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ABSTRACT

This work seeks to improve upon existing methods for device-free localization (DFL)

using radio frequency (RF) sensor networks. Device-free localization is the process of

determining the location of a target object, typically a person, without the need for a

device to be with the object to aid in localization. An RF sensor network measures changes

to radio propagation caused by the presence of a person to locate that person. We show how

existing methods which use either wideband or narrowband RF channels can be improved in

ways including localization accuracy, energy efficiency, and system cost. We also show how

wideband and narrowband systems can combine their information to improve localization.

A common assumption in ultra-wideband research is that to estimate the bistatic delay or

range, “background subtraction” is effective at removing clutter and must first be performed.

Another assumption commonly made is that after background subtraction, each individual

multipath component caused by a person’s presence can be distinguished perfectly. We show

that these assumptions are often not true and that ranging can still be performed even when

these assumptions are not true. We propose modeling the difference between a current set

of channel impulse responses (CIR) and a set of calibration CIRs as a hidden Markov model

(HMM) and show the effectiveness of this model over background subtraction.

The methods for performing device-free localization by using ultra-wideband (UWB)

measurements and by using received signal strength (RSS) measurements are often consid-

ered separate topic of research and viewed only in isolation by two different communities of

researchers. We consider both of these methods together and propose methods for combining

the information obtained from UWB and RSS measurements. We show that using both

methods in conjunction is more effective than either method on its own, especially in a

setting where radio placement is constrained.

It has been shown that for RSS-based DFL, measuring on multiple channels improves

localization accuracy. We consider the trade-offs of measuring all radio links on all channels

and the energy and latency expense of making the additional measurements required when

sampling multiple channels. We also show the benefits of allowing multiple radios to

transmit simultaneously, or in parallel, to better measure the available radio links.
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CHAPTER 1

INTRODUCTION

Device-free localization (DFL) is the process of determining the location of a target

object, typically a person, without the need for a device to be with the object to aid in

localization. Knowing where a person or multiple people are located in a room or building

is valuable information for building security. The information provided by device-free

localization can also be used to help caretakers of the elderly by knowing their movements

within their home and their inactivity as well, which could signal their need for help. In

either of these scenarios, it is very impractical to require the people to carry with them a

device that would be used to aid localization.

Localization is performed by employing the information provided by sensors placed such

that the the object or person can be located in a target area or region. The sensors detect

and quantify changes in the environment caused by the person’s presence or movement. By

knowing or modeling how a person may change sensor data as a function of the person’s

location, an estimate of the person’s location can be made using the available sensor data.

Device-free localization can be done with a number of different sensing techniques

including cameras and image processing [1], reading radio-frequency identification (RFID)

tags [2], and wideband [3] and narrowband [4]–[7] radio frequency (RF) sensing as will be

discussed in Sections 1.1.1 and 1.1.2, respectively.

1.1 Radio Frequency Sensing

The human body affects radio propagation, both in narrowband and in wideband trans-

missions. For a radio signal there exist multiple transmission paths, or multipath, between

radio transmitters and receivers. The presence of a person can both cause new multipath to

form, from reflection or refraction, and block or attenuate existing multipath. The presence

of a person, therefore, causes a change in the signal arriving at the receiving radio compared

to the signal that would have arrived had the person not been there.



2

1.1.1 Wideband Effects

For wideband or ultra-wideband (UWB) transmissions, a time-domain representation of

the arriving signal is often available from the receiving UWB radio. Assume that an UWB

transmitter sends pulse δ(t). Due to multipath propagation, the received signal is described

by

h(t) =
∑
i

αiδ(t− τi), (1.1)

where αi and τi are the complex amplitude and time delay of the ith path, respectively.

The value τ0 corresponds to the UWB impulse following the line-of-sight path between the

two radios, which are separated from each other by a distance on the order of meters or

more. As the time progresses, more UWB impulses arrive at the receiver that reflected off

of objects and scatterers in the environment. These impulses traveled paths longer than

the line-of-sight path, each with its corresponding τi.

The receiver radio approximately measures the channel impulse response convolved with

the pulse shape. Fig. 1.1 is an example of how the transmitted pulse may follow many

different paths to arrive at the receiver.

The number of multipath components seen by the receiver depends on the environment

around the radios. The presence of a person will have two primary effects. The first is that

the person’s body will cause a new multipath impulse to arrive at the receiver. When a

person appears at point x0 in the environment with the transmitter at xt and receiver at

xr, he causes an additional path with path length ‖xt − x0‖+ ‖x0 − xr‖, where ‖ · ‖ is the

L2 norm. This is true if we assume the impulse will reflect or bounce only off of the person

and no other object while traveling from the transmitter to the receiver. This path length

is greater than the line-of-sight path length. The difference in length between these two

paths is the excess path length.

The excess path length of the multipath component caused by the person can be used

to estimate the sum of the distances to each radio from the person’s location. The sum of

these distances together is known as the bistatic range. The delay associated with this new

multipath component is τ∗, which we refer to as the bistatic delay. The second effect the

person has is that it will affect existing multipath. As illustrated in Fig. 1.2, the presence of

a person will affect multipath components that the receiver would have measured had the

person not been there. The person’s body can affect any multipath component whose path
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length is greater than or equal to that path length of the person’s multipath component,

that is, the person affects many αi for τi ≥ τ∗.

1.1.2 Narrowband Effects

Narrowband radio signals are similarly affected by the presence of a person’s body.

Unlike UWB impulse measurements, however, a time-domain representation of the arriving

signal is unavailable. For packet-based radio protocols, such as 802.15.4, a link quality

measurement is often provided by the receiving radio for each packet reception. This

measurement is often a received signal strength (RSS) measurement. This RSS measurement

can be used to determine the channel fading, or fade level, or the wireless communication

channel.

Similar to UWB measurements, received narrowband signals can be modeled as

H =
∑
i

αie
jfcτi . (1.2)

This is similar to equation (1.1) but considered in the frequency domain, where δ(t − τi)

becomes ejfcτi in the frequency domain. This is done because the time required to transmit

the narrowband signals is much greater than individual multipath delays, which is unlike

UWB measurements. Therefore, we can consider all multipath as if they are arriving

simultaneously. The RSS measurements are the received power and are proportional to

|H|2. RSS is measured in units of dBm.

These arriving multipath can interfere constructively or destructively. The level of

constructive or destructive interference is know as fading or is describe by the fade level of

the signal. This interference can be illustrated in the following way.

In Figs. 1.3 and 1.4, the individual complex amplitudes of each arriving multipath

component are shown on the complex plane. In both figures, the black arrows represent the

complex amplitudes of individual multipath components and the red arrow represents the

sum of the individual components. In Fig. 1.3, the components interfere constructively. A

link with a received signal such as this would be considered an antifade link, or a link where

there is little or no fading. The received signal is strong, and effects to the link’s multipath

components generally cause the RSS value to decrease. In Fig. 1.4, the components interfere

destructively. This signal would be considered a deep-fade link, or a link where the fading

is strong. Changes to the multipath components may cause the RSS value to increase

or decrease in value. It is because RSS is measured in a log scale that there is a higher

variability is RSS measurements for deep-fade links than for those in antifade links.
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Generally, when a person affects one or more multipath components of an antifade link,

the overall signal is attenuated. For a deep-fade link, however, it becomes more likely that

an affected multipath could result in constructive interference and an increase in RSS. The

changes in RSS values relative to their fade level, which is measured during a calibration

period, can be used to determine where a person is within the environment. This is done

by employing a model of how the person affects a link’s RSS measurements depending on

where the person is and what the fade level of the link is. This effect has been modeled in

a number of ways [5], [8]–[10].

1.2 Radio Tomographic Imaging

Radio tomographic imaging (RTI) is the process of estimating the changes to the RF

propagation field. These changes are estimated over a discretized target area, which is the

area where the radio sensors can effectively monitor the changes caused by the presence

of a person. Each discretized partition of the target area corresponds to one pixel in the

localization image. Image maxima indicate possible person locations.

Critical to performing RTI is a model of how a person affects radio propagation as a

function of the person’s location relative to the link. For narrowband systems, the measured

changes to RSS values serve as a measure of changes in radio propagation. A number of

different models of how a person affects radio propagation have been proposed based on

changes in attenuation [5], signal variance [8], and based on both the change in attenuation

and the direction of change [9].

Instead of applying a model of how a link is affected by the presence of a person, an

alternative method for estimating a person’s location is by using fingerprint-based methods

[4], [11]. These methods require additional training data beyond a calibration measurement

of the empty environment. For these methods, training measurements are made for many

discrete locations where the person may be by having a person stand in each of these

locations while measurements are made. Then when a person’s location estimate is to be

made, the current measurements are compared to the set of training data. The training data

that most closely resemble the measured data give their corresponding training location as

the estimated location of the person. These methods require much more training data,

which grow linearly with the number of discrete training locations and exponentially with

the number of possible people in the target environment. New training data may also be

necessary if the environment changes significantly.

For ultra-wideband systems, changes in the radio propagation field for RTI are modeled

by changes to the received, time-domain, channel impulse responses (CIR). This information
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is used to estimate the bistatic range of people or objects affecting the CIR, producing

iso-range contours around the UWB radios. These contours, shaped as ellipses, are estimates

of where changes occur in the radio propagation field due to the presence of a person. A

number of ways to perform localization using UWB measurements is further discussed in

Section 2.2.7.

1.3 Contributions

A common assumption in ultra-wideband research is that to estimate the bistatic delay

or range, “background subtraction” must first be performed. This means that a prior

measurement of the CIR is subtracted from any current CIR measurement. These prior mea-

surements are presumed to be made when the area is empty (i.e., with a static background).

Some work in UWB-based impulse response radar assumes that background subtraction

is completely effective in removing the response due to the static environment [12]–[15].

Another assumption commonly made is that after background subtraction, each individual

multipath component caused by a person’s presence can be distinguished perfectly from the

impulses caused by other people and the environment [13], [14]. In Chapter 2, we show that

these assumptions are often not true and that ranging can still be performed even when

these assumptions are not true.

The methods for performing device-free localization by using UWB measurements and by

using RSS measurements are often considered a separate topic of research and viewed only

in isolation by two different communities of researchers. In Chapter 3, we consider both of

these methods together and propose methods for combining the information obtained from

UWB and RSS measurements. We show that using both methods in conjunction is more

effective than either method on its own, especially in a setting where radio placement is

constrained.

It has been shown that for RSS based DFL, measuring on multiple channels improves

localization accuracy [9], [10]. In Chapter 4, we consider the trade-offs of measuring all

radio links on all channels and the energy and latency expense of making the additional

measurements required when sampling multiple channels. This work can be used to allow

for large-scale deployed systems of RF sensors to use multiple channels simultaneously.

The following publications are a result of this work.

• M. McCracken and N. Patwari, “Hidden Markov Estimation of Bistatic Range from

Cluttered Ultra-wideband Impulse Responses,” in 2nd IEEE Topical Meeting on

Wireless Sensors and Sensor Networks (WiSNet 2012), 2012, pp. 17-20. [16]
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• M. McCracken and N. Patwari, “Hidden Markov Estimation of Bistatic Range from

Cluttered Ultra-wideband Impulse Responses,” IEEE Transactions on Mobile Com-

puting, vol. PP, no. 99, pp. 1-1, 2013. [3]

• M. McCracken, M. Bocca, and N. Patwari, “Joint Ultra-wideband and Signal Strength-

based Through-building Tracking for Tactical Operations,” in 2013 IEEE Interna-

tional Conference on Sensing, Communications and Networking (SECON), 2013, pp.

309-317. [17]

• M. McCracken, M. Bocca, and N. Patwari. “Selection of Links in Multichannel

RSS Measurements for Radio Tomography”, (to be submitted to arxiv.org and to be

included in “Large Scale, Device Free Localization” by the A. Luong, M. McCracken,

M. Bocca, and N. Patwari to be submitted to 2014 IEEE International Conference on

Sensing, Communications and Networking (SECON)).
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Figure 1.1. The transmitted radio signal takes many paths to arrive at the receiving radio
due to the environment.

Figure 1.2. The presence of a person in the environment both creates new multipath
signals and affects existing multipath signals. How the signal is affected depends on the
signal arriving at the receiver without the presence of a person and on where the person is
within the environment.
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Figure 1.3. Multipath components arrive at the receiver with amplitudes and phase offsets
such that the overall received signal strength is high due to constructive interference. These
are antifade links. Magnitude contours are drawn on a log scale.

Figure 1.4. Multipath components arrive at the receiver with amplitudes and phase offsets
such that the overall received signal strength is very low due to destructive interference.
These are deep-fade links. Magnitude contours are drawn on a log scale.



CHAPTER 2

ESTIMATION OF BISTATIC RANGE

FROM CLUTTERED ULTRA-

WIDEBAND IMPULSE

RESPONSES

UWB multistatic radar can be used for target detection and tracking in buildings and

rooms. Target detection and tracking relies on accurate knowledge of the bistatic delay.

Noise, measurement error, and the problem of dense, overlapping multipath signals in the

measured UWB CIR all contribute to make bistatic delay estimation challenging. It is often

assumed that a calibration CIR, that is, a measurement from when no person is present,

is easily subtracted from a newly captured CIR. We show this is often not the case. We

propose modeling the difference between a current set of CIRs and a set of calibration CIRs

as a hidden Markov model (HMM). Multiple experimental deployments are performed to

collect CIR data and test the performance of this model and compare its performance to

existing methods. Our experimental results show an RMSE of 2.85 ns and 2.76 ns for our

HMM-based approach, compared to a thresholding method which, if the ideal threshold

is known a priori, achieves 3.28 ns and 4.58 ns. By using the Baum–Welch algorithm, the

HMM-based estimator is shown to be very robust to initial parameter settings. Localization

performance is also improved using the HMM-based bistatic delay estimates.1

2.1 Introduction

A useful application of UWB impulse radio is detection and tracking of people2 in

buildings. In particular, bistatic and multistatic radar systems are used for this application

1 c©2013 IEEE. Reprinted, with permission, from M. McCracken and N. Patwari, “Hidden Markov
Estimation of Bistatic Range from Cluttered Ultra-wideband Impulse Responses,” IEEE Transactions on
Mobile Computing, vol. PP, no. 99, pp. 1-1, 2013.

2In this paper, we use “people” or “person” to indicate the object being tracked.
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[18]. This is done by capturing the CIR, h(t), between transmitter/receiver pairs and

detecting changes to the CIR.

This paper describes a contribution to bistatic delay (or equivalently, bistatic range)

estimation. A person induces changes in the CIR starting at the bistatic delay, that is, the

earliest time delay at which changes occur in the CIR due to the person being tracked. If

the bistatic delay is denoted τ∗, then the bistatic range is simply the distance this multipath

component has traveled (i.e., τ∗c where c is the speed of light). If RF energy traveled from

the transmitter to the person and then to the receiver, with no additional scattering, then

the bistatic range defines an ellipse on which the person is located. Thus bistatic range

estimation is a key primitive of UWB tracking systems.

The primary contribution of this work is to develop a method which considers the changes

which occur in a CIR at all time delays in order to estimate bistatic delay. Current published

research, as described in Section 2.1.1, generally are first threshold-crossing methods, that

is, they estimate the bistatic delay as the first delay in which a metric exceeds a threshold.

As a result, they are (a) sensitive to noise in the CIR prior to the true bistatic delay, and

(b) sensitive to the correct setting of the threshold parameter.

Our proposed method uses a HMM to model the changes to the CIR as a function of time

delay. The Markov chain is a progression between two states: X = 0, meaning that a person

in the environment is not causing changes at the current time delay, or X = 1, meaning that

a person is causing changes at the current time delay. The state of the system is observable

only indirectly via the CIR because of noise and the variability in the multipath channel.

The distribution of the observations is dependent on the current state of the system, thus

the system is a HMM. Using the observations and the system model, the forward-backward

algorithm solves for the most likely state at any given time. The bistatic delay estimate is

the time delay at which the system transitions from state 0 to state 1.

When solving for the bistatic delay, our proposed method considers all of the available

data and, as we show, the error in bistatic delay estimation is reduced compared to the best

thresholding scheme. Further, using a Baum–Welch algorithm, we avoid the requirement

of knowing a priori the correct parameters.

2.1.1 Related Work

Generally, methods to estimate the bistatic delay or range first perform “background

subtraction.” This means that a prior measurement, or an average of many prior measure-

ments, of the CIR is subtracted from any current CIR measurement. These prior measure-

ments are presumed to be made when the area is empty (i.e., with a static background).
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Some work in UWB-based impulse response radar assumes that background subtraction

is completely effective in removing the response due to the static environment [12]–[15].

Some work additionally assumes that, after background subtraction, each single multipath

component caused by a person’s presence can be distinguished perfectly from the impulses

caused by other people and the environment [13], [14]. In this paper, we show that ranging

can still be performed when these assumptions are not true, as is often the case in a cluttered

multipath environment.

One way to estimate the bistatic delay is first to perform “background subtraction,” and

then to threshold on the amplitude of the difference. Zetik et al. [15] describe a thresholding

method that uses a simple formula for choosing an appropriate threshold value for accurate

range estimation after background subtraction has been performed. Each UWB module has

one transmitting and two receiving directional antennas, all relatively close to one another.

This makes each UWB module approach a monostatic radar configuration. All of the sensor

nodes were pointed inward toward an empty room using directional horn antennas for their

experiments. In contrast, our measurements are performed in furnished office environments,

and the additional clutter can make background subtraction less effective. The estimation

methods described in [15] will be used in this work for comparison.

Another way to estimate the delay is to perform a cross correlation of the received signal

with a known target scattering profile and then to threshold the correlation values. Chang

et al. approach detection by modeling a human body’s scattering as a spectral multipath

model and cross correlating this model with the received CIRs [19], [20]. Detection is then

performed using an adaptive threshold on the cross correlation. In their work they used

a UWB radio similar to those used in this work but in a monostatic radar configuration.

The human body spectral multipath model was obtained using empirically collected data

from their UWB radio. They collected data of a moving human subject in an open field

where there was little or no multipath propagation to validate their detection method [19].

They expanded the method to tracking a human target and tested it using additional data

collected from the UWB radio [20]. The experimental data for tracking was also collected

in an open field. In contrast, we use measured data from cluttered environments to show

that our method is robust to the indoor multipath channel.

The work done by Giorgetti and Chiani offers a method of performing time-of-arrival

estimation in UWB signals without performing thresholding on the signal [21]. They

describe a “non-linear excision filter” to remove binned data that is purely noise to leave

only noise-plus-data bins. They use information theoretic criteria to arrive at an estimator.
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They offer simulation results using the 802.15.4a channel models. It is unknown how these

models change with the presence of a person. The tests performed in this work depend on

the presence of a person to affect the channel.

Our work is not the first to propose using HMMs for tracking, however, it is the

first, to our knowledge, to propose using a HMM for UWB impulse radar bistatic delay

estimation. Nijsure et al. used a HMM to model movement in a UWB radar-based tracking

system and simulated its performance [22]. In their work, the states of the model are

nonoverlapping geographic regions near the radios rather than changes to the received

signal. The measurements in [22] are unambiguous power delay profiles. In contrast, our

HMM is used to estimate the bistatic range, with only two states, whether or not the CIR is

impacted by a person at a given time delay or not. Two-state HMMs have been used in other

applications, for example in detecting channel use in dynamic spectrum access [23]. The

work in [23] simulated channel access by primary users and the performance of detection by

secondary users, who would use the channel opportunistically, using a HMM-based estimator

to detect whether a primary user is currently transmitting. Simulations showed improved

detection performance for the HMM-based method compared to a threshold-based method.

2.1.2 Organization

This paper is organized as follows. Section 2.2 describes the methods proposed in this

work to estimate τ∗ using hidden Markov models. Section 2.3 describes the data collection

campaigns carried out to test the proposed methods empirically. Results for our proposed

methods as well as those from performing simple thresholding and the thresholding method

described in [15] are reported in Section 2.4. Finally, conclusions are discussed in Section

2.6.

2.2 Methods

2.2.1 Measurements

Assume that an UWB transmitter sends pulse δ(t). Due to multipath propagation, the

received signal is described by

h(t) =
∑
i

αiδ(t− τi), (2.1)

where αi and τi are the complex amplitude and time delay of the ith path, respectively.

The line of sight path delay is τ0. The receiver radio approximately measures the channel
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impulse response convolved with the pulse shape. Fig. 2.1(a) is an example of how the

transmitted pulse may follow many different paths to arrive at the receiver.

The number of multipath components seen by the receiver depends on the environment

around the radios. When a person enters the environment, the person’s body will cause a

new multipath component at the receiver as well as affect existing multipath components.

This is illustrated in Fig. 2.1(b). The delay associated with this new multipath component

is τ∗, which we refer to as the bistatic delay. The person also affects many αi for τi ≥ τ∗.
In bistatic or multistatic radar systems, the bistatic delay, described by τ∗, is used to

locate and track objects near the radio transmitters and receivers. Assuming component

i is a single-bounce path (i.e., the path is affected by only one scatter as it travels from

transmitter, to the target, and then to the receiver), the scatter is located on an ellipse with

foci at the transmitter and receiver locations. That is, the locations where the scatter may

be located are points S where the distances from S to the transmitter and receiver, St and

Sr, sum to:

St + Sr = c · τi, (2.2)

where c is the speed of light.

This work seeks to accurately estimate the bistatic delay τ∗, that of the path created by

the person, particularly in environments with “cluttered” impulse responses (i.e., those

where individual multipath components arrive closely in time and become difficult to

separate from the CIR). Estimation of τ∗ is a key primitive operation for UWB impulse radar

systems—estimates from multiple transmitter and receiver pairs can be used to determine

possible scatter locations under a single-bounce assumption, as we explore in Section 2.2.8.

The IEEE 802.15.4a channel modeling subgroup performed a large measurement cam-

paign to help develop an ultra-wideband channel model for many indoor and outdoor

environments [24]. These models are useful for estimating the line-of-sight time of arrival

for UWB pulses. They are not useful, however, for simulating the channel impulse response

of the environment with the presence of a person or with respect to the person’s location

within the environment. Estimating τ∗ under these channel models in simulation would

not be possible without additional models of how the channel is affected as a function of a

person’s location.

As described in Section 2.1.1, background subtraction is a standard method for removing

the static background CIR from a current CIR measurement. However, we have found that

background subtraction is not effective in cluttered environments. An example is shown
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in Fig. 2.2, which shows the true bistatic delay τ∗ and a captured CIR subtracted from a

calibration CIR over about 20 ns of time. Both CIRs were averaged over ten measurements,

each set of ten captured with a signal-to-noise ratio (SNR) of 31 dB. Individual multipath

components are indistinguishable and the signal is very noisy. If background subtraction

were effective, the amplitudes prior to τ∗ would be significantly lower than the amplitudes

after τ∗, however, this is not the case. Better methods than simple subtraction to quantify

the changes in the CIR are needed.

2.2.2 Quantification of Change

We describe in this section an alternative to background subtraction. We introduce a

divergence measure which quantifies the change between the signal energy measured during

the period when the environment is static and the current period.

We consider a discrete-sampled version of the signal energy, rk, given by

rk =

∫ (k+1/2)T

(k−1/2)T
|h(t)|2dt, (2.3)

where T is the sampling period. For example, in our experimental work, we use T = 1 ns

which covers between 62 and 63 discrete samples for the CIRs captured using the UWB

radios. Essentially, rk is the energy in multipath components contained within a T -duration

window near time delay kT . We call this T duration window “range-bin k.” The vector

r = [r1, . . . , rn]T is the sequence of rk samples. The unit of time k describes the “fast time”

of the radar signal. We choose to estimate the energy in each range-bin rather than using

deconvolution to find the CIR. Performing deconvolution to determine the number and

arrival times of mulitpaths arriving at the receiver will give incorrect multipath quantities

and delays when the multipath experience frequency distortion, which is common for UWB

signals [25]. Moreover, the memory and computational burdens are reduced by considering

T duration windows rather than all samples.

In this work we use the Kullback–Leibler (KL) divergence to quantify the change in the

signal energy rk at each time k. The KL divergence is a measure of how many additional bits

would be required to encode the samples of one distribution relative to another distribution.

This is also known as relative entropy [26].

For continuous distributions the asymmetric KL divergence is defined as

D(p(x)‖q(x)) =

∫
p(x) log

p(x)

q(x)
dx, (2.4)
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where p(x) and q(x) are the probability densities of rk for the calibration measurements

and for those under test, respectively. These measurements are with respect to the “slow

time” of the captured CIRs. The symmetric KL divergence is defined as D(p(x)‖q(x)) +

D(q(x)‖p(x)).

The observation signal, Ok, in this model represents the difference between rk and rk of

the empty room, that is, the calibration samples. In this work, this difference was calculated

as the symmetric KL divergence.

For the observed signal, Ok, we use the symmetric KL divergence assuming Gaussian

distributions for rk. This measure is given in closed form by,

Ok =
1

2

(
σ2p
σ2q

+
σ2q
σ2p

+
(µp − µq)2

(
σ2p + σ2q

)
σ2pσ

2
q

)
− 1, (2.5)

where µp and σ2p are the mean and variance of rk during calibration, and µq and σ2q are

the mean and variance of rk from the CIR measurements collected for testing. These mean

and variance estimates are for a fixed k over several CIRs, which is the “slow time.” This

closed form solution for Ok is non-negative and the pdf fO,i will allow us to estimate Xk

by applying our hidden Markov model. The unit of measurement for the KL divergence, or

Ok, is bits.

The assumption that rk is Gaussian with respect to the “slow time” of the measurements

is important to the closed form solution of Ok given in equation 2.5. To show that rk follows

a Gaussian distribution, each set of 10 samples of rk for the empty room was normalized

to have a mean of 0 and a variance of 1. The SNR for these empty room measurements

was 31 dB. These samples were then aggregated for testing. With 10 sets of 90 samples of

rk for the six radio pairs gives 5400 samples. To reduce sampling instability, each CIR was

interpolated by a factor of four and then cross correlated with each other to align them in

time. A histogram of the normalized samples is given in Fig 2.3. Submitting these samples

to a Kolmogorov–Smirnov test fails to reject the null hypothesis that they come from a

standard normal distribution with p = 0.198. These results are similar for other CIRs

captured throughout this experiment.

An example of an observation vector O of KL divergences is given in Fig. 2.4. This

particular example is one where a first threshold-crossing method would be unable to

correctly estimate the true bistatic delay, k∗ where k∗ = b τ∗T c, of 15. For this particular set

of empty-room and target CIRs, the SNRs were, respectively, 27 and 28 dB. This example

shows how the assumption of easily being able to discern the background signal from the
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changes to the CIR can sometimes be wrong. In this case, there is a very large divergence

at a time when the signals should have shown little difference. The majority of observation

vectors will not exhibit this behavior but the errors of vectors such as these significantly

impact the overall error for an environment as will be shown in Section 2.4.

Other distance measures or distributions could be applied. However, the KL-divergence

and Gaussian assumption provide a standard approach for this proof-of-concept study.

2.2.3 CIR Changes as a Hidden Markov Model

A hidden Markov model is a special case of a Markov chain. The states of a HMM are

not directly observable but may be inferred. Other signals available for observation help

determine the past and current states of the system. Let πi be the probability of initially

starting the HMM in state i, Pij is the probability of transitioning from state i to state

j, and fO,i is the probability of observing signal O given the HMM is in state i, that is,

f(O|Xk = i). A simple illustration of a hidden Markov model is shown in Fig. 2.5.

In the case when the observations are continuous, we use the probability density function

(pdf) conditioned on the state, fO,i, for a continuous valued random variable. This is the

typical way to describe a HMM for continuous-valued observations [27].

By knowing fO,i, Pij , and πi, a best estimate of the current state at each time, X̂k, can

be calculated. This is found by applying the forward-backward algorithm to the sequence

of observation signals. When the estimated states transition from X̂k = 0 to X̂k+1 = 1, this

gives an estimate for k∗ and indicates the presence of a person due to the changes to the

observation vector.

Estimation of k∗, where k∗ = b τ∗T c, is equivalent to estimating τ∗. Due to multipath

scattering and the person’s impact on those later-arriving signals, rk will experience changes,

or Xk = 1, for many k ≥ k∗. The advantage of applying a HMM is that information over all

k is considered when solving for Xk rather than considering values at each k independently

of changes at all other k.

A more thorough introduction to hidden Markov models and the algorithms used to

infer information about them can be found in [27].

2.2.4 Continuous Observation Densities

The observations Ok are continuous valued and their probability distribution is described

by fO,i, the probability density function of Ok given Xk = i, i ∈ {0, 1}. The HMM

parameters fO,i, πi, and Pij are estimated using the data D collected in one room and are

used as initial estimates of the HMM parameters when estimating k∗ for the other room.
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The data sets Di, for each state i, are made using the knowledge of k∗ by

D0 = {Ok|k < k∗}, (2.6)

D1 = {Ok|k ≥ k∗}. (2.7)

Dividing the observation signals in this way assumes that there will only be one transition

from state 0 to state 1 and no transitions back to state 0, that is P10 = 0 and P11 = 1.

Under the assumption that Xk = 1 given k ≥ k∗, one may also assume that P1,0 = 0

and P1,1 = 1, that is, P (Ok|Xk = 1) remains constant as k increases. This assumption may

not be true—a person’s effect will eventually diminish for large k. Also, a probability of 0

leaves little opportunity for change during optimization. To improve the model, we allow a

small probability of returning from state 1 to state 0 (i.e., set P10 = ε where ε is a small

value greater than 0).

In [16], no assumptions were made regarding the distribution the observations took on.

The distribution was estimated by performing an Expectation Maximization algorithm to fit

the data to a Gaussian mixture model. This operation was computationally expensive but

effective. In this work we utilize our observation that the densities are similar to a log-normal

distribution. Under this assumption, well known maximum-likelihood estimates are used for

the distribution parameters. Fig. 2.6 shows the empirical cumulative distribution functions

(CDFs) of the aggregate samples before and after k∗ for one room. The natural log is applied

to Ok in these distributions. This log-normal approximation reduces the computational load

without sacrificing solving accuracy.

Initial estimates for πi and Pij are given by [27, eq. (40a–b)] using the training data.

2.2.5 HMM Solving

The HMM parameters are described by λ as

λ = [πi, Pij , fO,i] . (2.8)

The data from one room is used as training data to obtain an initial estimate of λ to

begin solving for k∗ with the other room’s data, or that of the measurement room. The

following describes how k∗ is estimated for the measurement room once λ is estimated from

the training data, as described previously.
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Finding X̂k, the estimate of Xk, for the measurement room is done by solving the

forward-backward algorithm. This algorithm finds the most likely state X at each range-bin

k [27].

X̂k = arg max
i

P (Xk = i|O, λ). (2.9)

The forward-backward algorithm is different than the Viterbi algorithm, which finds the

most likely state sequence over all k. It may seem more appropriate to use the Viterbi

algorithm to estimate when the state change occurs. The Viterbi algorithm, however, only

returns a state sequence. By using the forward-backward algorithm, the additional uncer-

tainty information of P (Xk = i|O, λ) is available for each k when performing localization.

It should be noted that estimates for k∗ are not constrained by the room boundaries or by

any prior information about where the person might be located.

After estimates for Xk are obtained, the Baum–Welch algorithm uses these estimates to

update the set of HMM parameters such that

P (O|i, λn+1) > P (O|i, λn). (2.10)

This algorithm is an iterative optimization on the space of λ to maximize P (O|i, λn).

The HMM parameters are updated over all sets of D as described by Rabiner [27]. Also,

fO,i is again found by estimating the distribution as log-normal using Di. However, Di is

now found as

Di = {Ok|X̂k = i}. (2.11)

The algorithm continues for a predetermined number of iterations or until P (O|λn)

no longer increases more than a given tolerance with each iteration, that is, P (O|λn) −

P (O|λn−1) < ε. The final estimate for k∗ is

k̂∗ = {k∗|X̂k 6= 1∀k < k∗}. (2.12)

This finds a local maximum in the space of possible λ but may not find the global

maximum. The effectiveness of this algorithm is dependent on the initial values of the

HMM parameters and the data itself. Other optimization algorithms exist but were not

explored in this research.
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2.2.6 First Threshold Crossing

A standard method to determine the bistatic delay, k∗, is simply to find the first time

at which Ok is greater than a threshold. We refer to this method as first threshold crossing

(FTC). Specifically the estimate of k∗ in first threshold crossing is given by

k̂FTC∗ = arg min
k

Ok > γ, (2.13)

where γ is a threshold. We show the performance of this method in Fig. 2.7 as a function

of γ. To show how the method would perform with training, we assume that γ is set by

using the γ that achieves the lowest root mean squared error (RMSE) in one room, and test

performance with that γ in the other room.

The work presented by Zetik et al. in [15] gives another method for thresholding the

received CIR to estimate τ∗. This method is also used for comparison in Section 2.4.1.

2.2.7 Localization

Multiple range estimates allow localization to be performed. In this section, we describe

methods for merging bistatic range estimates to obtain a position estimate. Clearly, range

estimates contain errors, and any location estimator must deal with these noisy inputs. The

works of Paolini et al. [28] and Bartoletti et al. [29] provide important information about

uncertainty and error in performing localization in an UWB network.

One advantage of the HMM-based approach we propose in this paper is that it provides a

“soft” decision on the bistatic range estimate. The forward-backward algorithm quantifies

the probability of each state i at each time index k, P (Xk = i|O, λ). If the conditional

probability of state 1 increases from zero to one very quickly at time k, then this delay

bin k is very likely to have been the true bistatic delay. If the conditional probability

increases slowly from zero to one over several delay bins, then it becomes more difficult to

estimate k∗ over those bins when the probability increases. Essentially, a quantification of

the probability of each delay bin k being the true bistatic delay is given by the rate at which

the conditional probability changes.

The forward-backward algorithm finds the conditional probability of being in a given

state at time k. To simplify notation going forward, we will let αk = P (Xk = 1|O, λ). Since

there are only two states, αk fully describes the probability of being in a given state at time

k. Also, let (x)+ be defined by
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(x)+ =

{
x if x ≥ 0

0 if x < 0.
(2.14)

Assuming a single-bounce model, each time delay measurement corresponds to a region on

the plane given an ellipsoid with the transmitting and receiving radios at the foci. For a

location estimate on a 2D plane, at least three radio pairs must give range estimates for

the overlapping elliptical regions to produce a unique solution, assuming noise-free range

estimates. Due to the cluttered environment, whose background UWB reflections are often

much stronger than the ones caused by a person, the range estimates cannot be assumed

to be noise-free. For this work, to mitigate the effect of having range estimate inaccuracy,

we obtained data from six radio pairs.

One way localization can be solved is as an inverse problem, described by Chang et al.

as a semilinear algorithm (SLA) [13] which models the radio locations and range estimates

as a linear function [13, eq. (4)]. SLA is solved using a linear least squares method. Where

range estimates alone are available, solving the problem as an inverse problem makes the

most sense since these estimates will often not converge perfectly due to errors and noise.

The output of the HMM, however, is more than a simple range estimate. Additional

information about the probability of being in one of the two HMM states is available. This

additional uncertainty at each time k can be used to improve localization accuracy.

The work of Ergut et al. [30] offers another localization method complementary to the

range estimation method proposed in this work. They propose an artificial neural network

to localize a target within a sensor network which returns range estimates as inputs to

the neural network. Their localization method, however, requires localization training and

makes the assumption of high SNR range estimates. The work also fails to show how their

method performs using empirically measured channel impulse responses.

The work of Chiani et al. performs localization using a soft image derived from the

time-of-arrival estimates [31]. This is similar to our proposed localization method in that

no single range estimate is used to perform localization but an intermediate set of data,

which in our case is the output of the forward-backward algorithm. No detection methods

will be applied, however, to the UWB image. Chiani et al. also offer a number of ways to

obtain pixel values for the soft image.

By nature of the experiments performed, tracking algorithms were not applied. The

work of Bartoletti et al. apply tracking algorithms that may aid in the localization of a

moving person [32].
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2.2.8 Proposed Localization Method

In this work, localization is solved as a forward problem as follows. We discretize space

into P pixels containing the area being monitored. We denote li to be a quantification of

the “presence” of a person in pixel i. The image vector is then

L = [l1, . . . , lP ]T , (2.15)

where pixel i is centered at coordinate zi = (xi, yi). A person in pixel i would, assuming

the single-bounce model, be measured to be in range-bin kmi for transmitter/receiver pair

m, where m ∈ {1, . . . ,M},

kmi =

⌈
‖tm − zi‖+ ‖zi − rm‖ − ‖tm − rm‖

dk

⌉
, (2.16)

where tm and rm are the transmitter and receiver coordinates for link m and dk is the

distance light travels during one time bin. The value li is given by

li =

[
M∑
m=1

[Am]pi

] 1
p

, (2.17)

where A is the non-negative difference function of α at kmi ,

[Am]i = (αkmi − αkmi −1)
+, (2.18)

with α0 = 0. Equation (2.17) is the p-norm of {Am} for all radio pairs m = 1, . . . ,M at

pixel i. A p-norm of 0 (i.e., p = 0) gives a count of nonzero values and a p-norm of 1 is a

sum of the elements. In this work, p = 0.2 was found to give the best performance and was

the value used for the results given in Section 2.4.2. This p-value weights the elements of

A such that, qualitatively, lower values are weighted more and higher values are weighted

less.

Rather than using αk, localization can also be done using estimates k̂∗. This would

change the way A is calculated from what is given in Equation (2.18) to:

[Am]i =

{
1 if i = k̂∗

0 otherwise.
(2.19)
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Results for both of these methods for solving localization as a forward problem as well as

solving using SLA are given in Section 2.4.5.

To understand pixel value li more intuitively, we recall that αkmi −αkmi −1 is a soft metric

for the probability that pixel i is at the same bistatic range as the person, as indicated by

the measurement on link m. Due to the p-norm in (2.17), li is a type of average of these

probabilities over all links. This method is especially useful when the measurements from

a link are ambiguous, and thus αk for that link doesn’t change from zero to one suddenly.

The uncertainty in {αk}k is reflected in the presence image L.

For purposes of noise reduction, we apply a 2-D Gaussian filter to image L. For

experiments with one person in the area, we take the coordinate of the pixel with highest

li (after the filtering) as the location of the person.

2.3 Experiment

We conduct two types of experiments for evaluation of our proposed algorithms. First,

we conduct in-room experiments where transmitters and receivers are in the same room

as the person being located. Second, we conduct an experiment in which the transmitter

and receiver are on the other side of an interior wall of the room in which the person is

located. In all experiments, we use two P220 UWB impulse radios from Time Domain, Inc.,

to capture CIR measurements with an antenna height of 0.9 m. The radios transmitted at

power level of −16.13 dBm with a transmitted center frequency of 4.7 GHz and a 10 dB

radiated bandwidth of 3.2 GHz. Pulses are transmitted at an average rate of 9.6 million

pulses per second. Additional information about the P220 radios can be obtained from

Time Domain [33].

2.3.1 In-room Experiments

We first conduct measurements in rooms 3325 and 1280 in the Merrill Engineering

Building. Two rooms are measured so that one room can be used as a training room while

the other is used as an experiment room. Figs. 2.8(a) and 2.8(b) describe the positions of

the radios and where the person stands in each room. Room 3325 contains typical office

furniture; desks, chairs, bookshelves, and computers. It measures 6.2 m by 6.2 m with the

ceiling 2.5 m from the floor. Room 1280 is a classroom and all of the desks and furnishings

were removed from the room for the experiment. Room 1280 measures 8 m by 8.2 m with

the ceiling 2.7 m from the floor.

We collect both empty-room (i.e., no person in the room) calibration measurements

and measurements which represent all measurements possible in a four UWB transceiver
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multistatic network when a person is standing at any of the possible grid points in the

two rooms. Since we have only two UWB transceivers, we conduct these measurements as

follows.

The two radios are placed in any of the four locations designated for the radios in

the room. Ten calibration measurements of the CIR, or rk, are taken when the room is

empty. Then, at each of the designated points, a person stands and remains as motionless as

possible while ten more measurements of the CIR are taken. Each set of ten measurements

was captured over approximately five seconds. After collecting measurements at all points,

the two radios are moved. This process is repeated for the M = 6 pair-wise radio locations.

The full process is repeated in the second room. These sets of ten are those used to estimate

µ and σ2 for rk for the calibration and measurement sets.

Experiment A uses the data collected in room 1208 as the training room data and the

data collected in room 3325 as the data for the experiment room. Experiment B swaps the

data used for the training and experiment rooms and performs the estimation again.

2.3.2 Through-wall Experiment

In addition to ranging and localizing a person that is in the same room as the radios,

one data set is also collected to test ranging through an interior wall. Two radios are placed

1 m apart from one another and 18 cm from the wall in room 3220 separating it from

room 3230 in the Merrill Engineering Building at the University of Utah. Room 3220 and

3230 both measure 6.7 m by 4.9 m with a ceiling height of 2.7 m. The separating wall is

approximately 10 cm thick and is constructed of a metal support with internal insulating

material and covered in drywall.

We also report the power loss due to wall penetration, in order to characterize the

experiment condition. To estimate the penetration loss of the wall, the CIR is measured

with the radios 4.5 m apart with both radios in room 3220. The transmitting radio is then

placed on the other side of the wall in room 3230, and the receiving radio is also moved to

maintain a 4.5 m separation. The CIR is measured again and the line-of-sight component

of two measured CIRs are compared. The measured power loss of the wall is approximately

5 dB over the 3–5 GHz band.

The measurements are made as follows. A person stands at 30 different locations in the

adjacent room 3230 while the CIR was captured 20 times per location. Fig. 2.9 shows these

two rooms with their corresponding person and radio locations. Both before and after all

of these CIRs are sampled with a person present, the CIR for the empty room is captured

100 times. UWB pulse integration is also increased by a factor of 8 from what was used
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in the other experiments. This increases the SNR of each CIR at the cost of lowering the

maximum possible sampling rate.

This through wall experiment is performed for just one radio pair, which is insufficient

for localization. Instead, the purpose of this through-wall experiment is to allow us to

quantify the performance of UWB impulse radio bistatic delay estimation.

2.4 Results

In this section, we apply the methods proposed in Section 2.2 to the data collected as

described in Section 2.3. We measure the performance of our proposed HMM-based bistatic

delay estimator in three ways: (1) the RMSE of the bistatic delay estimator, (2) the false

negative and false positive rates, and (3) the performance of localization using our bistatic

delay estimates. We compare the results of our method of estimating bistatic delay to

simple thresholding as well as the thresholding method given in [15].

The bistatic delay error is the difference between the person’s actual bistatic delay and

the estimated bistatic delay,

ε = T
∣∣∣k̂∗ − k∗∣∣∣ . (2.20)

We use RMSE across all experiments to quantify average performance.

We report false negative and false positive rates for the methods studied. For bistatic

delay estimation, a false negative is when there was no person’s bistatic delay detected

when a person is actually present. For our HMM-based method, this corresponds to the

forward-backward algorithm detecting no transition from state 0 to state 1 for the measured

CIR. A false positive is when there was a bistatic delay estimated when no person was

present.

In all results, we chose a delay-bin duration T of 1 ns. The choice of T is a trade-off

between computational requirements and quantization noise. We note that 1 ns of time

corresponds to about 30 cm of distance traveled at the speed of light, approximately the

width of an adult human body. Further, our results show errors significantly higher than 1

ns, and thus it has not been necessary for us to reduce T further.

2.4.1 First Threshold Crossing

First, we test the performance of the FTC estimator as described in Section 2.2.6. We

find the threshold that is optimal (for minimum RMSE) for the training room and then

use that threshold in the testing room. From this method, a minimum RMSE of 5.25 ns
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is achieved for Experiment A and 5.20 ns for Experiment B. Next, we see what minimum

could have been obtained for the testing room even if the optimal threshold for that room

had been known. These absolute minimums achieved are 3.28 ns and 4.58 ns, respectively.

Fig 2.7 shows how the RMSE varies as a function of the threshold. Clearly, the optimal

threshold would not be known a priori for each room. Fig. 2.7 shows the sensitivity of the

RMSE to the chosen threshold. For Experiment A there is a large change in the estimates

with a small change to γ. This large change to the RMSE, occurring near γ values of 65

and 99 bits, are due primarily to one set of CIRs for one point and radio pair. Without

knowledge of the true values for k∗, one would still notice the large change to k̂∗ with small

changes to γ. The effect on RMSE due to this one particular person-location and radio-pair

combination, which we also describe as an outlier, is shown in Fig. 2.10.

There were no false negatives for the range of γ tested in Fig 2.7 for either experiment

using the first threshold crossing method.

The work done by Zetik et al. [15] gives a somewhat different method for thresholding

the signals. The background is continually updated for each UWB node, which would

correspond to a radio pair in our work, as:

bi = αbi−1 + (1− α)mi, (2.21)

where b is the background estimate and m is the newly measured CIR. The signal s then

used for thresholding is:

si = mi − bi. (2.22)

This removes the static background signal from the time-varying signal, which is what we

wish to detect and range.

The threshold is calculated as:

ti =

(
0.3 + 0.7

ni

||si||∞

) ∣∣∣∣si∣∣∣∣∞ , (2.23)

where ni is the peak noise level of mi.

Using the method of [15], described in Equations (2.21), (2.22), and (2.23), and the data

collected, we obtain an RMSE of 6.5 ns and 10.6 ns for experiments A and B, respectively.

When first threshold crossing is performed on the through-wall experiment data, a plot

of RMSE versus threshold is obtained and shown in Fig. 2.11. This is comparable to
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those shown in Fig. 2.7. Notice that the γ that achieves the optimal estimation of k∗ is

different for each experiment and varies significantly. In other words, the optimal γ cannot

be determined from data measured in a different location.

2.4.2 HMM-based Method

The HMM and process described in Section 2.2.5 are applied to the two in-room exper-

imental data sets. The changes to RMSE for each iteration of the Baum–Welch algorithm

is shown in Fig 2.12. The RMSE achieved after 15 iterations is 2.85 ns and 2.76 ns for

Experiments A and B, respectively. This corresponds to less than 90 cm of range error.

Others have described how range error corresponds to localization error in UWB sensor

networks [28], [29]. There were no false negatives. The bias, E[k̂∗ − k∗], was −0.3 ns for

Experiment A and 0.2 ns for Experiment B.

For all points on the line-of-sight of two radios, the estimated range was always r̂k = 1ns,

which is between times 0 n and 1 n because T = 1ns, which is the correct estimate. Although

the line-of-sight signal is blocked by the person, there is still a significant amount of energy

arriving at the receiving radio from diffraction and reflection in the environment. The

observations Ok from the received CIRs with the line-of-sight path blocked indicate that

X̂k = 1 over all k rather than transitioning from Xk = 0 to Xk+1 = 1 at some k, giving an

estimated range of r̂k = 1ns.

The marked improvement in RMSE from using a HMM over energy detection also comes

without foreknowledge of an ideal threshold value. Although an initial estimate for λ is

required, the Baum–Welch algorithm eliminates much of the error due to a poor estimate,

as will be shown with the through-wall results 2.4.3. The HMM, unlike a simple threshold,

takes into account the data across all time values to estimate k∗.

The stopping condition used for the given results is to continue the Baum–Welch al-

gorithm until there is little change to P (O|λ) from one iteration to the next. That is

P (O|λn) − P (O|λn−1) < ε. Experiment A converges, using this metric, after 9 iterations

and Experiment B after 14 iterations.

2.4.3 Through-wall experiment

Our proposed HMM method is also applied to data captured through a wall dividing

two rooms as described in Section 2.3.2. Observation vectors are calculated using all of the

available empty room CIRs and CIRs with a person present. With the observation vectors

and an initial estimate for the HMM parameters λ, estimates for k∗ can be found.
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Using the λ that is found to be optimum for any one of the three environments as

the initial λ for any of the other environments results in the same solution for λ from the

Baum–Welch algorithm. This is illustrated using the through wall data. For the through

wall data, there are three choices of λ, two obtained from the data collected from the two

in-room experiments described in Section 2.3.1 and one from the data and known locations

of this through wall data. The λ obtained from the through wall data could not be used

in a production system because it is derived using a knowledge of k∗. If k∗ is known, there

is no reason to use it to find λ to then estimate k∗. It is used here solely for illustrative

purposes.

Fig. 2.13 shows the bistatic delay RMSE at each iteration of the Baum–Welch algorithm

for the three different choices for λ at the first iteration. The choice of λ greatly influences

the RMSE at first, but the effect of the choice is ultimately negated by the Baum–Welch

algorithm. The final RMSE in all three cases is 1.33 ns.

This final error is better than the results obtained with the subject in the same room

as the radios. There are several reasons for this.

1. Number of samples: Many more samples of the empty room were collected and used

in determining the KL-divergences in the through-wall experiment (200) compared

to the in-room experiments (10). These additional samples help to reduce the noise

in the observation vectors. The effect of choosing different empty room samples is

explored further below.

2. Additional integration: Additional signal integration was done in sampling to reduce

noise in the CIRs because of the additional path loss in the through-wall experiment.

To show the effect of the number of empty room samples on the performance of the

ranging estimation (item 1 above), we run an experiment in which we reduce the number of

empty-room samples used in the through-wall experiment. Here, we calculate observation

vectors of KL-divergences using sets of 20 sequential empty room samples. From the two

sets of 100 empty room samples, this leads to 162 sets of sequential samples. The initial

choice of λ was the same used in Experiment A. The overall RMSE was calculated for each

of these sets of empty room samples. Two of the 30 person locations had a wide variation

in their range estimate depending on which set of empty room samples was chosen. Fig.

2.14 shows the empirical CDF of the final RMSE obtained using each of these sets of empty

room samples both with and without these two person locations.

For the trials using all person locations, 12.3% of the trials resulted in an RMSE better

than the 1.33 ns achieved using all of the empty room samples together. The overall RMSE
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for all of the trials using 20 empty room samples is 4.19 ns. This illustrates that, on average,

using a fewer number of empty room samples degrades performance.

2.4.4 False Positives

Testing for false positives, or nonzero estimates of k∗ in empty room samples, was also

performed. The Baum–Welch algorithm was not performed on these samples, that is, no

updating of the HMM parameters was done for re-estimation of k∗.

False positives were tested by randomly dividing the set of empty-room samples into

the known empty-room and possible point sample sets. Due to the limited sample sizes for

empty-room samples, this random set division allows us to simulate how false positive tests

might perform using different sample sets that are not available. For each radio pair, the

available samples were divided evenly between the known empty-room sample set and the

possible point sample set. These two sets were used to find the observation vector of KL

divergences, which the HMM uses to estimate k∗.

For each of the six transmitter/receiver pairs for each of the two rooms, 1000 trials were

performed using the random subset division described for a total of 12 000 trials. Of these

a total of 50 trials resulted in false positives, that is, a 4.2 × 10−3 false positive rate. We

note that over half of the false positives come from a single transmitter/receiver pair in one

of the rooms. Notably, this pair had just 10 empty-room samples available for testing. This

is the fewest number of empty-room samples for any transmitter receiver pair.

2.4.5 Localization

Results for localization are given for both the forward method described in Section 2.2.8

and the SLA described described by Chang et al. [13]. The forward solving method is done

in two ways, first using αk where αk = P (Xk = 1|O, λ) and second using only the range

estimates, k̂∗, without the additional information of the probability of being in a given state.

The SLA described by Chang et al. only uses range estimates for localization. A

summary of the results of each localization method with its available information is given

in Tables 2.1 and 2.2. All values are given in centimeters.

The forward solving method described here gives location estimates that are significantly

better than those from the SLA described by Chang et al. Taking into account αk rather

than using k̂∗ alone also improves the location estimates for the forward solving method.

Figs. 2.15 and 2.16 describe the true person locations, as shown previously in Fig 2.8,

and the estimates for those locations using the forward solving method with all available

information.
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Range estimates from three unique radio pairs is sufficient to unambiguously localize a

target. In this work there are estimates from six radios pairs for each localization image.

Having information from additional radio pairs aids in accurate localization because some

of the estimates may be inaccurate. As long as the information from at least three radio

pairs are accurate, the target’s location can be accurately estimated. Also, as shown in the

results given, using all of the available information from the forward-backward algorithm,

and not using the range estimate alone, increases localization accuracy.

Chang et al. [13] offer a Cramér–Rao lower bound on location estimation accuracy

assuming range estimates are corrupted by Gaussian noise. They find asymptotic bounds

as the number of transmitters and receivers grows for a few different scenarios. For an

object at the origin, they find the bound to be

2σ2

NM
, (2.24)

where NM is the number of UWB links in the network, which in our case is 6. Range

errors of 2.85 ns and 2.76 ns correspond to a σ of 85 cm and 83 cm, respectively. This gives

lower bounds of 24 cm and 23 cm for localization error. Notice that in Table 2.1 the results

for using only range estimates results in errors of 155 cm and 75 cm, respectively. The

actual error is higher than these bounds. This may be due to the fact that the noise in

the range estimates may not be Gaussian, as is assumed by Chang et al. This may also

be because the assumption that range errors are independent on different links may not

be valid. Also note that much better performance is achieved when all of the additional

information available from the forward-backward algorithm is used rather than using range

estimates alone. However, no lower bound on performance is available in this case.

2.5 Discussion

One primary limitation of the algorithm as proposed is that it assumes only one person

is causing changes to the CIR. To account for more people, future work must expand the

HMM-based estimator to estimate a bistatic delay for each person in the environment.

Research must determine what methods to use in the multiple person case. For example,

more states could be added to the Markov model that account for more than the channel

impulse response simply being affected or not. Additional states could estimate the number

of targets to have affected the channel. Another possibility is if joint estimation of the num-

ber of people and their bistatic delays improves performance. Once localization of multiple
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targets has been performed, several multitarget tracking methods have been developed for

RSS-based device free localization [34]–[39].

Another limitation of the proposed algorithm is its reliance on calibration CIRs. We

have shown that the proposed method is robust to variances in the initial choice of λ but

it is not to significant changes to the environment. New calibration samples would be

needed each time a change in the environment requires it. One possible way to eliminate

the calibration requirement is to use the CIRs that were sampled immediately preceding

the CIRs with a possible target. This, however, may introduce bias and make static targets

harder to detect.

2.6 Conclusions

In this paper, we introduce and experimentally verify a hidden Markov model-based

algorithm for estimating the bistatic delay in an UWB impulse radar system. We show

the proposed algorithm achieves a lower RMSE than first threshold crossing methods for

highly cluttered multipath environments. Applying the Baum–Welch algorithm allows the

proposed estimator to adapt its parameters to be best for the particular environment.

We show the algorithm is robust to initialization parameters derived from a different

environment.

Compared to using the first threshold crossing estimate of τ∗, our method reduces error

by almost half. Since these estimates of the person’s bistatic delay are used directly in

tracking algorithms, we expect to similarly improve UWB-based localization performance.

The forward solving method described here for localization using the probabilities αk

was very effective, achieving a median error of 18 cm.
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(a) Static Environment (b) Person’s Effect

Figure 2.1. When a person appears at x0 in the environment between the transmitter at
xt and receiver at xr, an additional path is caused with path length ‖xt − x0‖+ ‖x0 − xr‖,
where ‖ · ‖ is the L2 norm, and also affects multipath components with longer path lengths.

Figure 2.2. The difference between a calibration CIR and a new CIR gives a noisy signal
with multipath components that are indistinguishable from one another. The red, dashed
line is the actual bistatic delay (i.e., τ∗).

Table 2.1. RMS Localization Error (cm)

Forward SLA

All Info Range Only Range Only
Rm 3325 36 155 165
Rm 1208 24 75 194
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Figure 2.3. Empty room samples normalized to have zero mean and a variance of 1 exhibit
a Gaussian distribution.

Figure 2.4. An example of an observation vector where no threshold can find the true k∗,
which is 15 in this case. The HMM correctly estimated k∗ for this vector.

Table 2.2. Median Localization Error (cm)

Forward SLA

All Info Range Only Range Only
Rm 3325 16 67 159
Rm 1208 16 29 172
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Figure 2.5. The change in CIR measurement we observe at range-bin k, Ok, has a
distribution dependent on the state, Xk, of a hidden Markov chain.

Figure 2.6. Empirical CDFs of the log of Ok for one room. Although these distributions
are not precisely log-normal, this assumption is reasonable for the solving methods.
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Figure 2.7. Performance of first threshold crossing method given by equation (2.13) as a
function of threshold γ.

(a) Room 3325 (b) Room 1280

Figure 2.8. Circles are points where the person would stand and squares are radio
locations. Gray rectangles are furniture. Neighboring points are spaced 90 cm apart.
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Figure 2.9. Squares represent radio locations in room 3220 and circles represent person
locations in room 3230. Person locations are spaced 60 and 120 cm apart.

Figure 2.10. RMSE for Experiment A with and without the outlier point.
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Figure 2.11. Performance of first threshold crossing method for the through-wall experi-
ment

Figure 2.12. Performance of HMM-based estimator of k∗ as a function of iteration count.
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Figure 2.13. The RMSE for the through-wall experiment converges to 1.33 ns for each of
the initial choices of λ derived from the data for each of the three rooms.

Figure 2.14. Variance of the estimator based on which set of empty room samples is used.
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Figure 2.15. MEB 3325 actual person positions (O) and localization estimates (X) using
the forward solving method.

Figure 2.16. MEB 3325 actual person positions (O) and localization estimates (X) using
the forward solving method..



CHAPTER 3

JOINT ULTRA-WIDEBAND AND SIGNAL

STRENGTH-BASED THROUGH-

BUILDING TRACKING FOR

TACTICAL OPERATIONS

Accurate DFL-based on RSS measurements requires placement of radio transceivers on

all sides of the target area. Accuracy degrades dramatically if sensors do not surround the

area. However, law enforcement officers sometimes face situations where it is not possible

or practical to place sensors on all sides of the target room or building. For example, for an

armed subject barricaded in a motel room, police may be able to place sensors in adjacent

rooms, but not in front of the room, where the subject would see them. In this paper, we

show that using two UWB impulse radios, in addition to multiple RSS sensors, improves

the localization accuracy, particularly on the axis where no sensors are placed (which we

call the x-axis). We introduce three methods for combining the RSS and UWB data. By

using UWB radios together with RSS sensors, it is still possible to localize a person through

walls even when the devices are placed only on two sides of the target area. Including the

data from the UWB radios can reduce the localization area of uncertainty by more than

60%.1

3.1 Introduction

Device free localization systems can be used in tactical operations or crisis situations to

help emergency personnel know where people are in a room or building before they enter [8].

These systems do not require people to participate in the localization effort by wearing or

carrying sensors or radio devices. Systems based on radio frequency measurements are

1 c©2013 IEEE. Reprinted, with permission, from M. McCracken, M. Bocca, and N. Patwari, “Joint
Ultra-wideband and Signal Strength-based Through-building Tracking for Tactical Operations,” in 2013
10th Annual IEEE International Conference on Sensing, Communications and Networking (SECON), 2013.



40

particularly appropriate for e.g. hostage or barricade situations because RF penetrates

(nonmetal) walls. However, in many such situations, it is not possible to place sensors on

all sides of the building or area. For example, some sides of a building might have windows

where an armed subject may be watching, and deploying sensors on that side could expose

police to harm or escalating the situation. As another example, a room on an upper floor

of a building may have some accessible interior walls (e.g., in a hallway), but the exterior

wall may be unaccessible simply because of its height. This paper presents a system that

expands the possibilities for RF-based DFL systems where an area cannot be surrounded

with sensors by combining RSS-based DFL methods with bistatic UWB impulse radar

methods.

We are particularly motivated by discussions with our local SWAT team, who have

unfortunately faced three situations in as many years in our metro area [40]–[42] in which

hostages were taken by a barricaded subject in a hotel or motel room. Knowing the location

of the suspect represents very valuable information in planning the actions (e.g., forced

entry) required to bring the standoff to an end safely. In such situations, sensors could

be placed in adjacent rooms to the barricaded room, but rooms have front windows, and

sometimes back windows; thus, front and back walls are potentially off limits.

A DFL system based on RSS measurements [4]–[7] typically has radio transceivers, which

we call RSS sensors placed on all four sides of a target area. RSS measurements of the links

connecting every pair of sensors are used to estimate the location of the person in the room

in real time. The localization process is based on models for the change in RSS introduced

by the presence of a person on or near the link line, that is, the straight imaginary line

connecting the transmitter and receiver [5], [34], [43]. When RSS sensors are placed only on

two opposite sides of a room, the links cross the monitored area along one axis but not the

other. This significantly degrades the localization accuracy of the system, especially along

the axis with no crossing links [5].

UWB radios can be used for DFL through walls and can be accurate on the order

of centimeters or tens of centimeters [12], [44]. Multiple UWB radios cooperating in a

multistatic radar configuration can provide an unambiguous localization estimate [12]. A

transmitter broadcasts a UWB impulse and receivers capture the time-domain CIR of the

environment. Changes to the CIR are detected, and the time delay beyond the line-of-sight

(LoS) pulse for each of these changes is used to estimate the range of the target from the

radios [3]. These radios, however, can be prohibitively expensive to install on a permanent

basis: a single UWB impulse radio can cost thousands of dollars, and using only a single



41

pair of radios provides insufficient information to unambiguously localize a target.

In this paper, we introduce a joint DFL system that uses the changes measured in RSS

and CIR to localize and track a target, such as a person, through walls. We demonstrate, in

particular, the localization accuracy of a system which deploys sensors only on two opposite

sides of a room. We call the axis parallel to the sides of the room without sensors the X

axis and the axis parallel to the sides of the room with sensors the Y axis (see Figs. 3.1 and

3.2). The RSS sensors primarily provide the information about the target’s y coordinate,

while the UWB radios primarily provide information about the target’s x coordinate. This

removes the need to have RSS sensors on all four sides of a target room and reduces the

number of UWB radios required for localization.

In this paper we introduce methods to process and combine the RSS and CIR data

in order to provide a unique position estimate. The experimental results collected in two

deployments, i.e., a study room at the University of Utah and a motel room in Salt Lake

City, show that the joint RSS-UWB DFL system can accurately localize a noncooperative

target through walls. Even when the number of deployed devices is low, e.g, only two UWB

radios and six (three per side) RSS sensors, the system can still provide a position estimate

accurate enough to reliably indicate in which part of the room the person is located. In

tactical situations where the only opportunity to have access to the target room is to open

a breach in a wall with an explosive frame, this information can be used by police forces to

decide which wall has to be detonated and avoid hurting or killing the suspect.

In tactical operations or crisis situations, law enforcement may not have the possibility

of calibrating the systems used for DFL in stationary conditions (i.e., when no person is

located in the target area). Thus the methods used to process the data coming from the

RSS sensors and UWB radios should be able to localize and track the suspect in the room

from the start, making DFL a plug-and-play type of system. In this paper, we propose

novel variance-based methods for RSS and CIR measurements that can localize the person

without requiring an initial calibration of the system in stationary conditions.

This is a proof of concept study to show the performance capabilities of a system that

combines UWB information with RSS based localization techniques. In order to be practical

for law enforcement personnel, the system should be able to be quickly deployed, and as

such, we also study the performance of the proposed methods as a function of the number

of sensors required to be deployed.

This work does not address multiple target tracking. This is a future area of research.

This has been a topic of research for RSS based localization [34]–[39], but the UWB
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techniques used in this work have not been designed for multiple target range estimation.

At the time of writing, there are several commercially available through-wall radio

technologies that can help law enforcement determine the position of people inside a room.

The Prism200 from Cambridge Consultants [45] is a through-wall radar system for deter-

mining the location and movement of people for law enforcement or emergency personnel.

The XaverTM products from Camero are also through-wall UWB solutions that provide

similar capabilities [46]. Time Domain is another company that offers solutions for target

localization and tracking using UWB radios [47]. The UWB radios used in this work are

a pair of P220 UWB radios from Time Domain. Compared to these products, the joint

RSS-UWB DFL system described in this paper is considerably less expensive, as the RSS

sensors cost a few tens of dollars each and only two UWB radios are required. Moreover,

the compact size and low weight of the RSS sensors and UWB radios make our system

easier to be installed.

The paper is organized as follows. In Section 3.2, we describe the radio RTI technique

used to process the RSS measurements coming from the RSS sensors. In Section 3.3, we

describe the methods used for estimating the bistatic range of a target using UWB radios

by modeling the changes to the CIR as a hidden Markov model. Section 3.5 describes a

target tracking scheme. Section 3.4 introduces three methods to combine the RSS and CIR

data in order to provide a unique position estimate. Section 3.6 describes the experiments

carried out, while Section 3.7 presents the results and compares the performance of the

different methods. Conclusions are given in Section 3.8.

3.2 Radio Tomographic Imaging (RTI)

In RTI, originally introduced in [5], static radio transceivers placed at known positions

form a wireless mesh network and collect RSS measurements that can be used to localize and

track a person in real time without requiring the person to wear or carry any sensor or radio

device. RTI can provide submeter localization accuracy, also in through-wall scenarios [8],

[10], [48]. The RSS measurements of all the links of the network are processed in order to

estimate a discretized image x of the change in the propagation field of the monitored area

caused by the presence of a person. The estimation problem can be defined as:

y = Wx + n, (3.1)

in which y and n are L×1 vectors of the RSS measurements and noise of the L links of the

network, respectively, and x is the N × 1 image to be estimated, where N is the number of
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voxels of the image. Each element xn of x represents the change in the propagation field

due to the presence of a person in voxel n. The L×N weight matrix W represents a spatial

impact model between the L links of the network and the N voxels of the image. The model

used in RTI [5], [8], [10], [43] is an ellipse having the foci located at the transmitter and

receiver of the the link. The voxels located within the ellipse have their weight set to a

constant which is inversely proportional to the root distance between the transmitter and

receiver, while the voxels located outside of the ellipse have their weight set to zero.

3.2.1 Attenuation-based RTI

For attenuation-based RTI (AB-RTI) we use the method introduced in [10]. In this

section, we briefly present this method and the terminology that will be used also in the

following sections.

The RSS of link l on channel c at time instant k, rl,c(k), can be modeled as:

rl,c(k) = Pc − Ll,c − Sl,c(k) + Fl,c(k)− ηl,c(k), c ∈ F , (3.2)

where Pc is the transmit power, Ll,c the large scale path loss, Sl,c the shadowing loss, Fl,c

the fading gain (or fade level [34]), ηl,c the measurement noise, and F = {1, . . . ,H} is the

set of measured frequency channels. Both the large scale path loss Ll,c and the shadowing

loss Sl,c change very slowly with the center frequency. In our experiments, we use IEEE

802.15.4-compliant transceivers [49] which may transmit in one of 16 channels across the

2.4 GHz ISM band. Because the band, 80 MHz, is small compared to 2.4 GHz, we can

assume that both Ll,c and Sl,c are independent of the frequency channel c. Consequently,

Fl,c can be calculated as:

Fl,c(k) = rl,c(k)− Pc + ηl,c(k). (3.3)

Due to the measurement noise ηl,c, the fade level can not be measured directly. Thus, we

estimate it by using the average RSS, r̄l,c,, measured during an initial calibration of the

system performed when no person is in the monitored area:

F̄l,c = r̄l,c −min
c
r̄l,c. (3.4)

In [34], the links are divided in antifade and deep-fade links depending on the change

in RSS measured when a person crosses the link line, i.e. the imaginary straight line



44

connecting the transmitter and receiver. A link is in a deeper fade on channel c1 than on

channel c2 if r̄l,c1 < r̄l,c2 . By definition, F̄l,c ≥ 0 and F̄l,c = 0 for one channel c on each link.

Antifade links are the most informative for localization, since their spatial impact area is

limited around the link line, while deep-fade links measure a consistent change in RSS even

when the person is far from the link line. For this reason, for each link l we calculate the

fade level in (3.4) of each channel c ∈ F , and we rank the measured frequency channels from

the most antifade to the most deep-fade. If Ai is the set of size m containing the indices

of the m top channels in the fade level ranking, the link RSS measurement yl at time k is

calculated as:

yl(k) =
1

m

∑
c∈Ai

∆rl,c(k), (3.5)

where ∆rl,c(k) = rl,c(k) − r̄l,c, i.e., ∆rl,c(k) is the difference between the current RSS

measurement of link l on channel c and the average RSS measured during the initial

calibration phase.

3.2.2 Variance-based RTI

We present a new multichannel version of variance-based RTI (VB-RTI) extending and

improving the results of [8]. In this new method, we also include the concept of fade level.

The attenuation-based RTI method in [10] requires an initial calibration of the system in

stationary conditions, i.e., when the monitored area is empty. Moreover, if the environment

changes, e.g., when the suspect in the room moves furniture or other objects, the RTI

system would need to be recalibrated or would otherwise lose accuracy. The work in [48]

addresses this issue and introduce methods capable of estimating the baseline RSS of the

links online.

In tactical operations, such as when an armed person has barricaded himself in a house

or motel room before the arrival of police forces on the scene, we cannot expect to require

an empty area. Variance-based RTI can be applied in this scenario. The change in RSS

due to the presence of a person on the link line can be quantified as the unbiased sample

variance of the last Ns RSS measurements:

ŝl,c(k) =
1

Ns − 1

Ns−1∑
p=0

(rl,c(k − p)− µl,c(k))2 , (3.6)

where
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µl,c(k) =
1

Nµ

Nµ−1∑
p=0

rl,c(k − p) (3.7)

is the mean of the last Nµ RSS measurements of link l on channel c, where Nµ > Ns to

be able to estimate the mean RSS of each channel on a longer time window and to filter

the changes due to the person crossing the link line. Variance-based RTI does not require

an initial calibration of the system and can adapt at run-time to eventual changes in the

environment. For each link l, µl,c(k) in (3.7) provides an estimate of the fade level of channel

c at time k. As for attenuation-based RTI in Section 3.2.1, the channels are ranked from

the most antifade to the most deep-fade. The link measurement yl at time k is calculated

as:

yl(k) =
1

m

∑
c∈Ai

ŝl,c(k). (3.8)

3.2.3 RTI Image Estimation

Since the number of links L is considerably smaller than the number of voxels N , the

estimation of the image x is an ill-posed inverse problem that can be solved through

regularization. In this work, we use a regularized least-squares approach [10], [43], [48],

[50]. The discretized image of the change in the propagation field of the monitored area is

calculated as:

x̂ = Πy, (3.9)

where y = [y1, . . . , yL]T , and

Π = (WTW + C−1x σ2N )
−1

WT , (3.10)

in which σN is the regularization parameter. The elements of the a priori covariance matrix

Cx are calculated by using an exponential spatial decay:

[Cx]ji = σ2xe
−‖vj−vi‖/δc , (3.11)

where σ2x is the variance of voxel measurements, and δc is the voxels’ correlation distance.

The linear transformation Π is computed only once before the system starts operating in
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real time. The calculation of x̂ in (3.9) requires L × N operations and can be performed

in real time. Table 3.1 indicates the values of the parameters of the RTI image estimation

process.

3.3 Ultra-wide Band Range Estimation

Assuming an UWB transmitter sends a pulse δ(t), each CIR is measured as:

h(t) =
∑
i

αiδ(t− τi), (3.12)

where αi and τi are the complex amplitude and time delay of the ith multipath component,

respectively. The line of sight path delay is τ0. The path delay of the target, which we wish

to estimate, is τ∗. We will consider a discrete-sampled version of the signal energy, rk:

rk =

∫ (k+1/2)T

(k−1/2)T
|h(t)|2dt, (3.13)

where T is the sampling period and k ranges from 1 . . .M discrete periods. In this work,

T = 1 ns. From now on, CIR time delays will be considered only over discrete time intervals

k rather than continuously on t.

3.3.1 Changes to the CIR as a Hidden Markov Model

The changes to the UWB CIR are modeled as a hidden Markov chain. We will refer

to this method as HMM-UWB or hidden Markov model (HMM) based UWB. A hidden

Markov chain is one whose states, Xk = i, are not directly observable but are inferred from

other observation signals, Ok, available from the system. The distribution of the observation

signals is dependent on the state of the system, i.e., fO,i = P (O|X = i). To estimate the

probability the system is in a given state at any time k, i.e., P (Xk = i|O, λ), we need to

know the distributions of the observation signals, the initial state probabilities πi, and the

state transition probabilities, Pi,j , all of which are described by λ = [πi, Pij , fO,i] [27].

The observations, Ok, are the difference between the CIRs of the static environment and

the CIRs of when a person is located in the monitored area. This difference is calculated

as the symmetric Kullback-Leibler divergence, also known as relative entropy [26]. The

distribution of the observations is approximately a log-normal distribution [16].

If the changes to the CIR are modeled as a hidden Markov chain, the CIR goes from an

unchanged state, X = 0, to a changed state, X = 1, at the time delay corresponding to the
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time traveled by the UWB pulse from the transmitter to reflect off of the target and then

arrive at the receiving radio, i.e., k∗ which is equivalent to τ∗. By applying this model to the

system, standard HMM solving algorithms, such as the forward-backward algorithm [27],

can be used to estimate when the system state changes and, thus, when changes to the CIR

occur. The forward-backward algorithm determines the most likely state of the system at

any given time as:

X̂k = arg max
i

P (Xk = i|O, λ). (3.14)

These state estimates are used to estimate k∗ as

k̂∗ = {k∗|X̂k 6= 1∀k < k∗}. (3.15)

The work in [3] describes in further detail the method for estimating UWB bistatic range

and its improved performance over other methods. From now on, we will let αk = P (Xk =

1|O, λ). αk describes the probability those CIRs possibly affected by a person at time k are

in the affected state. These probabilities are used to form the UWB localization image.

When solving the forward-backward algorithm, accurate estimates of when state changes

occur are dependent on how well λ models the true system parameters. A known λ from

another environment can be used as an initial estimate for λ when solving for the state

estimates. The Baum-Welch algorithm can then help tune λ to more closely match the true

parameters and improve range estimates [3], [27].

In this work, we assume there are no major changes to the environment throughout each

trial that would require new calibration CIRs to be captured. This allows us to use just

one calibration period for estimating k∗.

One possible way to eliminate the calibration requirement for HMM-UWB is to use

the CIRs that immediately precede the CIRs with a possible target. This, however, may

introduce bias and make static targets harder to detect.

3.3.2 Variance-based UWB Range Estimation

An alternative method is to use the short-term variance of the CIR for each rk. We refer

to this method as variance-based UWB (VB-UWB). αk is calculated as:

αk =
σ2rk
grk

, (3.16)
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where the variance σ2rk is the unbiased sample variance of rk over the NU most recent

CIRs. In this work, we let NU = 5, corresponding to the number of CIRs captured in

approximately 0.5 s. The normalization coefficient g is calculated as:

g = g(1− β) + rkβ. (3.17)

This is equivalent to applying a low-pass infinite impulse response (IIR) filter to rk. In this

work, β = 1
N . Because the variance of rk is high when the mean of rk is high and vice versa,

we normalize the variance σ2rk by the mean of rk. In this way, αk increases only when the

person moves. This method is used in conjunction with the variance-based RTI method

described in Section 3.2.2. The primary advantage of this method is that no calibration

is required to solve for αk. A disadvantage is that the target can disappear if it remains

motionless over a long period of time. We alleviate this problem by applying the tracking

method in Section 3.5.

3.3.3 UWB Image Estimation

When estimating the UWB image, the image space is constrained to contain only

the inner dimensions of the target room plus one additional voxel on each image edge.

Discretizing the image space into N voxels, the image vector is:

lu = [lu1 , . . . , l
u
N ]T , (3.18)

where each voxel lun has a bistatic range to the UWB transmitter and receiver described by

its path delay kn. The value of each voxel, lun, is calculated as the non-negative difference

function:

lun = (αkn − αkn−1)+, (3.19)

where the non-negative difference function is defined as:

(x)+ =

{
x if x ≥ 0

0 if x < 0,
(3.20)

and assuming α0 = 0.
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3.4 Combining RTI and UWB Information

In this section we introduce three methods to combine the RSS and UWB data. We

compare the results of the different methods in Section 3.7.

3.4.1 Image Combination by Product

An RTI image is formed as described in Section 3.2.1 after every RSS sensor has

transmitted a packet on all channels in F , i.e., after RSS measurements have been collected

on all the links and channels. A UWB image is formed for every new CIR captured. In this

method, the two images are combined to form the new image Lc by performing a voxel-wise

product,

Lc = lr ∧ lu, (3.21)

where lr = x̂ from (3.9) and lu is from the UWB image Lu. We define MLc = max (Lc).

When no person is located in the monitored area, MLc has a very low value. We use a

threshold Te to avoid further processing images not showing the presence of a person in the

target area: if MLc ≤ Te, we discard the current combined image and wait for the next one

formed by the system. Otherwise, we normalize the values of the voxels of lr and lu such

that their minimum value is zero and the sum of all voxels is one:

[l̂r]n =
lrn∑N
i=1 l

r
i

, (3.22)

and similarly for lu:

[l̂u]n =
lun∑N
i=1 l

u
i

. (3.23)

The normalization brings the two images in the same range of values and weights them

equally. The normalized combined image L̂c is calculated again by performing a voxel-wise

product of l̂r and l̂u:

L̂c = l̂r ∧ l̂u. (3.24)

The voxel-wise product is used because both images cover the same geographic region. If

we consider the normalized values of the images as probabilities, the product of the two
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values for each voxel pair would give the probability of the both UWB and RSS “events”

occurring in that voxel. This can be done because the error in the estimates are statistically

independent.

The RSS and UWB data collected by the two systems are time stamped to allow

synchronizing the two images. Images are formed at the same rate as the higher of the

two sampling rates. In our case, since the UWB CIRs are sampled more frequently than

each RTI cycle, a combined image is formed for each new UWB sample. This image will

then be the combination of the most recently formed RTI with the new UWB image. From

the normalized combined image, L̂c, the position of the person is estimated as:

p̂ = arg max
n∈N

L̂c, (3.25)

i.e., the person’s position estimate is at the voxel n having the highest value.

3.4.2 Linear Inversion with UWB Data

An alternative method to form a combined image is to modify the weight matrix W in

(3.1) to include the UWB measurements in the inversion process. We define a new matrix

WU as an M × N matrix where M is the maximum value of k and N is the number of

voxels of the image. The n-th column of WU represents the ideal vector of αk if the target

were located at voxel i. The vector yU is the estimated vector of αk from the results of the

forward-backward algorithm. Equation (3.1) then becomes:

[
yR
yU

]
=

[
WR

WU

]
x +

[
nR
nU

]
(3.26)

where the subscripts R and U correspond to the matrices derived from the RSS or UWB

data, respectively. The inversion matrix is calculated as in (3.10) using the combined

matrix WC . A combined localization image L̂c is then formed by multiplying the combined

inversion matrix ΠC to the combined RSS and UWB measurement matrix yc. The position

of the person is estimated as in (3.25).

3.4.3 Estimating X by Using Y

The third method we propose for combining the UWB and RTI images is to derive one

coordinate of the position estimate of a target from each image. First, we estimate the

target location from the RTI image formed as described in Section 3.2.1. The y-coordinate

from this position estimate is then used to derive an x -coordinate from the UWB image,
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which is calculated as described in 3.3.3. If the target location estimate from the RTI image

is at coordinates (x̂R, ŷR), we consider the row of the UWB image corresponding to ŷR.

The target position estimate p̂ is set at the voxel having the maximum value in that row,

i.e., p̂ = (x̂U , ŷR).

3.5 Localization and Tracking

The position estimate p̂ is used for updating an already existing track of a person or for

initiating a new one if the target area is empty. To this purpose, we use track confirmation

and deletion rules [51]. If at time k the set of candidate tracks, Td, and the set of confirmed

tracks, Tf , are both empty, the position estimate p̂(k) is used to start a new candidate track,

which is added to Td. A candidate track becomes a confirmed track only if its position has

been updated at least happ times in the last H formed images (happ ≤ H). If this condition

is not fulfilled, the candidate track is deleted.

A circular gating area of radius ω is centered at the target’s position estimate p̂. The

radius ω is defined as an integer multiple of the voxel width p. We define Tg ⊇ (Tf ∪ Tc)

as the set of tracks (either candidate or confirmed) located within the gating area. Only

the tracks in Tg are considered. The confirmed tracks in Tg are given priority over the

candidate tracks: the current position estimate is used to update the closest confirmed

track. Otherwise, if no confirmed track exists, the current position estimate is used to

update the closest candidate track. If the set Tg is empty, the current position estimate

is used to start a new candidate track. By using the gating area, we avoid the position

estimate of the person to have large sudden changes in correspondence of noisy RSS and

CIR measurements from the two systems.

3.6 Experiments

The first experiment was conducted in a 27 m2 study room on the second floor of the

Warnock Engineering Building at the University of Utah. A total of 33 RSS sensors were

placed outside of the room along two opposite walls, 17 on one side and 16 on the other.

The sensors were 30.5 cm apart. Two UWB radios were placed on one of the two sides

of the room where the RSS sensors were positioned. The UWB radios were 1 m apart. A

person walked along a predefined path six times, three times counterclockwise and three

times clockwise. The person entered and exited the room in each of the six trials. With the

help of a metronome and markings on the floor, the person walked at a constant speed of

0.5 m/s. Fig. 3.1 shows the setup of the tests carried out in the study room.
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The second experiment was conducted in a 28 m2 room of a motel in Salt Lake City,

Utah. The layout of this room is described in Fig. 3.2. This time, ten RSS sensors were

placed along each of the walls separating the room from the adjacent ones. Two UWB

radios were placed outside one wall of the target room. The experiments were conducted

with the UWB radios at two different distances, 0.9 m and 2.7 m apart. A person walked

along a predefined path at a constant speed of 0.5 m/s, entering and exiting the room each

trial. There were no other rooms adjacent to the target room besides the two where sensors

were placed. For the second experiment, a person walked the target path 18 times. Six of

the trials were done with the UWB radios in configuration A and twelve in configuration

B, represented by white stars and black stars, respectively, in Fig. 3.2.

3.7 Results

The following results are derived from data collected empirically in the study room and

hotel room. This data collection was described in Section 3.6. The methods described

previously were applied to this data. In the case of the study room, there were at least

16 RSS-based radios, or RSS sensors, available on each side of the room. There were 10

available on each side of the hotel room. To better understand how the performance varied

with the number of available RSS sensors, the methods described were applied to the data

multiple times, each time using a subset of the collected data. The results were averaged for

a given number of RSS sensors. This was done to simulate the performance of the system

using a fewer number of radios than were actually used. All simulations in the following

results are performed in this manner (i.e., using subsets of the available empirical data).

Performance is measured by the root mean square (RMS) error of the target’s location

estimate relative to the true location in units of meters. For AB-RTI and HMM-UWB,

calibration measurements are required. For VB-RTI and VB-UWB, no calibration mea-

surements are required.

3.7.1 Study Room

For the first experiment, 50 simulations were run using randomly selected subsets of

S RSS sensors available on each side of the room. The density of sensors on each side of

the target room is higher than what would be used in a typical deployment. Subset sizes

for these simulations ranged from 3 to 10 sensors per side. The same subset of sensors

was used for each of the six trials and remained the same when UWB radio data was

included for a given simulation. The gating algorithm described in Section 3.5 was applied

in all simulations. Simulations were performed using AB-RTI, AB-RTI with HMM-UWB,
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VB-RTI, and VB-RTI with VB-UWB.

Fig. 3.3 shows the mean RMS localization error for each of the methods used. Each

point on the figure is the error averaged over the 50 simulations and 6 trials, measured using

S sensors.

The Y-axis error improves significantly with each additional sensor used on each side

of the room. There is also little improvement in the Y-axis error as a result of including

the UWB information. Variance-based methods show improvement in reducing Y error

over attenuation-based methods. The X-axis error improves as a result of including more

RSS sensors on each side of the room but not as greatly as does the Y-axis error. The

improvement as a result of including UWB information, however, is much more significant

and is also almost constant with the number of RSS sensors. The localization error, that

is, the Euclidean distance (L2), improves overall by 51 cm and 33 cm, on average, for

attenuation and variance-based methods, respectively.

For comparison, if a point in the room is selected at random at each time, the RMS

L2 error is 2.94 m on average over the 6 trials. Errors for the X and Y axes by selecting

random locations are 1.65 m and 2.44 m, respectively. The tracking algorithm is not applied

when using random coordinates.

3.7.2 Hotel Room

For the second experiment, 50 simulations were also run using randomly selected subsets

of S RSS sensors on each side of the room for each simulation. When S = 10, however, only

one simulation was performed because there was only one possible combination of S = 10

radios per side. For each simulation, localization was performed using AB-RTI, AB-RTI

with HMM-UWB, VB-RTI, and VB-RTI with VB-UWB. The tracking algorithm described

in Section 3.5 was also applied to each of these methods. Fig. 3.4 shows, from left to right,

the L2, X, and Y errors when applying these four methods to the data collected over the

18 trials performed in the motel room. The reason the Y error degrades when including

VB-UWB to VB-RTI is that VB-RTI gave noisier range estimates than HMM-UWB did.

This is due to the greater signal attenuation in the hotel versus the study room and the

additional environmental variations of furnishings.

One noticeable difference between the results of the two experiments is that the Y

error in the second experiment decreases significantly by including VB-UWB with VB-RTI

whereas for the first experiment the Y error was effectively the same. Generally, however,

the same trends are visible in the results for the second experiment. The Y error improves

with increasing S, and including UWB data significantly improves X error.
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For the second experiment, the error using 10 sensors per side is higher than the error

using 7 sensors, in many cases. There were only 10 sensors on each side of the room and,

therefore, only one unique simulation could be performed using 10 sensors. By performing

many simulations using subsets of the available sensors, the effect of sensor placement on

localization error could be minimized. This was not possible in the case where S = 10 for

the second experiment.

Table 3.3 shows the mean RMS error over the 18 trials performed for this experiment

using all 20 RSS sensors. For comparison and as an estimate of the upper bound on error

for a given environment and target path, random image coordinates are selected as the

target location estimate. At each time when a combined image would be formed, X and Y

coordinates are randomly selected and are used as the location estimate at that time. The

gating algorithm described in Section 3.5 is not applied when randomly choosing location

estimates. The results from applying the methods described in Sections 3.4.2 and 3.4.3 are

also given in Table 3.3.

Note in Table 3.3 that when performing localization using AB-RTI or VB-RTI, the

X-axis error is about the same as that obtained from randomly guessing an X coordinate

for each image. This is critically important for tactical operations. Having some knowledge

about the person’s coordinate in each axis is essential for law enforcement personnel to be

able to make tactical decisions.

Of the three combination methods described in Section 3.4, the image product method

proposed in Section 3.4.1 performed the best.

3.7.3 Area of Uncertainty

We define the area of uncertainty (AoU) as the ratio of the L2 mean squared error

(MSE) to the total area of the monitored room:

AoU =
L2 MSE

Room Area
. (3.27)

Table 3.4 shows the percent reduction in the AoU by adding UWB data to AB-RTI and

VB-RTI for S = 3 and S = 10 sensors.

The percent reduction in the AoU is significant except for VB-RTI in the motel room

using 3 sensors. This may be due to the particular subsets of sensors used in the simulations

when S = 3. The reduction in the AoU confirms that by adding UWB data the system

can more accurately indicate to law enforcement personnel in which part of the room the

person is located.
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3.8 Conclusions

In this work, we present a joint DFL system that uses the changes measured in RSS and

UWB CIR to localize and track a person through walls. We target tactical operations and

crisis situations where it is not possible for the police forces to place sensors on all sides of

the area to be monitored. Experimental results show that including UWB with RSS data

significantly improves localization accuracy when RSS sensors are only available on two sides

of the target area. Where RSS sensors have been placed along the Y axis, improvements

in accuracy along the X axis by including UWB data are especially significant. Without

including UWB data, the accuracy along the X axis can be as bad as randomly guessing an

X coordinate.

We introduce three methods to combine the information from the UWB and RSS systems

and we compare their performance. The multichannel variance-based RTI method proposed

in this work, which does not require an initial calibration in stationary conditions, is as

effective or more effective than attenuation-based RTI for through-wall localization. The

improvements in localization accuracy and the reduction in the AoU demonstrate that UWB

data should be included in a DFL system for tactical operations where RSS sensors may

only be placed on two sides of a room.
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Figure 3.1. Layout of the study room located in the Warnock Engineering Building at
the University of Utah used for the experiments. Xs represent the 33 RSS sensors. Stars
represent the 2 UWB radios. Circles represent the steps taken by the person at one second
intervals. Grey rectangles represent furniture. The target room’s inner dimensions are 3.82
m by 5.49 m (21 m2 area).

Figure 3.2. Layout of the room of a motel located in Salt Lake City, Utah. Xs represent
the RSS sensors. White and black stars represent the UWB radios in configurations A and
B, respectively. Circles represent the steps taken by the person at one second intervals.
Grey rectangles represent furniture. The target room’s inner dimensions are 3.96 m by 7.11
m (28 m2 area).
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Table 3.1. RTI image estimation parameters
Description Parameter Value

Voxel width [m] p 0.15
Ellipse excess path length [m] λ 0.02
Voxels’ variance [dB] σ2

x 0.05
Noise standard deviation [dB] σN 1
Voxels’ correlation distance δc 4
Number of selected channels m 3
Short-term RSS variance window Ns 5
Long-term RSS mean window Nµ 50

Empty area intensity threshold Te 0.05
Number of updates for confirmation happ 8
Confirmation window H 15
Gating area radius [m] ω 1.2

Table 3.2. UWB estimation parameters
Description Parameter Value

Voxel width [m] p 0.15
Sampling Period [ns] T 1
Short-term CIR variance window NU 5
Variance normalization parameter β 1/NU
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Table 3.4. Percent reduction of AoU by including UWB data.

Study Room Motel Room
AB-RTI VB-RTI AB-RTI VB-RTI

S = 3 40.2% 32.4% 26.3% 0.2%
S = 10 61.8% 43.2% 41.3% 14.9%



CHAPTER 4

PARALLEL MULTICHANNEL

TRANSMISSION FOR

RSS-BASED RADIO

TOMOGRAPHY

4.1 Introduction

Device-free localization using RTI uses radios surrounding a target environment to sense

and locate people within the environment. These radios take RSS measurements as sensor

data. These measurements can be used to estimate the location of a person or multiple

people within the environment [4]–[7]. A number of models have been developed that

describe how a person affects RSS measurements depending on the location of the person

and depending on the RSS levels normally measured when no person is present [4], [5],

[8]–[10].1

Typically the method for collecting RSS measurements employs a round-robin or time

division multiple access (TDMA) protocol [4], [5], [8]–[10], sometimes called spin [52] or

multispin [10] which uses multiple channels. This protocol is for one radio to transmit while

all other radios receive. Once the transmission ends, the next radio transmits while all

others receive. This TDMA protocol continues until all radios get a turn to transmit, at

which point the process repeats.

The number of turns, or time slots, needed to complete one cycle of spin or multispin

is N or NM , respectively, where N is the number of radios and M is the number of

channels selected for measuring. The radios in this work use about 3.5 ms per time slot.

For a typical network with 25 radios using 4 channels, one complete cycle of multispin

1Reprinted, with permission, from M. McCracken, M. Bocca, and N. Patwari. “Selection of Links in
Multichannel RSS Measurements for Radio Tomography”, (to be submitted to arxiv.org and to be included
in “Large Scale, Device Free Localization” by the A. Luong, M. McCracken, M. Bocca, and N. Patwari to be
submitted to The 12th International Conference on Mobile Systems, Applications, and Services (MobiSys
2014)).
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would require approximately 350 ms while spin, which uses only one channel, would require

approximately 87.5 ms. It has been shown that multispin achieves a lower localization

error than does spin, which uses just one channel [10]. A trade off is that the latency of

location estimates is larger for multispin due to the larger number of measurements that

are required.

The spin and multispin protocols are illustrated in Figs. 4.1 and 4.2, respectively. In

these examples there are 8 radios in the sensor network. Each row represents a single radio.

Each column represents a time slot in the protocol. The transmitting radio is represented

with a “T” and all other radios in that time slot are receiving. The transmitting or receiving

channel for each radio at each time slot is represented by the color. Once each protocol

ends, it repeats from the beginning. The links between the transmitter and the receivers in

the spin and multispin protocols can be visualized spatially as shown in Fig. 4.3.

The information transmitted in each transmission packet is not critical to the mea-

surement of RSS values. Any packet transmission can be used to measure RSS. The

transmission, however, is leveraged as a method to report received RSS measurements

from all other radios to a central location where processing is performed. Packet length is

proportional to the number of nodes, N , in the network. The duration of each time slot

must be greater than a packet duration, so the slot duration is also O (N). Longer packets

require longer transmission times, which necessarily makes the time required to complete

one cycle of spin or multispin longer.

Energy consumption could be measured as the energy required by the sensor network to

produce one localization estimate. By this measure, the energy consumption is proportional

to the number of time slots. In this work, a Texas Instruments CC2531 system-on-chip

is used for each radio. The power required during either a transmission or reception is

approximately 100 mW. Multispin, in this case, requires M times more energy than spin

to produce a localization estimate.

The central question answered in this chapter is the following: “In one slot, is it best

to measure every link from one transmitter, or is it better to allow multiple transmitters to

operate in parallel, even though doing so reduces the number of link-channels measured?”

We show that using parallel transmitters can be used to dramatically improve accuracy

compared to spin for the same latency and energy consumption, or to dramatically reduce

either energy consumption or latency for similar accuracy compared to multispin. This

is achieved by modifying the protocol, or sensor sampling schedule, to sample links that

are most likely to improve localization accuracy. Fig. 4.4 is an example of a custom
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protocol, or custom schedule, that differs from spin or multispin. Multiple transmitters

are allowed during each time slot with transmissions performed on different channels. Not

all transmitter-channel combinations are necessarily used over the N time slots used in the

schedule or over the schedule cycle. The receivers are divided between the transmitters with

the goal of sampling the best links of those that are available from the two transmitters.

Again, color represents the channel used for that receiving or transmitting radio in that

time slot.

The links between two transmitters and the receivers in a custom protocol can be

visualized spatially as shown in Fig. 4.5. The color of the links represent the different

channels used.

By allowing for multiple transmitters, the set of links that can be sampled in that time

slot increases. For example, by going from one transmitter to two, the set of links to choose

from when sampling goes from N − 1 to 2(N − 2), which is an increase for all but the most

trivial number of radios in the sensor network. Multiple transmitters has the downside of

sampling fewer links overall in each time slot. With two transmitters, N − 2 links will be

sampled rather than N − 1 with one transmitter. We show that this is a trade off that is

often worth making.

4.2 Related Work

A number of works have explored the need for deciding which sensors should be activated

in a sensor network. Rowaihy et al. offer a survey of sensor selection schemes in wireless

sensor networks [53]. The methods are divided into coverage schemes, target tracking

and localization schemes, single task assignment schemes, and multiple task assignment

schemes. Despite the different goals of the sensor selection methods, each does so with

the intent of minimizing energy consumption while maintaining performance. All of the

surveyed methods assume all sensors can be activated at any given time. An RF sensor

network is different than the typical sensor networks for which methods were considered by

Rowaihy et al. in that rather than each radio serving as a sensor or with a sensor, each

radio pair is a sensor. The number of pairs of radios available, or the number of sensors,

is MN(N − 1)/2 for N radios and M channels. Because the radios can only transmit or

receive, but not both, at any given time, there are a limited number of radio pairs or sensors

that can be active at any given time. For one transmitter, there are N − 1 radio links that

are sampled because there are N − 1 receivers. This situation is unlike a typical sensor

network where all sensors can be active at once.

Gupta et al. [54] describe a stochastic sensor selection algorithm specifically for sensor
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scheduling and sensor coverage. They intend this work for situations where a shared

medium, such as sonar or radar, prohibits the use of all sensors at any given time. This is

similar to this work. However, the authors assume first that only one sensor is used at any

given time and, second, that it is to that advantage of the sensors to have received sensing

data from other sensors. Neither of these assumptions are true in this work. Multiple

sensors are activated at once by having multiple receivers for one transmitter. While there

have been some notable exceptions [7], [55], typically sensor data is transmitted to and

processed at a central location rather than at the radios, which is also done in this work.

So and Vaidya propose a multichannel media access control (MAC) protocol for ad

hoc networks [56]. For ad hoc networks using 802.11, the multichannel hidden-terminal

problem arises when radios want to communicate with each other on a seemingly open

channel that is in use by one or more hidden-terminal radios. The goal of the proposed

protocol is to “dynamically negotiate channels such that multiple communication can take

place in the same region simultaneously, each in a different channel” [56]. This protocol

improves the ability for radios to communicate with each other. The goals of this protocol,

however, are different than those of RF sensing. Communication using multichannel MAC

improves the throughput of individual data exchanges. Employing multiple channels for

RF sensing actually reduces communication throughput in the sense that fewer links will be

sampled and fewer links will be communicating at any given time. The goal of RF sensing,

however, is not communication throughput but to sample link quality quickly over many

radio links. Using multiple channels in RF sensing is done to allow for more link choices

when determining which links should be sampled.

4.3 Device-free Localization

Device-free localization seeks to estimate the location of a person within the environment

without the person carrying a device required for localization. The sensors in the environ-

ment measure changes caused by the presence of the person and use this information to

estimate the person’s location. In this case the sensors are transceiver pairs. Each packet

reception has an associated RSS value. A transmitter and receiver pair can be thought of

being connected to each other by a radio link, the line-of-sight path of the link following

the imaginary line segment where each radio acts as an endpoint. The presence of a person

will change the RSS values of the radio links the person is near. With a knowledge of

the locations of the radios and the RSS values over time, the location of a person can be

estimated and tracked over time [5], [34], [43].
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Device free localization is typically done with round-robin protocol, known as spin [52]

or multispin [10], where each radio gets an opportunity to transmit while all other radios

receive. After all radios have transmitted, the radios can switch to and sample on a different

channel with the goal of using this additional information to improve localization accuracy

[10].

We assume fade level information is known for each link l on each channel c. The

fade level of each link for each channel Fl,c is obtained by measuring RSS on all links and

on all channels of interest during a calibration period. During this calibration period the

environment is empty, that is, no person is present in the environment. Link l is given by

l ∈ L, where L = {(i, j) : i 6= j} describes the set of all links between transmitter i and

receiver j, where i, j ∈ N and N = 1, . . . , N , where N is the number of radios. Channel

c is given by c ∈ C, where C = {1, . . . ,M} describes the set of M channels available for

communication and sampling. Fade level, Fl,c, measures the deviation of RSS values from

those expected from the theoretical radio propagation model for link l on channel c. That

is,

Fl,c = r̄l,c − P (d, c), (4.1)

where r̄l,c is the average RSS value measured for link l on channel c during the calibration

period and P (d, c) is a model for the expected RSS value for radios on channel c at a distance

d apart. This is further described in [9, Sec. IV-C]. We also assume radio locations are

known.

We do not assume, however, that measuring every link on every channel is necessary.

We also do not assume that only one radio is allowed to transmit at a time.

The goal of device free localization is to minimize localization error under the given

assumptions. Another goal is to minimize energy consumption in the sensor network. These

goals are not necessarily compatible goals. The task is to determine the manner in which

links are sampled such that localization error is minimized while also minimizing energy

consumption.

4.3.1 Sampling Schedule

Methods such as spin and multispin employ a TDMA protocol for sampling the link RSS

values. The manner in which links are sampled will be described as a sampling schedule or

simply a schedule. In the case of spin, which uses one channel, the schedule requires N time
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slots t where t = 0, 1, 2, . . .. The schedule X at time t is given as the set of links sampled

at time t on channel c, that is,

X(t) = {(i, j, c) : i = (t mod N) + 1∀j 6= i}. (4.2)

Only one radio i transmits at time t. All others receive. The channel c remains constant.

This schedule repeats every N time slots, allowing for localization estimates every N time

slots. This schedule can be visualized as shown in Fig. 4.1.

Multispin employs a schedule using M channels. The value of X(t) is the same as spin

given in (4.2). The value of c changes as

c(t) =

⌊
t mod NM

N

⌋
+ 1 (4.3)

as t increases. This schedule repeats everyNM time slots, allowing for localization estimates

every NM time slots. This multispin schedule can be visualized as shown in Fig. 4.2.

In general, any schedule X could be described in such a manner. Under a set of

constraints, we show that adopting a sensing schedule with multiple radios transmitting

simultaneously, that is in one time slot t, can improve localization accuracy and allow for

lower energy consumption in the sensor network. We propose a method for producing such

a schedule. This custom schedule, like spin and multispin, would not change over time and

would repeat once completed.

4.4 Methods

A device free localization network may be constrained in the amount of energy it can

consume to produce a location estimate. It may also be constrained in the latency required

to produce a localization estimate. Constraining the latency or the energy consumed

constrains the length of the schedule. In this proof-of-concept work, we will constrain

the schedule to use N time slots, which is the same as the length of single-channel spin, to

show whether or not spin can be improved upon by allowing multiple transmitters in each

time slot. Limiting the number of time slots necessarily limits the opportunities for links to

be sampled on any given channel. To increase the opportunities for a link to be sampled,

multiple radios will be used to transmit simultaneously during a single time slot. The trade

off comes in the number of links that can be sampled in one time slot, which decreases from

N − 1 to N − 2 for two transmitters. In this work we will allow for only two simultaneous
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transmissions in each time slot. An area of future work would be to consider more than

two simultaneous transmitters.

We assume that known system information includes radio locations and fade level

information for each link on each channel. Given this information, the problem becomes

formulating a schedule that will maintain localization accuracy while reducing the number

of measurements required.

4.4.1 Scores

Let p = (i, c) be the transmitter-channel combination for transmitter i and channel c. We

define P as the set of all possible transmitter-channel combinations p where |P| = NM . We

also define Q as the set of all possible ways of pairing two transmitter-channel combinations

in the same time slot. This is the subset of P2 where both i and c are not the same. Let q

represent a valid pair of transmitter-channel combinations (p1, p2).

For N radios and two channels used simultaneously from M channels (where M ≥ 2)

there are Bq possible combinations of transmitters and channels that can be assigned to a

given time slot where

Bq = 2

(
N

2

)(
M

2

)
. (4.4)

For each q a score S(q) is assigned to be used in determining which transmitters and channels

are used simultaneously. A higher score indicates that the transmitters on their respective

channels of q are more likely to sample links that will improve localization accuracy. In this

work, each score S is calculated as follows.

For each transmitter-channel combination p, the fade level for each receiver is given as

Fl,c or, more explicitly, F(i,j),c. For each pair of transmitter-channel combinations q with

transmitters i1 and i2 we consider modified fade level values F̃ given by

F̃(i,j),c = F(i,j),c −
1

|N \ {i1, i2}|
∑

n∈N\{i1,i2}

F(i,n),c. (4.5)

This is done because transmitters i1 and i2 would not be able to receive and thus their fade

levels are irrelevant for this q. The value of |N \ {i1, i2}| is equal to N − 2. The value of

S(q) is then given by

S(q) =
1

N − 2

∑
n∈N\{i1,i2}

|F̃{i1,n},c − F̃{i2,n},c|. (4.6)
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We’ll now give a numerical example of how a score is calculated. RSS values are measured

for all pairs of transceivers over all M = 4 channels. In this example there are a total of N =

5 radios. The numbers used in this example come from data sampled in the “Apartment

1” experiment described in Section 4.5. The score will be calculated for q = ((1, 1), (2, 2)),

that is, transmitters 1 and 2 on channels 1 and 2, respectively. The vectors F{i,j},c are given

as:

F{1,j},1 = [N/A, 5.0,−18.1,−10.7,−5.5]T , (4.7)

F{2,j},2 = [2.7, N/A,−6.3,−1.6, 3.8]T . (4.8)

The values of F̃{i,j},c are then calculated using Equation (4.5). The second term in this

equation, or the subtrahend, is calculated as the mean of the values not corresponding to

either transmitter, that is,

1

|N \ {i1, i2}|
∑

n∈N\{i1,i2}

F(i,n),c =
1

3

∑
[−18.1,−10.7,−5.5]T = −11.4, (4.9)

1

|N \ {i1, i2}|
∑

n∈N\{i1,i2}

F(i,n),c =
1

3

∑
[−6.3,−1.6, 3.8]T = −1.4, (4.10)

which, using Equation (4.5), gives the final values of F̃{i,j},c as

F̃{1,j},1 = [N/A, 16.4,−6.7, 0.7, 5.9]T , (4.11)

F̃{2,j},2 = [4.1, N/A,−4.9,−0.2, 5.2]T . (4.12)

The final score S(q) is then calculated as given in Equation (4.6), which is the average

of the absolute value of the difference between the F̃ values not corresponding to either

transmitter, that is,

S((1, 1), (2, 2)) =
1

3
[|(−6.7)− (−4.9)|+ |0.7− (−0.2)|+ |5.9− 5.2|], (4.13)
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which gives the final value of S((1, 1), (2, 2)) = 1.13. This would be a very low score. For

the experiments described in section 4.5, the median score was approximately 7.24 and the

max score was 11.57.

With the goal of maximizing the score S, its value can be thought of as the average

difference in fade level, normalized by the transmitters’ average fade levels. If the average

difference in fade level between two transmitters is high among the remaining receivers, this

indicates that for a given receiver, one of the two transmitters has a good radio link with

that receiver. This is normalized for the transmitter’s average fade level to account for the

environmental variation observed by each transmitter. Two transmitters on given channels

would pair well together if, on average over all receivers, a given receiver has a very good

fade level compared to the average for one transmitter and a very bad fade level for the

other.

4.4.2 Constraints

We impose the following constraints when making a communication schedule. The same

number of time slots are used as a single-channel spin. This is N slots where N is the

number of radios in the network. For this proof-of-concept work, in each time slot there

are exactly two transmitters chosen to broadcast simultaneously. The two transmitters

sharing a time slot broadcast on two distinct channels among M possible channels. A given

transmitter-channel combination p may only be assigned to a time slot once, that is, it

may not be repeated over N time slots. The results given under these constraints will be

described as the “Custom” method.

Constraining the custom schedule to N slots was done to make its results comparable

to those of spin and multispin, whose schedules are necessarily of length N and NM ,

respectively. This work also only uses two simultaneous transmissions because it represents

the first step in parallelizing transmissions. We would not expect more than two parallel

transmitters to improve performance if having two does not. This is done with the goal

of answering the questions posed: “In one slot, is it best to measure every link from one

transmitter, or is it better to allow multiple transmitters to operate in parallel, even though

doing so reduces the number of link-channels measured?”

Results will also be given when using the additional constraint of each transmitter being

assigned at least one time slot over the N time slots. Without this constraint it becomes

possible to produce a schedule where a radio never transmits and only receives over all N

time slots. This prohibits the radio from reporting the RSS values it measures to a central

location unless reporting is accomplished in some way other than during its transmission
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time slot, such as through a wired communication channel. This method will be described

as the “Constrained” method.

4.4.3 Solution Space Complexity

Once the BS possible scores S are calculated, they must be used to optimally assign

transmitters and channels to each of the N time slots. Ideally we would be able to check

the value V (X) of each possible schedule X by taking the sum of all S(q) for each q used

in the schedule over each of its N time slots. Once each schedule’s value is determined, the

schedule with the highest V would be used for localization. As will be shown, the size of

the solution space prohibits an exhaustive search.

Due to the constraints given in assigning transmitter-channel combinations together to

form a schedule, we cannot form a closed-form solution to the number of ways a schedule

X can be formed. We can, however, determine a lower bound on this number given some

assumptions.

A lower bound, BL, is found when the scenario is considered where we impose further

constraints where all transmitters use the same two channels and every transmitter is given

exactly two opportunities to transmit. The value of BL is given as

BL =

(
M

2

)
BB(N), (4.14)

where BB(N) is given as

BB(N) = N !−
N∑
n=1

(
N

n

)
BB(N − n) (4.15)

and BB(0) = 1. For N = 25 and M = 4 we obtain a lower bound for the number of possible

valid schedules of approximately 3.42 ∗ 1025.

The large number of combinations, BL, prohibits an exhaustive search. This can be

shown by the time required to perform such a search. The Tianhe-2, as of June 2013, is the

world’s fastest supercomputer and can perform 33.86 petaFLOPS, or 33.86 ∗ 1015 floating

point operations per second [57]. If we assume each schedule requires only one floating point

operation to determine its value V , and ignore memory and input/output (I/O), then the

time the Tianhe-2 would require to perform 3.42 ∗ 1025 floating point operations would be

over 32 years. It is simply not a worthwhile option to perform an exhaustive search across

the solution space.
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4.4.4 Choosing Transmitters and Channels

Formulating a schedule can be considered an optimization problem. In this work we

use a greedy method to determine which transmitters are paired together on particular

channels, that is, which q are assigned to each of the N time slots in the schedule X.

The first of N time slots in the schedule has assigned to it the pair of transmitter-channel

combinations, or q, that achieves the maximum score S. The next slot then has assigned

to it the q that achieved the next highest score S unless that assignment would violate any

of the constraints given in Section 4.4.2. If any constraints are violated by this q, then it

is not assigned to the schedule, and the q with the next highest score is considered. This

assignment process continues until all N time slots have transmitters and channels assigned.

This is just one method to formulate a schedule. A number of optimization methods

could be used to determine the optimal schedule given the scores S. Optimizing using

S, however, assumes that S is a representation of its true value in reducing localization

accuracy. If it does not match this reality, then further optimizing over S may not necessarily

improve performance.

4.4.5 Alternative Score Function

If the score S does not accurately model a transmitter pairs impact in decreasing

localization error, improving the score function would also improve localization error. An

alterative score function is presented here. This new score function S(q)n is given as:

S(q)n =
√
S(q)d(q), (4.16)

where d(q) describes the distance between the transmitting radios of q in meters. This is

the geometric mean of S(q) and d(q). Intuitively this means that we favor transmitters that

are further apart over those that are close to one another. Results for this score function

are described in Section 4.6.

4.4.6 Receiver Division

Once a transmission schedule has been made, the remaining radios, acting as receivers,

must be assigned to the two channels to receive from either transmitter.

The two transmitters for the given time slot, i1 and i2, have calculated the average fade

level between each transmitter and the remaining receivers given as

F̄i,c =
1

N − 2

∑
n∈N\{i1,i2}

F{i,n},c. (4.17)
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The transmitter with the highest F̄i,c has the dN2 e receivers with the highest fade level

for that transmitter assigned to receive on that transmitter’s channel. The remaining bN2 c

receivers are assigned to the remaining channel.

4.4.7 Simple Alternative Method

An alternative method for both producing a score S and for dividing receivers is proposed

for comparison. Fade level is the primary consideration for this method, which we will call

the “Simple” method.

The score S is calculated as

S(q) =
1

N − 2

∑
n∈N\{i1,i2}

max{F{i1,n},c, F{i2,n},c}. (4.18)

This is simply the average of the maximum fade level observed for each receiver between

the two transmitters. Two transmitters pair well together if they produce, on average, a

high fade level for each receiver. Using these scores, transmitters are chosen as described

previously in Section 4.4.4.

Receivers are assigned to receive from the transmitter that achieves the highest fade

level for that receiver. This may result in an asymmetric receiver division among the

transmitters. Results for this method are given in Section 4.6 and compared against the

“Custom” and “Constrained” methods described previously. This simple method does

not impose the transmitter constraint given to the “Constrained” method, as described

previously in Section 4.4.2.

4.4.8 Radio Tomographic Imaging

Radio tomographic imaging, or RTI, is “the process of of estimating the changes in the

propagation field of the deployed RF sensor network” [9]. RTI forms an image of the changes

to the propagation field. We assume that changes to the propagation field are caused by the

presence of a person. Location estimates are made where the propagation field changes the

most, that is, at image maxima. Several RTI methods have previously been proposed [5],

[8]–[10]. In this work, RTI is performed as described by Kaltiokallio et al. [9] with some

modifications to account for having only a subset of all links being sampled. This method

was chosen because it has the best reported accuracy to date for RTI. This “multiscale”

method will briefly be described here.
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Let a link-channel γ be defined as γ = (l, c), where l is the link and c is the channel. We

define Γ as the set of all measured link-channels for the given schedule. The size of the set

Γ is given as G where G < |L| depending on the schedule.

For multiscale RTI, changes to the RSS measurements are used to model changes to

the propagation field. When a person is not present, the sample mean of the RSS values

on link-channel γ represents the normal or expected RSS value. This is given as r̄γ . The

attenuation of link l on channel c, i.e., γ, at time k can be estimated from the change in

received signal strength as

∆rγ(k) = rγ(k)− r̄γ , (4.19)

where rγ(k) is the measured RSS value at time k on link-channel γ.

The multiscale model relies on the change in attenuation as well as the direction of

change. We define the vector ∆r+γ = [∆r+1 , . . . ,∆r
+
G] as the vector of all positive changes

in attenuation, where

x+ =

{
x if x > 0

0 otherwise.
(4.20)

We similarly define the vector of all negative changes in attenuation as ∆r−γ = [∆r−1 , . . . ,∆r
−
G],

where

x− =

{
x if x < 0

0 otherwise.
(4.21)

The measurement vector y is the vector of each link’s change in RSS, that is, y =

[∆r+γ ,∆r−γ ]T . It is assumed that the attenuation of a link is the spatial integral of the

propagation field of the monitored area. The monitored area is discretized into a plane

of pixels. Each link’s change in attenuation is assumed to be a linear combination of the

changes in pixel attenuation.

yγ =

D∑
d=1

wdγxd + bγ , (4.22)

where xd is the change in attenuation in pixel d, wdγ is the weight of pixel d for link-channel

γ, bγ is the measurement noise on link-channel γ, and D is the number of pixels in the

discretized estimation image.
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The weight wdγ is based on a spatial model of how a person located in pixel d affects

link-channel γ. An elliptical model is used to represent this spatial relationship and has

been applied in [5], [8], [10]. A matrix of weight values is given as W =
[
W+

W−

]
, where

w+
dγ = 1 if pixel d is in an ellipse of size λ+γ as described in [9]. We similarly define w−dγ .

When all links are considered, the changes to the propagation field can be modeled as

y = Wx + b. (4.23)

The vectors y and b are of length 2G × 1, the weight matrix A is size 2G × D, and the

image estimate x is a vector of length D × 1.

Solving for x directly is an ill-posed problem. A regularized least-squares approach is

used as in [9]:

x̂ = Πy, (4.24)

where Π is given as

Π = (WTW + C−1x σ2D)−1WT (4.25)

and σ2D is a regularization parameter. An exponential spatial decay is used for the covariance

matrix Cx given in [9, eq. (7)].

4.5 Experiments

Three data-collection campaigns were performed to test the proposed method and

compare its performance to spin. The first was the same experimental data collected and

used by Bocca et al. [10]. This was done in a study lounge in the Merrill Engineering

Building at the University of Utah. The radios were placed outside the walls of the room.

RSS data was measured over five 802.15.4 channels.

The second data-collection campaign was done in an apartment in Salt Lake City, Utah.

Fig. 4.6 shows the layout of the apartment as well as radio locations and the path traveled

by the person. With the aid of a metronome, a person walked along the path indicated by

the arrows, starting at the red x at the bottom of the figure and ending at the red x at the

top right of the figure. At the end of each arrow was a reference point for the person to

use while moving along the path. The person took 20 seconds to move from one point to
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another and remained at each reference point for 10 seconds. RSS data was measured over

four 802.15.4 channels.

The third data collection campaign was performed in a different apartment in Salt Lake

City, Utah. Three different experiments were performed in this apartment, similar to the

ones described previously. In the results section these tests are individually tested and

labeled under “Apartment 2” or “Apt 2”.

In each experiment, the person moved more slowly than one would normally. This was

done to use subsets of measurements as if they were available for simultaneous measurement.

One complete cycle using a multispin protocol requires NM time slots to perform all of

the measurements. The simulations using this collected data are sped up by a factor of M ,

that is, as if all M channels are available simultaneously. The proposed method creates a

schedule that requires data to be measured simultaneously. When comparing it to multispin,

the multispin simulations are also sped up by a factor of M , using only one channel in any

given time slot.

4.6 Results

Both single-channel spin and multispin, using all available channels, were tested on the

collected data from all experiments. In both cases, only subsets of the collected data were

used. This was done to make the simulated RSS sampling from real RSS data occur at the

same rate regardless of the scheduling method applied to the data.

The RMS `2 error between the person’s estimated locations and actual locations over

the path traveled by the person is used to quantify the error of each method applied. Table

4.1 gives the errors for each method used for each experiment. This is also given as a chart

in Fig. 4.7. For single-channel spin, the average localization error over all M channels is

given. For multispin using only m channels, where m < M , the results are given as the

average error over all
(
M
m

)
possible ways of selecting m channels. “Custom Schedule” or

“Custom” does not require that each radio transmit in the schedule while “Constrained”

does make this requirement, as discussed in Section 4.4.2. “Simple” uses the simpler score

calculation and receiver division methods described in 4.4.7.

In Table 4.1 and Fig. 4.7 we can see the effect of using additional channels for multispin.

In general, each additional channel measured will improve the localization accuracy. This

comes at the cost of increasing the latency of localization estimates.

We can see from Table 4.1 and Fig. 4.7 that, on average over the five experiments, the

“Custom” method achieves a localization error better than single-channel spin. It achieves
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a localization error that’s comparable to two-channel multispin while either using half the

energy or providing half the latency of two-channel multispin.

Examples of estimated locations and their respective true locations are given in Figs. 4.8

and 4.9 for multispin and the “Custom” method, respectively, for Apartment 1. The RMS

`2 error for these two methods for this experiment were 56.1 cm and 60.7 cm, respectively,

as given in Table 4.1.

The “Custom” and “Constrained” methods are comparable when the average over all

experiments is considered. The “Simple” method often performs better than single-channel

spin but does not outperform the “Custom” method. In general, either custom schedule

created by the method proposed in this work achieves a performance level much better than

the performance of single-channel spin but does not perform better than multispin, which

uses all channels. A real system, however, would probably require the constrained schedule

to be able to report RSS measurements back to a central location.

The alternative score function described in Section 4.4.5 resulted in an average RMS

error over the five experiments of 44.7 cm, just 0.1 cm worse than the “Custom” method.

The fact that performance generally stays the same despite including more information

in the score function suggests that intuition about modeling which transmitters should be

chosen for a custom schedule is poor. More research is needed to determine a score function

that more accurately describes a transmitter pair’s impact on localization error.

4.6.1 Fade Level Optimization

This “Simple” method primarily considers fade level when producing a schedule. Let

us consider a schedule where we ignore the constraints imposed on this method. We can

produce a schedule that maximizes the sum of all link fade levels by choosing the top N

pairs of transmitter-channel combinations q as given by their scores S(q), calculated as

described in Section 4.4.7. Receivers are also divided among transmitters as done using the

“Simple” method.

Performing such an optimization results in the schedule that maximizes fade level using

N different q. The average localization error over the five experiments when using this fade

level-optimal schedule is 123.7 cm, which is much worse when compared to the “Simple”

method’s result of 48.8 cm. Fade level alone is insufficient to produce an optimal schedule

in the sense that it minimizes localization error.

Our proposed “Custom” method is different in that it does not simply condier fade

level but the score S calculated in Section 4.4.1. It also attempts to divide receivers evenly
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among transmitters rather than using fade level information as the sole basis for receiver

assignment.

4.6.2 Channel Diversity

The channels used are those described by the IEEE 802.15.4 standard for the 2.4 GHz

band. When four channels were used for testing, the channels transmitted on were channels

11, 15, 21, and 26. Channel 18 was also included for the five channel test done in the study

lounge. Channel center frequencies are 5 MHz apart for ajacent channels, making channels

11 and 26 lie 75 MHz apart.

For the results given in Table 4.1, the two-channel multispin errors given is the average

over all ways of choosing two channels among the available M channels. In two of the five

experiments, the best performing pair of channels were 11 and 26. This matches intuition

that channels further apart, that is, with a greater difference in center frequency, are least

correlated and best for improving channel diversity. Under the null hypothesis (H0) each

channel pair is equally likey to be the best pair for localization accurcy. Under our alternate

hypothesis (H1), channels 11 and 26 are more likely than other channel pairs to produce

the best localization accuracy using multispin due to higher channel diversity. If we assume

that the
(
4
2

)
= 6 ways of choosing a channel pair are equally likely to produce the best

localization accuracy, then the probability of observing any channel pair is 1
6 . The probabilty

of observing a particular channel pair (11 and 26) perform best n times in five experiments

is given as

P (N = n) =

(
5

n

)(
1

6

)n(5

6

)(5−n)
. (4.26)

The value of P (N ≥ 2) can be solved as 1 − P (N = 0) − P (N = 1) and is equal to 0.196.

This is encouraging but not statistically significant. With more experiments we may be

able to better show the effect of channel diversity on localization accuracy.

4.6.3 Energy Consumption

The radios used in these experiments draw approximately 35 mA of current while

transmitting or receiving and 20 µA of current while in a sleep state. Because a transmission

and reception time slot use the same amount of energy, we can estimate a schedule’s energy

consumption per cycle by its cycle length. Single channel spin requires N time slots to

complete one schedule cycle. Multispin requires NM time slots to complete one cycle. Our

proposed method requires N cycles.
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The energy consumed per cycle becomes significant when we consider the rate at which

location estimates are produced. Multispin requires NM time slots to produce a location

estimate. Single-channel spin and our proposed method requires only N time slots. Both

of these later methods could use N(M − 1) time slots to be in the sleep state to produce

location estimates at the same rate as multispin. On average, the localization accuracy

with additional sleep states would remain the same. Only the rate at which localization

estimates are produced would change.

In most of the experiments, M = 4, giving the proposed schedule an energy savings

of 75% over multispin. On average over the five experiments, the proposed “Custom”

schedule gives and RMS `2 error which is 4.6 cm worse than four-channel multispin. This

is an increase in error by 11.6% on average.

4.7 Conclusion

We have shown that using parallel transmitters can be used to improve localization

accuracy compared to spin for the same latency and energy consumption, or to dramatically

reduce either energy consumption or latency for similar accuracy compared to multispin.

This work did not explore the possibility of having more than two simultaneous trans-

mitters. This would increase the number of available sensors to choose from while reducing

the total number of links that could be sampled at any given time. This is an area of future

research.

We have shown that applying a custom schedule to RSS measurement can achieve a

level of performance that is comparable to multispin while using just a minority subset

of the measured data. Its performance is also better than single-channel spin, which uses

approximately the same number of measurements. This shows first that employing data

from multiple channels improves performance. This also shows that not all measurements

are equally significant in their impact toward improving localization error.



80

Figure 4.1. An example of the multispin protocol for 8 radios and 4 channels. Each row
represents a radio. Each column represents a time slot. A “T” indicates the transmitting
radio in that time slot. All other radios in that slot are receiving. The channel is indicated
by color.

Figure 4.2. An example of the multispin protocol for 8 radios. Each row represents a
radio. Each column represents a time slot. A “T” indicates the transmitting radio in that
time slot. All other radios in that slot are receiving. The channel is indicated by color.
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Figure 4.3. The links between transmitter and receivers can be visualized spatially for the
spin and multispin protocols. This figure represents just one time slot in the protocol.

Figure 4.4. An example of a custom schedule or protocol for 8 radios and 4 channels. Each
row represents a radio. Each column represents a time slot. A “T” indicates a transmitting
radio in that time slot. All other radios in that slot are receiving. The transmitting or
receiving channel is indicated by color.
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Figure 4.5. The links between two transmitters and the remaining receivers can be
visualized spatially for a protocol using a custom schedule. This figure represents just
one time slot in the protocol.
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Figure 4.6. Layout of the apartment. Red x’s are path endpoints, the person starting at
the red x at the bottom of the figure, following the path arrows, and ending at the red x at
the top left of the figure. Black circles are radio locations. Blue lines are apartment walls.
Axis units are given in meters.
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Figure 4.8. Actual person positions (O) and localization estimates (X) using multispin in
Apartment 1.
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Figure 4.9. Actual person positions (O) and localization estimates (X) using a custom
schedule in Apartment 1.



CHAPTER 5

CONCLUSIONS

We have shown the effectiveness of a number of methods to improve upon device-free

localization using both wideband and narrowband RF sensing and how these methods can

be combined. UWB ranging can still be performed for localization even when a number of

common assumptions about the received signals are not true. We have shown how UWB

and RSS-based localization methods can be combined to improve localization accuracy in

a constrained setting. We have also shown that by having multiple parallel transmitters in

RSS-based radio tomography, we can improve localization accuracy while reducing energy

consumption or measurement latency.

5.1 Engineering Trade-offs

Choosing to perform RTI using either UWB measurements or RSS measurements re-

quires that engineering trade-offs are made. These include system cost, energy consumption,

and localization accuracy. A typical UWB localization system would require at least

four radios, pairwise configured in a bistatic radar configuration. A typical RSS-based

localization system requires on the order of 12 to 35 radios.

The two P220 UWB radios from Time Domain together cost around $7000. Newer

models similarly sell between $2500 and $4000 each [58]. The radios used to measure RSS

values are based on a reference design from Texas Instruments for the CC2531 system-on-

chip. Several hundred were manufactured for these and other works and cost approximately

$18 each.

The energy consumed by each system is important for systems that require little mainte-

nance. The P220 UWB radios require 5.7 W of power during operation. The CC2531-based

radios each require approximately 100 mW of power during operation.

In Chapter 2, it is shown that localization accuracies of 24 cm and 36 cm were achieved

for two different experiments using four UWB radios. RSS-based localization methods also
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achieve similar levels of accuracy [9]. A table summarizing this information is given in Table

5.1.

UWB radios perhaps could provide even greater localization accuracies than is shown

in Chapter 2 by using more radios. With unit costs on the order of thousands of dollars,

however, the benefits often do not outweigh the costs. An ideal scenario for employing

UWB radios is described in Chapter 3 where radios of either kind can be placed on only

two opposite sides of a room or target area. Only two UWB radios in a bistatic radar

configuration are required in this scenario, minimizing their cost while adding localization

information that would not be available otherwise. In nearly all other scenarios, RSS-based

localization is preferable over UWB-based methods for the given reasons.

5.2 Future Areas of Research

There are many topics and possible modifications to this work that could lead to further

future research. Some of these will be discussed in greater detail.

There are existing radios that give even more channel state information than CC2531-

based radios used in the RSS-based localization work. For example, 40 MHz bandwidth

channel impulse responses are available from Intel 5300 Wi-Fi cards in both the 2.4 GHz

and 5 GHz bands. These provide much more information than is available from a 1 MHz

narrowband radio and are much less expensive than UWB radios, costing approximately

$10 for the radio card and about $300 for the host computer. Because each card is also

necessarily attached to and controlled by a host computer, there is much more processing

capability at each node location than the TI CC2531 SoC’s can provide. These features

differ from existing RF localization systems such that their value in RTI systems is worth

exploring. Other such wideband radios with rich channel state information may become

available in the future, as well.

For UWB radios, despite the precise, time-domain information provided, the high mon-

etary cost of these systems cannot be ignored. Based on recent trends, it is difficult to

imagine the unit cost of these radios to drop substantially in the near future. This is in

part due to the difficulty in engineering UWB impulse radios. If, however, these radios are

available for use in research, there are some topics for future research using these radios.

Because of the large amount of information provided by the time-domain signal response

from these radios and the signal response’s sensitivity to changes in the environment and

radio placement, secret key generation from these signal responses would be possible. This

rich signal response information could also be used to more precisely model how a person
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changes the channel impulse response in multiple environments. This could be helpful to

create better models for narrowband localization.

The work presented in Chapter 2 does not model the effects of changes to the CIR due

to the presence of multiple people in the environment. The positive impact of employing

a hidden Markov model to improve bistatic range estimation could be modified to account

for multiple people.

The work done to improve localization accuracy by using just a subset of the available

measurements, described in Chapter 4, was done using only fade-level information to choose

measurements for a custom sensing schedule. The effect a link has on localization accuracy

is more than a function of fade level. It is also dependent on the environment, such as link

distance, the link’s proximity to or crossing of walls, the likelihood of a person approaching

that link in the environment, etc. Its effect is also dependent on the accuracy of the model

taking as inputs the RSS values measured on that link. This dependence on more than

fade-level information is shown by the following example.

Using the data collected in the apartment labeled Apartment 1 in Section 4.6, many

simulations were performed to see how a link impacted the performance of localization

error at any given moment in time. The simulation was done as follows. For each link,

two simulations were performed to see how it affected localization accuracy over time. The

first was done without the link’s information included and the second included the link’s

information. In both simulations, to exaggerate the effect that link had on performance

at each moment in time, only a subset of all available links were used. In this example,

only the information from 10% of the available links was included when estimating the

person’s location over time. This subset of links was chosen randomly. For each link this

pair of simulations was performed 150 times, each time choosing a different random subset

of links for comparison. In this apartment, there were 25 nodes, making
(
25
2

)
= 300 links

per channel and 1200 total links over the 4 available channels.

Fig. 4.6 shows the path traveled by the person throughout the apartment. The person

starts at the bottom red x in the figure and moves, respectively, through the kitchen, the

living room, the hallway, the bathroom, and finally the bedroom where the path ends.

Nodes are placed throughout the apartment. Fig. 5.1 shows the effect of each link on

channel 1 over time. The horizontal axis is time and each row of pixels represents one link.

Black pixels occur when the link helps reduce localization error. White pixels occur when

the link makes the localization error worse at the time. Gray pixels show when the link has

no effect on localization error.
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There are some interesting observations from Fig. 5.1. First is that the majority of

pixels are gray. Most of the time a link will not impact localization error either way. This is

primarily a function of the location of the person relative to the link, which is expected from

the model. Another observation is that there are two points in time, at approximately time

sample 700 and at time sample 950, where the set of links that are impacting localization

error change. These times correspond to when the person moved from the living room to

the hallway and when the person moved from the bathroom to the bedroom. Based on the

path traveled by the person, shown in Fig. 4.6, and the effect shown in Fig. 5.1, we can

conclude that a link’s effect is regional. The apartment could easily be divided into three

regions, each region having its own subset of links that make up aid in localization accuracy.

This effect was not explored in Chapter 4 but could be a future area of research. By taking

into account not only fade level but also the walls in the environment, the likely locations

of the person, etc., additional gains in localization accuracy could be achieved.
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Table 5.1. A comparison of a typical UWB localization system and a typical RSS-based
localization system. Accuracy is given in units of cm. Energy is given in units of Watts.

Accuracy Device Count System Cost System Energy

UWB 30 4 $10,000 22.8
RSS 25 33 $600 3.3

Time Sample

Li
nk

 N
um

be
r

200 450 700 950 1200

50

100

150

200

250

300

Figure 5.1. The effect each link has on localization accuracy over time in Apartment
1, which was described in Chapter 4, for each link on channel 1. Each row represents a
link. Black represents improving localization accuracy, white represents hurting, and gray
represents having no effect.
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