan-

nel changes due to movement of internal structures or obstacles, or where site surveys

are not sufficiently conducted. Furthermore, these methods may require an additional

offline stage to cope with changes in the number or location of APs, furniture, and

other minor changes in the environment.

Range-based localization consists of a ranging stage and positioning stage. In the

ranging stage, the distance between the mobile node and APs is estimated. The po-

sition can be estimated using a trilateration or triangulation-based geometric method

in the positioning stage [40, 45, 46, 56, 63–66]. Range-based localization is advanta-

geous because it can be used in most commercial devices, and it does not require as

much site survey as the fingerprinting methods. In the RSS ranging stage, the path loss

model (PLM) inversion or a polynomial of the RSS can be used [38]. Most of these

studies assume a 1-slope or 2-slope PLM similar to the one represented by the IEEE

802.11 standard [21]. When considering the path loss inversion method, the RSS rang-

ing method needs an accurate PLM for indoor environments [39,67]. However, ranging

errors are inevitable because it is very difficult to reflect the site-specific channel model

in a real indoor environment. Among these errors, a distortion of the estimated distance
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due to the non-line-of-sight (NLOS) condition is the most significant problem [38].

To mitigate ranging errors, it is necessary to determine the proper PLM for indoor

localization. A few studies have aimed to improve the ranging performance by setting

more suitable channel parameters, such as the path loss exponent (PLE) and an addi-

tional loss term [41, 42, 45, 68], or, by estimating the channel parameter directly in the

locations where the APs are installed [40, 63, 69, 70]. In addition, in a recent study,

a ranging technique was proposed where the channel characteristics are reflected in

a neural network using an unsupervised learning process [54]. Methods for optimiz-

ing channel parameters require a large amount of measurement or pre-learning at the

target locations. Furthermore, a model that is highly tuned to specific place risks loss

of generality and is vulnerable to temporal and spatial changes in the site. Therefore,

the channel model used for the ranging process should not be too general or too site-

specific.In addition, it is necessary to consider that the channel characteristic between

the mobile device and each AP can change in every localization trial due to the move-

ment of people and objects. The previous studies assumed the same PLM for multiple

APs, fluctuating the RSS value. However, to obtain an accurate ranging result from

RSS value in indoor environments, it is indispensable to consider the coexistence of

PLMs with different states for each AP.

This paper proposes an RSS-based localization method based on the overlapped

multi-state PLM to reflect various channel characteristics for indoor environments.

The overlapped multi-state PLM is formulated as if it were a superposition of poten-

tial 1-slope models, which can cover the channel states of all APs connected with a

device at given instant in time. In the proposed method, distances between the mo-

bile device and APs are estimated as several candidate values based on the overlapped

multi-state PLM, combinations of estimated distances are calculated using trilatera-

tion, and the position is selected from these combinations by minimizing the residual

error of localization. To reduce the complexity burden of finding the optimal channel

combination, a genetic algorithm (GA) is applied. A detailed algorithm description and
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analysis of the computational complexity are presented in later sections. The proposed

method improves the accuracy of RSS-based indoor localization while minimizing site

surveys and channel parameter tuning. I evaluated the localization performance of the

proposed algorithm using a numerical analysis via ray-tracing based simulations for

indoor environments and with experiments at a real site.

The contributions of this paper can be summarized as follows:

1) To cope with complex indoor channels, a method considering an overlapped

multi-state PLM is proposed. This method can be used in general indoor places

adaptively, without prior site investigation.

2) I design an efficient search algorithm using a GA to reduce excessive computa-

tion and enable practical usage while maintaining the positioning accuracy.

3) The proposed localization method only uses the RSS, which is available in

most off-the-shelf products. Therefore, it can be implemented without additional

hardware cost. Localization performance is verified with ray-tracing based sim-

ulations and real site experiments for Wi-Fi.

The remainder of this paper is organized as follows. In the next section, I present

RSS-based ranging and positioning techniques. In Section III, I propose a localization

method based on an overlapped multi-state PLM. Section IV shows a performance

analysis of the proposed method through ray-tracing based simulations and real on-

site experiments for Wi-Fi. Section V outlines the conclusions of the study.

3.2 Preliminary

I consider a range-based positioning scenario, where N APs and a device are lo-

cated in a two-dimensional space as illustrated in Fig. 3.1. I denote x = [x, y]T and

xi = [xi, yi]
T as the coordinates of the device and i-th AP, respectively. RSS informa-

tion can be measured from both in device or APs. For example, the device can obtain
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Figure 3.1: An example of RSS based localization.

RSS from all nearby APs by receiving the beacon frames transmitted by each AP.

Conversely, APs can also measure RSS by detecting a packet of the device. I denote

r = [r1, r2, ..., rN ]T as a vector of RSS measurement, where ri represents the RSS

from the i-th AP. Depending on the amount of signal attenuation, the distance from

each AP can be estimated. Subsequently, the location of the device can be obtained by

applying trilateration techniques with distance estimated from multiple nearby APs. In

this section, I briefly summarize RSS-based ranging and positioning techniques.

3.2.1 RSS-based Ranging Techniques

The amount of signal attenuation from the transmitter can be explained by propaga-

tion model. 802.11TGn model provides an indoor channel model for typical Wi-Fi

systems [21]. The main factors affecting the indoor distance estimation include the

channel characteristic elements and attenuation based on the distance, corresponding

to a large scale fading and shadowing effect due to walls or obstacles. The small scale

fading effect due to a multi-path can be disregarded for RSS based ranging, as it causes

small change in RSS compared to the aforementioned factors and can be mitigated by

averaging RSS in a very short time [38, 71]. Thus, the attenuation for ranging can be
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expressed with the PLM. The simplest PLM is a 1-slope model, which represents the

RSS in decibel scale at distance d from the transmitter as

p(d) = p(d0)− 10η log10
d

d0
+X, (3.1)

where p(d0) is the RSS at a reference distance d0 and η is the PLE. In addition, X

represents a shadowing factor, which is typically modeled as a zero mean Gaussian

random variable with the standard deviation of σ.

To model sophisticated attenuation pattern more accurately, a 2-slope model is

proposed [21]. This model predicts the RSS as

p(d) =


p(d0)− 10η0 log10

d
d0

+X0, if d ≤ dBP

p(dBP )− 10η1 log10(d− dBP ) +X1, if d > dBP,
(3.2)

where dBP is called the break point distance, which separates two regions depend-

ing on the distance from the transmitter. The two regions are modeled using different

PLEs denoted by η0 and η1, and different shadowing factors denoted by X0 and X1,

respectively. In the indoor, the transition at dBP is mainly because of the obstructions,

and the points father than dBP can be considered in NLOS condition [72]. The indoor

path loss characteristic and the parameters have been studied much and the other stan-

dard documents also propose similar models by synthesizing the results of previous

research [22, 23].

Using the one-slope PLM in (3.1), the distance from an AP can be estimated by

d̂(p) = d010
p(d0)−p

10η , (3.3)

where p represents the current RSS measurement from the AP. In case that the 2-slope

PLM is used, I can estimate the distance depending on the RSS as follows:

d̂(p) =


d010

p(d0)−p
10η0 , if p ≤ p(dBP)

dBP + 10
p(dBP)−p

10η1 , otherwise.
(3.4)
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Remark 1: The measured RSS is generally affected by various factors such as

the distance between the AP and the device, presence of an obstacle, and antenna

directionality. A dynamic shadowing effect caused by the walls, obstacles, and moving

people, which makes accurate modeling difficult in practical indoor environments.

3.2.2 Positioning Technique

With distance estimates from at least three nearby APs, I can estimate the position of

the device using trilateration methods. The estimated position x̂ can be expressed by

x̂ = arg min
x

ε(x), (3.5)

where ε(x) represents the cost function, which is defined as the square sum of ranging

errors. It is represented by

ε(x) =
N∑
i=1

(
‖x− xi‖ − d̂(pi)

)2
, (3.6)

where ‖a‖ =
√
aTa indicates the L2-norm of a column vector a, and d̂i represents

the distance estimate from the i-th AP using either (3.3) or (3.4) depending on the

PLM used for the ranging procedure. Two basic trilateration approaches can be found

in literature: (i) the linear least square (LLS) method that computes x̂ using matrix

operations [64], and (ii) the iterative least square (ILS) method that iteratively obtains

the solution [45, 46].

In this work, we use the ILS method, which has been known to produce more

precise positioning results than the LLS method [45]. The ILS method begins with a

coarse estimate of the device’s position. To this end, I simply initialize the device’s

position as the center of all nearby APs as follows:

x̂(0) =
1

N

N∑
i=1

xi. (3.7)

At iteration k ≥ 1, the ILS method updates the estimated coordinates of the device as

x̂(k) = x̂(k−1) − λ∂ε(x)

∂x

∣∣∣
x=x̂(k−1)

, (3.8)
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where x̂(k) represents the estimated position of the device after k iterations, and λ

denotes the learning rate that controls the convergence speed. The derivative of the

cost function with respect to x is derived as

∂ε(x)

∂x
=

N∑
i=1

2
(
‖x− xi‖ − d̂i

) x− xi
‖x− xi‖

. (3.9)

The update process presented in (3.8) is executed until the solution converges. In most

indoor localization scenario, the solution nearly converges in 10 iterations [46].

Remark 2: In existing localization methods, the factor that mainly causes the rang-

ing error is the imperfection of the PLM. Ranging error usually causes a large residual

error in the LS based methods and sometimes even makes the solution diverge in the

ILS method. To prevent this, it is necessary to estimate the distance using a proper

PLM. However, whether a fixed empirical model or a trained model is used, it is dif-

ficult to reflect channel characteristics that change with time and device location. At a

certain instant in time, the channel from the mobile device to each AP may be differ-

ent, and even for the same AP, the channel characteristics change due to movement of

the device.

3.3 Proposed localization method

In this section, I define the overlapped multi-state PLM to improve ranging accuracy

under dynamic indoor channel characteristics. Based on the overlapped multi-state

PLM, a localization method is proposed. Then, a GA is applied to reduce the compu-

tational complexity of the proposed localization.

3.3.1 Localization Algorithm with Overlapped Multi-State Path Loss Model

Let us define K to be the number of states for the overlapped multi-state PLM and N

as the number of APs. The k-th state for the overlapped multi-state PLM is defined as

pk(d) = p(d0)− 10ηk log10
d

d0
− βk +Xk, (3.10)
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where ηk is the PLE,Xk represents the shadowing term, and βk denotes a constant off-

set for the k-th PLM. Even with the same RSS measurement from an AP, the distance

from the AP can be estimated differently depending on the PLM. With the current RSS

measurement p from an AP, the estimated distance using the k-th PLM is expressed by

d̂k(p) = d010
p(d0)−βk−p

10ηk . (3.11)

The overlapped multi-state PLM reflects various channel characteristics in practical

indoor environments. By varying the PLM parameters η and β of each state, the pro-

posed model can contain various channel situations. To consider indoor environment

where LOS and NLOS states are mixed, K should be more than 2. In particular, to

subdivide the NLOS state, I set K to be 4 or 8 herein.

The main differences between the conventional channel model in (3.2) and the

proposed channel model in (3.10) are the number of states and the manner in which the

PLM components constitute each channel model. In (3.2), two regions are classified

according to the break point distance. Because (3.2) is a one to one function, it cannot

accurately estimate the distances for all APs in complex situations, for example, RSSs

are same, but distances are different or vice versa. However, in (3.10), I consider all

possible PLMs for the same RSSs until the optimal combination of PLM states is

selected. This is why the proposed model is termed as an “overlapped” multi-state

pathloss model. Here, the discrete PLM parameter setting estimates the combination

of channel states of APs using less information following the proposed algorithms.

For a given RSS measurement vector,K PLM states should be considered for each

AP. To this end, I denote s(i) ∈ {1, ...,K} as a specific choice of PLM state for the

i-th AP and define a vector s = [s(1), ..., s(N)]T to represent the selection of the PLM

for every AP. In addition, I denote S as the set of all possible combinations of s, where

the number of elements in this set is denoted by KN as each AP can select one out of

K PLM states.

Fig. 3.2 shows an example of localization based on overlapped multi-state PLM,
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Figure 3.2: An example of positioning with multi state ranging.

where K = 3 and N = 4. Based on the overlapped multi-state PLM in (3.10), K

distances are estimated for each AP. The assumption of overlapped multi-state PLM

results in concentric trajectories centered on the AP. Hence,the circles intersect each

other at several points in Fig. 3.2, and a combination of PLM states for each AP is

equivalent to a combination of one circle per AP in Fig. 3.2. Using the ILS method, I

can estimate the solution of x for each combination of PLM states s ∈ S.

Our objective is to determine the optimal combination of PLM states ŝ and position

estimate x̂ at the same time, by minimizing the residual errors as

(x̂, ŝ) = arg min
x,s∈S

ε̄(x, s), (3.12)

where the cost function is defined as

ε̄(x, s) =
N∑
i=1

(
‖x− xi‖ − d̂s(i)(pi)

)2
. (3.13)

The channel state of each AP cannot be found individually and can be determined

by investigating the residual error from the overall combination. This makes the op-

timization problem in (3.12) be non-linear. Therefore, too much computational cost

must be expended to find an optimal solution for this problem in a general way. No-

tably, KN channel state combinations severely increase the amount of computation
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required. The thorough searching method that calculates all cases in a search space

is called as the exhaustive search or brute-force search. In addition to the process of

finding a combination of channel states suitable for each AP, the exhaustive search

algorithm eventually estimates the optimal location of the device under possible PLM

combinations. A methodology using the residual error to select or calibrate channel

parameters has been verified previously [54,63]. The procedure of finding the optimal

solution via exhaustive search is summarized in Algorithm 2. Although the optimal

solution can be found with this method, the computational overhead is too large.

Algorithm 2 Exhaustive Search for Proposed Multi State PLM
Input: Position of N APs x1, ...,xN and RSS vector p = [p1, . . . , pN ]T

K : The number of possible state for each APs

N : The number of APs

for s ∈ S do

for i = 1 to N do

Compute distance estimate d̂s(i)(pi)

end for

Find an optimal position x̂s using ILS method

Calculate error ε̄(x̂s, s) in (3.13)

end for

Select ŝ with the smallest ε̄(x̂s, s) and denote x̂ = x̂ŝ.

Output : Position estimate of target device x̂ = [x̂, ŷ]T

3.3.2 Localization with Genetic Algorithm-Based Search

To reduce the computational complexity of the Algorithm 2, I design a search method

that applies a GA. The application of a GA in an optimization problem can increase
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Figure 3.3: A block diagram of genetic algorithm.

efficiency greatly. It does not always guarantee a globally optimal solution, however it

can find a sub-optimal solution within a reasonable amount of computation time [73].

Fig. 3.3 shows a block diagram of a typical GA. Based on this workflow, we developed

the proposed positioning algorithm.

First, each of K PLM state is encoded in a form of gene, which is expressed by

dlog2Ke bits. For instance, in case of K = 8, each PLM state is expressed by a

gene from a set of 3 bit sequences {000, 001, ..., 111}. Using the encoded genes, the

selection of PLM state for N AP can be expressed.

When an RSS vector is measured from N APs, the candidate solution, which is a

combination of the potential channel models, can be expressed in the form of a 3N bit

chromosome, g = [g(1), g(2), ..., g(N)]. For instance, an arbitrary s = [1, 2, 7, 3] is

encoded into g = [000 001 110 010].
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After the encoding stage, a population consisting of initial candidate solutions are

randomly generated. The pool size of the initial population should be adjusted accord-

ing to the size of the problem. For indoor localization, the number of APs and the

number of potential PLMs should be considered. Once the pool size has been deter-

mined, a population set G is composed of gn vectors initialized to arbitrary binary

values, where n ranges from 1 to the pool size. It corresponds to a randomly selected

subset in ∫ , and each chromosome gn is a potential solution of a combination of PLM

states for a given RSS vector.

Each candidate solution is ranked using the evaluation process. In this case, the

residual error is calculated using a position estimation algorithm by assuming chan-

nel state combination corresponding to each chromosome. For evaluation and ranking,

each chromosome g ∈ G is decoded into channel state combination s and the resid-

ual error ε̄(x̂, ŝ) is calculated. Based on this, only 20% of the population is selected

to remain in the order of small residual error. Let Ḡ denote the selected 20% of the

population in G.

Then, child solutions are reproduced by crossovers from two randomly selected

chromosomes in the selected group. The reproduction procedure mainly comprises

two genetic operators: crossover and mutation. I applied a general method as presented

in [73]. Two chromosomes are randomly picked in Ḡ and mated. A random crossover

point is selected and based on this, the tails of two chromosomes are swapped to gen-

erate child chromosomes as described in Fig. 3.4 (a). The figure shows a special case

where chromosomes are 12 bits. In this way, the child population is reproduced up to

the pool size. For the generated chromosomes, a mutation process is performed that

converts all bits of solutions to opposite bits with a low probability (approximately

1-5% in this case). Fig. 3.4 (b) shows a conceptual example of the mutation operator.

This process prevents the local minima problem, where the final solution is biased by

the initial parent group. That is, even if the initial set randomly generated is somewhat

wrong, the GA causes to near-optimal solution with high probability.
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(a)

(b)

Figure 3.4: Example case of the genetic operator: (a) Crossover and (b) Mutation.

For the reproduced set G, the evaluation and reproduction processes are repeated

until the termination conditions are satisfied. In general, this iterative process can be

terminated when the maximum iteration limit is reached, when the residual error of a

specific solution satisfies the minimum criteria, or when there is no further improve-

ment in the successive iteration. A pseudo code of the proposed method is summed up

in Algorithm 3

Before the positioning process, the accuracy of the PLM states cannot be deter-

mined by observing the signal strength from one AP. When there are observations

from multiple APs, the residual error of estimation is greatly reduced when the channel

selection of each AP is inconsistent with each other. Due to these characteristics, so-

lutions containing a subset of genes with consistency in the genetic search process are

likely to survive in the evaluation and reproduction process. These subsets are merged

to select a solution close to the optimal state. Through this process, the near-optimal

solution is gradually obtained.
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Algorithm 3 Proposed localization algorithm using multi-state overlapped PLM and

GA based search
Input : Position of N APs x1, ...,xN and RSS vector p = [p1, . . . , pN ]T

m : The pool size of an generation

N : The Number of APs

(Initialization)

Encode PLM states into chromosomes with binary format

Generate a set of m initial population as G = {g1, ...,gm}

while max iteration not reached or the best fitness ≤ threshold do

for g ∈ G do

Recover PLM state vector s from g

for i = 1 to N do

Compute distance estimate d̂s(i)(pi)

end for

Find an optimal position x̂s using ILS method

Calculate residual error ε̄(x̂s, s) in (3.13)

end for

(Reproduction)

Rank results in order of low ε̄ and select top 20% as a parent set

Reproduce child chromosomes from the parent set, by using crossover and muta-

tion operation

end while

Select the optimal state ŝ with the smallest ε̄(x̂s, s) and denote the estimated position

as x̂ = x̂ŝ.

Output : Position estimate of target device x̂ = [x̂, ŷ]T
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Near-optimal solutions from GA are not guaranteed to be global optimal. Never-

theless, it is advantageous to use GAs because of the computational benefit. Table 3.1

shows the relative computational complexity of the presented algorithms. When defin-

ing the computational complexity of the ILS method with conventional PLM as 1, the

computational complexity with exhaustive search and K-state PLM is approximately

KN . As the number of APs (N ) increases, the computational complexity becomes too

high. On the contrary, the GA based search method can restrict computational com-

plexity to a certain level. Even though there is a trade-off between the quality of the

near-optimal solution and computational complexity, the proposed algorithm can be

expected to find a good enough solution with the complexity restricted to below 2000.

The numerical verification is discussed in the next section.

Table 3.1: Relative computational complexity

ILS Exhaustive search GA based search

Conventional PLM 1 - -

4-state PLM - 4N ∼ 2000

8-state PLM - 8N ∼ 2000

3.4 Performance evaluation

This section presents a performance analysis of the proposed localization methods

using numerical simulations and experiments in indoor environments. For numerical

simulations, RSS data are generated using 3-dimensional ray-tracing technique as de-

scribed in [50], which utilize the spatial information of real sites. In the ray-tracing

simulation, the power of each path between antennas is calculated using the wall in-

formation, considering propagation, reflection, and transmission loss. By synthesizing

the calculated ray information, it is possible to simulate the RSS attenuation charac-

teristics similar to the real measurement. Experimental measurements are also per-
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formed using commercial smartphones and APs in indoor environments. Especially,

I conducted measurement in an emergency room in a hospital, where the localization

technology is required for resource monitoring or surveillance. As a benchmark to

verify the effectiveness of the proposed overlapped multi-state pathloss model, we set

the conventional PLM as a single state PLM composed of 2 slopes depending on the

distance, like in [21]. In this model, dBP and reference power are user defined factors.

I set dBP as 5 m, which is one of reference values in [21] and shows quite good rang-

ing accuracy in our analysis. The reference RSS was set as the RSS at the reference

distance of 1 m for the ray-tracing simulation and 1.6 m for the real site, which has

restricted areas near some APs in the hospital. Additionally, we compared some ex-

isting algorithms that improved range based localization. The method in [63] is the

on-site channel estimation method based on sampled information from communica-

tion between APs, and the method in [66] is the weighted least square method, which

considers that a weak RSS is likely to be a measure of the NLOS environment and it

is less accurate to use RSS ranging. Moreover, the method in [70] induces positioning

accuracy gain by optimizing the path loss exponent.

For the overlapped multi-state PLM, I consider two cases with 4 and 8 states,

respectively. The PLM parameters η and β of each state can be defined based on back-

ground knowledge about indoor propagation channel and previous research [21–23].

The pathloss exponent η can be determined in the range of 2 to 3.5 and the β can be set

taking into account the attenuation of obstructions. In this study, I proposed parameter

sets for 4 and 8 states PLM as a reference. The parameters for the ray-tracing based

simulation environment and for the real-site experiments are shown in Tables 3.2 and

3.3, respectively. I designed almost the same parameter sets to be used for both situ-

ations. Some differences in p(d0) and β betIen Table 3.2 and Table 3.3 comes from

the difference in the transmit poIr of the APs and the reference distance. To apply the

proposed GA-based search algorithm, the state of each model is binary encoded to the

gene code as shown in Tables 3.2 and 3.3.
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Table 3.2: Path loss parameters for the ray-tracing simulation

Case State p(d0) η β Gene code

Conventional PLM
LOS -19 2 0 0

NLOS -9 3.5 0 1

4-state PLM

1 -19 2 0 00

2

-14

3.2 0 01

3 3.2 2 10

4 3.2 6 11

8-state PLM

1

-19

2 0 000

2 2 2 001

3 2.2 5 010

4

-12

3.2 0 011

5 3.3 2 100

6 3.3 4 101

7 3.5 6 110

8 3.5 8 111
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Table 3.3: Path loss parameters for the experiments

Case State p(d0) η β Gene code

Conventional PLM
LOS -39 2 0 0

NLOS -35 3.5 0 1

4-state PLM

1 -39 2 0 00

2

-31

3.2 0 01

3 3.2 7 10

4 3.2 12 11

8-state PLM

1

-39

2 0 000

2 2 2 001

3 2.2 2 010

4

-34

3.2 0 011

5 3.3 2 100

6 3.3 4 101

7 3.5 2 110

8 3.5 4 111
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3.4.1 Numerical simulation

Fig. 3.5 represents the 3D modeling environment and a top view of the simulation

space. I modeled an indoor space of 40 m × 32 m, whose structure was mainly com-

posed of concrete walls, glass windows, and iron doors. For generating RSS vectors,

I assume that the APs are installed at the 12 locations indicated by red diamonds in

the top view of Fig. 3.5, where N = 12. To reflect cases in various channel condition,

3381 uniformly distributed points in the space were tested. The distance between each

test point is approximately 0.6 m. We assumed a WLAN system, particularly commer-

cial Wi-Fi network whose center frequency is 2.4 GHz [74], and set a transmit power

of 20 dBm, center frequency of 2.4 GHz. In the simulation, I assumed a noise floor

of -65 dBm which makes the dynamic range of the RSS similar to that of real on-site

experiments.

Fig. 3.6 (a) shows distance versus RSS data. LOS with η0 = 2 is represented as a

red line and NLOS with η1 = 3.5 is represented as a blue line based on the 802.11Tgn

standard in [21], whose parameters are shown in the 2-slope PLM row in Table 3.2.

Since the LOS / NLOS condition is mixed with short distances and additional losses

due to multiple walls, there are limitations to approximating the PLM as simple 2-slope

model. Particularly, the 2-slope model cannot account for NLOS condition. I consider

4-state and 8-state PLMs like (3.10) with the corresponding parameters given in Table

3.2. Fig. 3.6 (b) represents the superposition of 8 potential PLMs. These 8 potential

PLMs also do not cover all channel conditions, but they can effectively improve the

position estimation accuracy by considerably reducing the distance estimation error

when proper potential PLMs are matched. Since it is difficult to distinguish the channel

state from the RSS of one AP, it can be inferred that the channel state combination and

distance must be estimated based on the consistency in the positioning stage.

The root mean square error (RMSE) of the position resulting from the ILS method

with conventional PLM, and the exhaustive search in Algorithm 1 and GA based

search in Algorithm 2 for 4-state and 8-state PLMs are compared to evaluate their
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Figure 3.5: Simulation environment utilized in ray-tracing: (a) 3D view and (b) Top

view.
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Figure 3.6: Path loss modeling for ray-tracing simulation: (a) Conventional 2 slope

model, and (b) Proposed 8 states model.
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performance. Fig. 3.7 shows the empirical cumulative distribution function (ECDF) of

RMSE for each benchmark. The statistical results for the position error are summa-

rized in Table 3.4. Numerically, when finding the optimal solution using the 4-state

PLM, the average RMSE of the proposed method is improved by 7.7% compared to

that when using the conventional PLM. In terms of accuracy, the exhaustive and GA-

based search methods show similar result with the 4-state PLM as shown in Table 3.4.

For the 4-state PLM, even the mean position error using the GA-based search method

is slightly lower than that using exhaustive search. Due to the imperfection of the PLM,

the exhaustive search method does not guarantee the best result. It can be interpreted

that the results from exhaustive search and the GA based search are substantially sim-

ilar within the error range. The proposed GA method with the 8-state PLM shows

the best RMSE accuracy with an average of 3.38 m, which is a 23.9% improvement

over the results obtained using the ILS method with conventional PLM. The result

also showed good performance when the method in [63] or [66] was applied in the

simulation environment. The localization algorithm with channel parameter calibra-

tion in [63] and the weighted least square method in [66] can improve RMSE accuracy

up to an average of 3.66 m and 3.79 m, respectively. However, the proposed method

considering the multi-state PLM showed an even better performance, with an aver-

age of 3.38 m. The method in [70] exhibits a poor localization performance. It seems

that increasing the positioning accuracy by optimizing the common PLE proves to be

difficult in a complex indoor environment.

To examine the statistical validation of the simulation results, I verified whether

the differences in the positioning error set of each algorithm were significant using

Welch’s t-test [75]. These analyses showed that there were significant differences in

all the results of the algorithms, except for the comparison result of the algorithm

using exhaustive search and the algorithm using GA-based search. These results justify

that the proposed GA-based localization algorithm can derive the same results as the

exhaustive search method.
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Figure 3.7: Positioning accuracy in simulation using each method.

Table 3.4: Position errors using ray-tracing based simulations

Positioning method
RMSE [m]

50%-tile 90%-tile Mean

ILS method with Conventional PLM 3.78 7.81 4.44

Exhaustive search with 4-state PLM 3.73 7.02 4.10

GA search with 4-state PLM 3.69 7.08 4.08

Exhaustive search with 8-state PLM - - -

GA search with 8-state PLM 3.01 6.15 3.38

Localization method in [63] 3.25 6.59 3.66

Localization method in [66] 3.21 6.49 3.79

Localization method in [70] 4.39 12.54 6.18

54



3.716

3.023 3.018 2.975

4.048

3.356 3.366 3.303

4 8 16 32

Number of states

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M

S
E

 o
f p

os
iti

on
 [m

]

median
average

Figure 3.8: Positioning accuracy according to the number of states.

Although the increased number of states results in the improvement in position-

ing accuracy, there are some limitations. Fig. 3.8 depicts the result of the simulation,

showing the accuracy according to the number of states of the proposed algorithm. In

terms of the median and average of the positioning error, the positioning accuracy was

saturated beyond the 8-state PLM. I expect that the proposed algorithm with the 8-

state PLM can demonstrate an acceptable positioning performance in a typical indoor

environment.

The computational complexities of the ILS and the proposed methods are pre-

sented in Table 3.1. For the 4-state PLM, the proposed exhaustive search method needs

calculations up to 412 = 16, 777, 216 times that of the pimple ILS method, whereas

the 8-state PLM requires calculations up to 812 > 6 × 1010 times that of the simple

ILS method, which is not reasonable for direct calculation. I restrict the computational

cost of the proposed GA method to less than 2000 times that of ILS method with the

simple PLM by adjusting the termination condition. In fact, the algorithm required an
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average of 500 times the computational cost compared to the conventional method.

This can be regarded to make the algorithm sufficiently usable on a mobile device, and

the proposed method has confirmed feasibility.

3.4.2 Experimental results

For more thorough verification, I evaluated the proposed localization algorithm with

real site experiments. Fig. 3.9 shows the floor plan of the experimental site, which was

an emergency room of a general hospital in Seoul, South Korea. The interior is a com-

plex indoor environment that is divided by several walls and contains various obstacles

such as beds, desks, and medical devices. Since the emergency room operates 24 h a

day, experiments were conducted in a space that always had moving people. The APs

for RSS collection are model-S600 manufactured by AIRTMS in South Korea. Total 7

APs were installed at locations marked with a blue star in Fig. 3.9. Measurements were

performed in a hand held state at each point indicated by a red dot. In the measurement

experiment, smartphones such as the Apple iPhone 6, Samsung Galaxy Note 4, and LG

G6 were used. Both the APs and smartphones are commercially off-the-shelf products

that support 802.11n standard WLAN communication. The distance between each test

point is approximately 1.5 m. In the experiment, the mobile devices broadcast Wi-Fi

packets and the installed APs capture it at the same time. I post-processed the RSS data

based on the recorded mac address and time contained in the packet. The frequency

of capturing packets depends on the communication link quality. Consequently, 3 to 7

APs were connected at each point, and 3 to 10 RSS samples per second were measured

for each AP. In order to mitigate the effects of small scale fading, the average value of

RSS measured for a few seconds was used. In a real environment, measurements are

noisy compared to simulations because antenna orientation, obstruction, and shadow-

ing by moving humans, device inequality, and other anomalies make the channel more

diverse. In addition, because RSS of different mobile devices were fused, the measured

data includes errors according to the characteristics of each device. Although I used
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three different types of smartphone, the error is relatively small compared to shad-

owing and fluctuation caused by the direction of the device, the structure of the wall,

and obstacles. Therefore, I did not make corrections for mobile devices in this exper-

iment. If the RSS error caused by the characteristic of the device becomes significant

in some cases, it can be expected that that will also be corrected via proper channel

state selection of the proposed algorithm. By using the measured RSS vectors at each

point, the results of the localization algorithms are analyzed. The PLM parameters for

localization algorithm are presented in Table 3.3.

As RSSs from up to N = 7 APs are available, for the 4-state PLM, the exhaustive

search method requires 47 = 16, 384 times the calculations required for the simple ILS

methods; similarly, the 8-state PLM requires 87 = 2, 097, 152 times the calculations.

When GA is applied, it is possible to obtain a similar accuracy as that of the exhaus-

tive search, while limiting the calculations amount to an average of 300 times and

up to 1000 times the calculations required simple ILS method, by setting termination

conditions.

The results of applying the proposed positioning method to the measured 70 points

are shown in Fig. 3.10, and Table 3.5 shows some key values regarding the positioning

results in real site experiments. The proposed methods considering multi-state PLM

can reduce positioning error considerably. The proposed GA method shows a similar

positioning accuracy as that of the exhaustive search method. By using the GA method

with 8-state PLM, it was possible to obtain a mean RMSE of 1.92 m, which is 31.4%

better than that obtained using the simple ILS method with 2-slope PLM. In particular,

at 50% or more points, an error level of 1.67 m or less was obtained in the GA method

with 8-state PLM.

In the real-site experiment, the result when the method in [63] was applied exhib-

ited the worst positioning performance. This implies that the PLM parameter calibra-

tion failed in this environment. The method depends on the number and placement of

APs and the structure of the indoor environment. As shown in Fig. 3.9, the emergency
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Figure 3.9: Floor plan of the experiment site.
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Figure 3.10: Positioning accuracy in real site experiments using each method.

room has long hallways, and most of the measuring points have more than one LOS

connection and many NLOS connection with APs. It can be inferred that there are

many situations where the LOS and NLOS links are mixed for a moment. The method

in [63] may worsen the positioning performance as the channel parameters in LOS and

NLOS are extremely different. The other methods in [66] and [70] also suffered perfor-

mance degradation in the complex indoor environment. Conversely, the performance

gain of the proposed method is maximized when the LOS and NLOS paths are mixed

in the connection between the target node and each AP by considering the multi-stage

PLM and by determining the best combination of PLMs.

Numerically, the position accuracy of the experimental result is higher than that of

the simulation. This is because the simulation assumes more various NLOS conditions

than in the real site and covers all regions including areas that are hard to accurately

positioning such as points close to the border of the building. Practically, the expected

positioning accuracy depends on APs deployment and objective area [39]. Notably, the

performance improvements compared to other existing methods are quite substantial

for both cases. This is meaningful because it verifies the generality of the proposed al-

gorithm. The ray-tracing based simulation and real site experimental results both show
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Table 3.5: Position errors for real site experiments

Positioning method
RMSE [m]

50%-tile 90%-tile Mean

ILS method with Conventional PLM 2.19 4.41 2.80

Exhaustive search with 4-state PLM 2.22 3.53 2.34

GA search with 4-state PLM 2.29 3.48 2.41

Exhaustive search with 8-state PLM 1.57 3.37 1.90

GA search with 8-state PLM 1.67 3.38 1.92

Localization method in [63] 5.82 10.64 6.28

Localization method in [66] 2.50 4.85 2.80

Localization method in [70] 4.24 11.40 6.04

remarkable improvements in positioning accuracy considering the proposed localiza-

tion method.

3.5 Summary

In this paper, I proposed a localization method with an overlapped multi-state PLM

in indoor environments. The proposed algorithm estimates the location based on the

combination of multiple candidates for pathloss model groups to improve the ranging

and localization accuracy. Because the main limitation for improving accuracy was the

increase in computational amount, the GA-based search is used to reduce the compu-

tational complexity of the optimal search method. The proposed GA method derives

near-optimal solution with similar accuracy as that of the exhaustive search method

and dramatically reduced computations. The effectiveness of the proposed localiza-

tion method was verified through ray-tracing simulations for indoor environments. Via
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experiments in an emergency room of a hospital, the proposed method showed a con-

siderable performance improvement compared to other existing methods in localiza-

tion accuracy when applied to a situation using an off-the-shelf smartphone. Because

it uses a snapshot of the RSS vector at a certain instant in time, the proposed method

has an advantage when used in the event of sporadic communication, where tracking-

based correction techniques are difficult to apply. Furthermore, this method would be

useful to determine the positions of communication nodes or indoor objects and can

be applied to communication systems as long as the received signal power is measured

properly.

As they have minimal need for offline stage or site surveys, it is possible to set

multi-state PLM considering indoor environments. The proposed 8-state PLM param-

eters can serve as a guideline for a typical office or emergency room environment and

would be applicable to similar indoor environments with little adjustments. It is also

expected to accelerate the practical use of range-based positioning techniques using

RSS by minimizing the errors caused by RSS fluctuation in existing studies. In future

studies, I plan to conduct further verification of the proposed method using measure-

ment in diverse indoor environments.
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Chapter 4

Indoor User Tracking with Self-calibrating Range Bias

Using FTM Protocol

4.1 Motivation

Recently, there are many research about indoor localization techniques using built-

in sensors of smartphones and Wi-Fi system. In particular, a round trip time-based

ranging method using fine timing measurement (FTM) can achieve meter-level accu-

racy. In particular, combined with pedestrian dead reckoning (PDR), it is possible to

improve the positioning accuracy in the extended Kalman filter (EKF)-based track-

ing algorithm. However, in the indoor environment, since LOS is hard to be secured

due to obstacles, the measured ranging results are prone to be positively biased. In

addition, an unexpected error depending on the device types brings about outlier and

degrades the tracking accuracy. These practical ranging errors are the major challenge

in tracking the indoor location. In this study, I designed the EKF-based algorithm that

adaptively removes outlier and corrects the ranging bias. First, the FTM ranging re-

sult of each AP is pre-filtered using the PDR-based trajectory estimation. This method

removes the influence of outliers caused by hardware imperfections or incompatibil-

ity. In addition, ranging errors due to multipath effects are modeled, and correction
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parameters are estimated for each AP. The EKF was designed to reflect the ranging

error characteristics that change according to the location change of the user. To ver-

ify the performance of the proposed tracking algorithm, I conducted experiment in

the academic building at Seoul national university. The experiments were conducted

with non-homogeneous AP set, and the performance of the proposed algorithm was

evaluated. The remainder of this paper is organized as follows: In the next section, we

present FTM protocol-based ranging and our system model. In Section III, we pro-

pose a localization algorithm based on EKF designed to remove outlier and adaptively

compensate FTM result. Section IV shows a performance analysis of the proposed

algorithm using indoor experiments.

4.2 Preliminary

4.2.1 FTM ranging

The FTM protocol in IEEE 802.11-2016 standard provides a distance estimation re-

sult based on round trip time through message frame exchange of devices supporting

the protocol. The overall messave flow is shown in fig. 4.1. In a typical scenario, a

user device is an initiating station (ISTA) and a Wi-Fi access point (AP) serves as a

responding station (RSTA). The ISTA and the RSTA each use their own local clocks

to record the packet transmission/reception time, and after a series of processes, the

estimated distance d̂ between the two devices is expressed as follows.

d̂ =
c

2
{(t4 − t1)− (t3 − t2)} , (4.1)

where c represent the speed of the light. If the burst mode of the FTM protocol

is used, more accurate results can be obtained by repeating the process B times. An

error may occur in the ranging result measured in this way due to the absence of the

LOS path or failure of direct path detection by the multipath propagation. Therefore,

the ranging result typically has a positive bias. However, as a practical issue, the user
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Figure 4.1: Fine timing measurement protocol.

64



Figure 4.2: Pedestrian dead reckoning concept.

device may receive a distance value even shorter than the actual distance due to the

device compatibility or internal software problems. In this study, to compensate for

the bias error, I model the FTM ranging result d̂n measured for the actual distance dn

between the n-th AP and the user device as follows:

d̂n = αn · dn + βn (4.2)

4.2.2 PDR-based trajectory estimation

By using the built-in IMU of the smartphone, it is possible to detect the step of a

user and estimate the trajectory by combining it with the direction information of the

device. Fig. 4.2 is a basic conceptual diagram of PDR based trajectory estimation. The

change in the position of the pedestrian can be expressed as follows.

P (t) = P (t− 1) + L ·

sin(θt)

cos(θt)

 , (4.3)

where P (t), θt, and L represent the position, heading, the step length of the user

at time t, respectively. The trajectory estimated using PDR shows high accuracy for a
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Figure 4.3: Overall flow of the proposed method.

short time, but errors occur due to incomplete estimation of step length and heading,

and this accumulates and the difference from the actual path increases as time goes by.

Therefore, the PDR is not suitable to be used stand-alone, and it is possible to increase

the tracking accuracy by combining it with the FTM result. I use only the displacement

∆P (t) = P (t)− P (t− 1) in this study.

4.3 EKF design for adaptive compensation of ranging bias

To track the trajectory of the user in the indoor, an EKF-based tracking algorithm is

designed. The overall flow of the proposed method is depicted in fig. 4.3. I denote

[x, y]T and [xn, yn]T as the coordinates of the device and n-th AP among total N APs,

respectively. Then, a state vector z is defined as follows

z = [x, y, α1, . . . , , αn, β1, . . . , βn]T (4.4)

For the initial state, the covariance matrix is given as

P = diag(σ2x, σ
2
y , σ

2
α1
, . . . , σ2αn , σ

2
β1 , . . . , σ

2
βn) (4.5)
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State transition model is expressed by

ẑ(k|k−1) = f(ẑ(k−1|k−1), P (k),w(k))

= [(x(k−1) + ∆x(k)), (y(k−1) + ∆y(k)), α
(k−1)
1 , · · · , α(k−1)

n , β
(k−1)
1 , · · · , β(k−1)n ]T

+ w(k),

(4.6)

where [∆x(k),∆y(k)]T is the displacement of the user estimated from PDR, and w

represents the state transition error which is a zero mean multivariate Gaussian vector.

The covariance matrix is updated as follow:

P(k|k−1) = F(k)P(k−1|k−1)(F(k))T + Q(k), (4.7)

where Q(k) = E[w(k)(w(k))T] and

F(k) =
∂f

∂z
|z=ẑ(k−1|k−1) = I(2+2N) (4.8)

FTM result vector is represented as follow:

d(k) = h(z) + v(k) =


α
(k)
1 ·

√
(x(k) − x1)2 + (y(k) − y1)2 + β

(k)
1

...

α
(k)
n ·

√
(x(k) − xn)2 + (y(k) − yn)2 + β

(k)
n

+ v(k), (4.9)

where v(k) represents the measurement error which is assumed a zero mean multivari-

ate Gaussian vector, whose covariance matrix R(k) = E[v(k)(v(k))T].

Then, the innovation is expressed as follow:

ζ(k) = d(k) − h(ẑ(k|k−1)) (4.10)

In this step, we applied measurement pre-filtering by discarding FTM result of AP

where the difference between the predicted and measured distances was greater than

the threshold value. In this way, the outliers that occur in FTM results can be removed.

The Kalman gain, updated state, and the updated covariance matrix can be calculated

as follows:

K(k) = P(k|k−1)(H(k))T(H(k)P(k|k−1)(H(k))T + R(k))−1 (4.11)
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z(k|k) = z(k|k−1) + K(k)ζ(k) (4.12)

P(k|k) = (I−K(k)H(k))P(k|k−1) (4.13)

68



4.4 Performance evaluation

4.4.1 Experimental scenario

(a)

(b) (c)

Figure 4.4: Experiment environment and path for (a) scenario 1 and (b) scenario 2 (c)

scenario 3.
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To verify the performance of the proposed tracking algorithm, I conducted experi-

ment in the academic building at Seoul national university. The floor plan and ground

truth paths of 3 scenarios are shown in fig. 4.4. The size of the area was 34 meters

wide and 36 meters long. The scenario 1 is a corridor only, and the scenarios 2 and

3 are paths through a room. In addition to walls, there was an environment in which

LOS/NLOS conditions are mixed due to pillars or obstacles in the building. Two types

of Wi-Fi APs (type1 - Asus RT-ACRH13, type2 - Google WiFi) were placed in to-

tal 9 locations, and the user equipped with a commercial smartphone (Pixel 4a of the

Google). The user started from the lower center of the test path and walked 2 laps

counterclockwise at a constant speed. The IMU operates at about 100Hz, and one set

of FTM results using the 80MHz bandwidth was recorded about every second.

4.4.2 Experimental results
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Estimated user path for (a) scenario 1 - first lap (b) scenario 1 - second lap

(c) scenario 2 - first lap (d) scenario 2 - second lap (e) scenario 3 - first lap and (f)

scenario 3 - second lap.
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(a) (b)

Figure 4.6: Estimated user path for (a) scenario 3 - first lap and (b) scenario 3 - second

lap.

Fig. 4.5 shows the estimated path results for the test scenarios. The initial values

alpha and beta of the ranging bias parameter were set to 1 and 0, respectively. In each

scenario, the starting location was incorrectly estimated due to an initial ranging error,

and the route of some sections was not accurately estimated on the first lap. However,

on the second lap, it is shown that the trajectory of the user was tracked accurately in

most areas when the proposed algorithm is applied.

Fig. 4.6 shows the estimated path results for the test scenarios 3. As a comparison

of the proposed method, the yellow trajectory shows the result when the constant bias

correction is applied. The bias value was determined as the average of the measured

distance error. Although the constant bias correction method improves positioning ac-

curacy, it has limitations because it does not reflect the ranging error that vary by each

AP and NLOS condition.

72



Table 4.1 shows the average of RMSE between the ground truth location and the

estimated location coordinates for each scenario. When the proposed algorithm is ap-

plied, the bias characteristic is estimated as the path becomes longer, thereby it reduces

the ranging error and improves the tracking accuracy. It is verified that the sub-meter

level accuracy is achieved in the second round of all scenario paths.

Fig. 4.7 shows the histograms of the error between the true distance and the es-

timated distance between the APs and the user device during the second lap of each

scenario. The red line is the Gaussian distribution fit to the data. When only outlier re-

moval was performed, the average value of the ranging error was 1.28 m, 1.41 m, and

1.20 m for each scenario. The average of the ranging error corrected with the param-

eters estimated through the proposed method was 0.86 m, 0.66 m, and 0.45 m, which

was reduced by 44%, 54%, and 65% compared to the previous one. Additionally, as

shown in Fig. 4.7, the error distribution is closer to a Gaussian distribution than before.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Ranging error histogram of the second lap with a Gaussian distribution

fit (a) scenario 1 - before correction (b) scenario 1 - after correction (c) scenario 2 -

before correction (d) scenario 2 - after correction (e) scenario 3 - before correction and

(f) scenario 3 - after correction.
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Table 4.1: Average RMSE of the user positions

RMSE [m] FTM only FTM+PDR
FTM+PDR

with constant bias

Proposed

method

scenario 1
1-st lap 2.38 1.78 1.25 1.35

2-nd lap 2.14 1.77 1.24 0.596

scenario 2
1-st lap 1.81 1.53 1.13 1.17

2-nd lap 1.94 1.71 1.14 0.650

scenario 3
1-st lap 2.36 1.66 1.21 1.31

2-nd lap 2.00 1.51 1.15 0.575

4.5 Summary

In this study, we proposed an EKF-based algorithm with adaptive compensation of

ranging bias to track the indoor location of the smartphone user. We remove outlier

from the FTM result for each AP by comparing it with the predicted value from previ-

ous status and the PDR-based displacement. Additionally, the bias of the FTM result

with each AP was modeled as a changing with time. In the end, the user positioning

accuracy is improved by correcting the FTM ranging result. Experiments using com-

mercial smartphone and Wi-Fi 6 routers verified that the bias of the FTM result of

each AP was reduced by 65.60% compared to the raw measurement during a lap in the

scenario path, and the ranging error distribution showed to be closer to the zero-mean

Gaussian distribution. The final positioning RMSE was obtained at 0.58 m, which is

54.18% smaller than when without the range compensation. The proposed algorithm

makes it possible to track the user’s location with sub-meter accuracy. In the future, if

the bias characteristic for each AP estimated by the user is provided to the next user,

then it may be possible to further improve the localization accuracy.
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Chapter 5

Conclusion

In this dissertation, I investigated Wi-Fi based indoor localization methods. All of the

proposed methods are designed to consider a practical indoor environment and the in-

door channel characteristic. Due to the many obstacles and complex structure in the

indoor, ranging with radio propagation is suffered from multipath whether using RSS

or FTM result. At the beginning of the study, I proposed a hybrid localization algorithm

that replaces only the ranging part of the existing range-based localization method with

a deep regression model that uses data-driven learning. For the ranging part, the accu-

racy of distance estimation in an indoor NLOS environment is improved by using the

dual-band RSS, and this is designed to cover various cases by using regression with a

neural network. The improvements in the ranging and positioning accuracy of the pro-

posed method were verified through a ray-tracing-based simulation for general indoor

spaces. Furthermore, the proposed localization method is compatible with various sit-

uations, even when the indoor structure is changed. Based on the results of ray-tracing

based simulation, the use of dual-band RSS could reduce the median of positioning

error up to 2.56 m, which was a 9.9% smaller error than the error obtained with the

single-band RSS alone in the rule-based localization. By applying the deep regression

method to the ranging part, the median error of 1.99 m was obtained, which was a

22.3% improved result compared to the rule-based method. Considering that the use
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of deep regression with single-band RSS only caused 10% or less performance gain,

the combination of the dual-band RSS and the deep regression method was effective

in improving the accuracy of range-based localization using RSS. The robustness of

the proposed method encourages the use of RSS localization because it can reduce

the intensity of the site survey process. The proposed method is still promising in that

a properly trained ranging model can be used even in an untrained environment. In

practice, I expect to increase the learning efficiency by using a transfer learning tech-

nique that tunes the model trained through simulation with relatively small dataset

from real experiments. Furthermore, extending the research to the triple-band-based

ranging method is possible by utilizing 6 GHz band communication, which is expected

to be supported in the Wi-Fi 6E standard. Next, I proposed a localization method with

an overlapped multi-state PLM in indoor environments. The proposed algorithm esti-

mates the location based on the combination of multiple candidates for pathloss model

groups to improve the ranging and localization accuracy. Because the main limita-

tion for improving accuracy was the increase in computational amount, the GA-based

search is used to reduce the computational complexity of the optimal search method.

The proposed GA method derives near-optimal solution with similar accuracy as that

of the exhaustive search method and dramatically reduced computations. The effec-

tiveness of the proposed localization method was verified through ray-tracing simula-

tions for indoor environments. Via experiments in an emergency room of a hospital,

the proposed method showed a considerable performance improvement compared to

other existing methods in localization accuracy when applied to a situation using an

off-the-shelf smartphone. Because it uses a snapshot of the RSS vector at a certain in-

stant in time, the proposed method has an advantage when used in the event of sporadic

communication, where tracking-based correction techniques are difficult to apply.The

proposed 8-state PLM parameters can serve as a guideline for a typical office or emer-

gency room environment and would be applicable to similar indoor environments with

little adjustments. Finally, I proposed an EKF-based algorithm with adaptive compen-
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sation of ranging bias to track the indoor location of the smartphone user. I remove

outlier from the FTM result for each AP by comparing it with the predicted value from

previous status and the PDR-based displacement. Additionally, the bias of the FTM re-

sult with each AP was modeled as a changing with time. In the end, the user positioning

accuracy is improved by correcting the ranging result. Experiments using commercial

smartphone and Wi-Fi 6 routers verified that the bias of the FTM result of each AP

was reduced by 65.60% compared to the raw measurement during one round of the

scenario path, and the ranging error distribution showed to be closer to the zero-mean

Gaussian distribution. The final positioning RMSE was obtained at 0.57 m, which is

54.18% smaller than when without the range compensation. The proposed algorithm

makes it possible to track the user’s location with sub-meter accuracy. I expect that the

proposed method in this dissertation will accelerate the practical use of range-based

positioning techniques for indoor application by minimizing the errors caused by the

indoor propagation.
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초록

실내위치기반서비스는스마트폰을이용한실내에서의경로안내,스마트공장

에서의자원관리,실내로봇의자율주행등많은분야에접목될수있으며,사물인

터넷 응용에도 필수적인 기술이다. 다양한 위치 기반 서비스를 구현하기 위해서는

정확한 위치 정보가 필요하며, 적합한 거리 및 위치를 추정 기술이 핵심적이다. 야

외에서는 위성항법시스템을 이용해서 위치 정보를 획득할 수 있다. 하지만 위성항

법시스템은 실내에서는 신호가 잘 닿지 않아 이용하기 어렵기 때문에, 실내에서는

위성항법시스템을대체할기술이필요하다.

본 학위논문에서는 와이파이 기반 측위 기술에 대해 다룬다. 구체적으로, 전파

의신호세기및도달시간을이용한정밀한실내위치추정을위한세가지기술에

대해다룬다.먼저,비가시경로환경에서의거리추정정확도를향상시켜거리기반

측위의정확도를향상시키는하이브리드알고리즘을제안한다.제안하알고리즘은

듀얼밴드대역의신호세기를감쇄량을측정하여거리기반측위기법을적용할때,

거리추정부단계만을데이터기반학습을이용한깊은신경망회귀모델로대체한

방안이다. 적절히 학습된 깊은 회귀 모델의 사용으로 비가시경로 환경에서 발생하

는 거리 추정 오차를 효과적으로 감소시킬 수 있으며, 결과적으로 위치 추정 오차

또한 감소시켰다. 제안한 방법을 실내 광선추적 기반 모의실험으로 평가했을 때,

기존기법들에비해서위치추정오차를중간값을기준으로 22.3%이상줄일수있

음을검증했다.추가적으로,제안한방법은실내에서의 AP위치변화등에강인함을

확인했다.

다음으로, 본 논문에서는 비가시경로에서 단일 대역 수신신호세기를 측정했을
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때 비가시경로가 많은 실내 환경에서 위치 추정 정확도를 높이기 위한 방안을 제

안한다.단일대역수신신호세기를이용하는방안은기존에이용되는와이파이,블

루투스, 직비 등의 기반시설에 쉽게 적용될 수 있기 때문에 널리 이용된다. 하지만

신호세기의단일경로손실모델을이용한거리추정은상당한오차를지녀서위치

추정 정확도를 감소시킨다. 이러한 문제의 원인은 단일 경로손실 모델로는 실내에

서의복잡한전파채널특성을반영하기어렵기때문이다.본연구에서는실내위치

추정을 위한 목적으로, 중첩된 다중 상태 경로 감쇄 모델을 새롭게 제시한다. 제

안한 모델은 가시경로 및 비가시경로에서의 채널 특성을 고려하여 잠재적인 후보

상태들을지닌다.한순간의수신신호세기측정치에대해각기준기지국별로최적

의경로손실모델상태를결정하는효율적인방안을제시한다.이를위해기지국별

경로손실모델 상태의 조합에 따른 측위 결과를 평가할 지표로서 비용함수를 정의

하였다.각기지국별최적의채널모델을찾는데필요한계산복잡도는기지국수의

증가에따라기하급수적으로증가하는데,유전알고리즘을이용한탐색을적용하여

계산량을 억제하였다. 실내 광선추적 모의실험을 통한 검증과 실측 결과를 이용한

검증을진행하였으며,제안한방안은실제실내환경에서기존의기법들에비해위

치추정오차를약 31%감소시켰으며평균적으로 1.92 m수준의정확도를달성함을

확인했다.

마지막으로 FTM프로토콜을이용한실내위치추적알고리즘에대해연구하였

다.스마트폰의내장관성센서와와이파이통신에서제공하는 FTM프로토콜을통

한거리추정을이용하여실내에서사용자의위치를추적할수있다.하지만실내의

복잡한 다중경로 환경으로 인한 피크 검출 실패는 거리 측정치에 편향성을 유발한

다.또한사용하는디바이스의종류에따라예상치못한거리오차가발생할수있다.

본논문에서는실제환경에서 FTM거리추정을이용할때발생할수있는오차들을

고려하고이를보상하는방안에대해제시한다.확장칼만필터와결합하여 FTM결

과를 사전필터링 하여 이상값을 제거하고, 거리 측정치의 편향성을 제거하여 위치

추적 정확도를 향상시킨다. 실내에서의 실험 결과 제안한 알고리즘은 거치 측정치

의편향성을약 44-65%감소시켰으며최종적으로사용자의위치를서브미터급으로

추적할수있음을검증했다.
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