19,579 research outputs found

    Block designs for experiments with non-normal response

    No full text
    Many experiments measure a response that cannot be adequately described by a linear model withnormally distributed errors and are often run in blocks of homogeneous experimental units. Wedevelop the first methods of obtaining efficient block designs for experiments with an exponentialfamily response described by a marginal model fitted via Generalized Estimating Equations. Thismethodology is appropriate when the blocking factor is a nuisance variable as, for example, occursin industrial experiments. A D-optimality criterion is developed for finding designs robust to thevalues of the marginal model parameters and applied using three strategies: unrestricted algorithmicsearch, use of minimum-support designs, and blocking of an optimal design for the correspondingGeneralized Linear Model. Designs obtained from each strategy are critically compared and shownto be much more efficient than designs that ignore the blocking structure. The designs are comparedfor a range of values of the intra-block working correlation and for exchangeable, autoregressive andnearest neighbor structures. An analysis strategy is developed for a binomial response that allows es-timation from experiments with sparse data, and its efectiveness demonstrated. The design strategiesare motivated and demonstrated through the planning of an experiment from the aeronautics industr

    Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport

    Get PDF
    Surrogate functions have become an important tool in multidisciplinary design optimization to deal with noisy functions, high computational cost, and the practical difficulty of integrating legacy disciplinary computer codes. A combination of mathematical, statistical, and engineering techniques, well known in other contexts, have made polynomial surrogate functions viable for MDO. Despite the obvious limitations imposed by sparse high fidelity data in high dimensions and the locality of low order polynomial approximations, the success of the panoply of techniques based on polynomial response surface approximations for MDO shows that the implementation details are more important than the underlying approximation method (polynomial, spline, DACE, kernel regression, etc.). This paper surveys some of the ancillary techniques—statistics, global search, parallel computing, variable complexity modeling—that augment the construction and use of polynomial surrogates

    A comparison of classical scheduling approaches in power-constrained block-test scheduling

    Get PDF
    Classical scheduling approaches are applied here to overcome the problem of unequal-length block-test scheduling under power dissipation constraints. List scheduling-like approaches are proposed first as greedy algorithms to tackle the fore mentioned problem. Then, distribution-graph based approaches are described in order to achieve balanced test concurrency and test power dissipation. An extended tree growing technique is also used in combination with these classical approaches in order to improve the test concurrency having assigned power dissipation limits. A comparison between the results of the test scheduling experiments highlights the advantages and disadvantages of applying different classical scheduling algorithms to the power-constrained test scheduling proble

    Distribution-graph based approach and extended tree growing technique in power-constrained block-test scheduling

    Get PDF
    A distribution-graph based scheduling algorithm is proposed together with an extended tree growing technique to deal with the problem of unequal-length block-test scheduling under power dissipation constraints. The extended tree growing technique is used in combination with the classical scheduling approach in order to improve the test concurrency having assigned power dissipation limits. Its goal is to achieve a balanced test power dissipation by employing a least mean square error function. The least mean square error function is a distribution-graph based global priority function. Test scheduling examples and experiments highlight in the end the efficiency of this approach towards a system-level test scheduling algorithm

    Optimal designs for rating-based conjoint experiments.

    Get PDF
    The scope of conjoint experiments on which we focus embraces those experiments in which each of the respondents receives a different set of profiles to rate. Carefully designing these experiments involves determining how many and which profiles each respondent has to rate and how many respondents are needed. To that end, the set of profiles offered to a respondent is viewed as a separate block in the design and a respondent effect is incorporated in the model, representing the fact that profile ratings from the same respondent are correlated. Optimal conjoint designs are then obtained by means of an adapted version of the algorithm of Goos and Vandebroek (2004). For various instances, we compute the optimal conjoint designs and provide some practical recommendations.Conjoint analysis; D-Optimality; Design; Model; Optimal; Optimal block design; Rating-based conjoint experiments; Recommendations;

    Tag-Cloud Drawing: Algorithms for Cloud Visualization

    Get PDF
    Tag clouds provide an aggregate of tag-usage statistics. They are typically sent as in-line HTML to browsers. However, display mechanisms suited for ordinary text are not ideal for tags, because font sizes may vary widely on a line. As well, the typical layout does not account for relationships that may be known between tags. This paper presents models and algorithms to improve the display of tag clouds that consist of in-line HTML, as well as algorithms that use nested tables to achieve a more general 2-dimensional layout in which tag relationships are considered. The first algorithms leverage prior work in typesetting and rectangle packing, whereas the second group of algorithms leverage prior work in Electronic Design Automation. Experiments show our algorithms can be efficiently implemented and perform well.Comment: To appear in proceedings of Tagging and Metadata for Social Information Organization (WWW 2007

    Statistical Algorithms for Optimal Experimental Design with Correlated Observations

    Get PDF
    This research is in three parts with different although related objectives. The first part developed an efficient, modified simulated annealing algorithm to solve the D-optimal (determinant maximization) design problem for 2-way polynomial regression with correlated observations. Much of the previous work in D-optimal design for regression models with correlated errors focused on polynomial models with a single predictor variable, in large part because of the intractability of an analytic solution. In this research, we present an improved simulated annealing algorithm, providing practical approaches to specifications of the annealing cooling parameters, thresholds and search neighborhoods for the perturbation scheme, which finds approximate D-optimal designs for 2-way polynomial regression for a variety of specific correlation structures with a given correlation coefficient. Results in each correlated-errors case are compared with the best design selected from the class of designs that are known to be D-optimal in the uncorrelated case: annealing results had generally higher D-efficiency than the best comparison design, especially when the correlation parameter was well away from 0. The second research objective, using Balanced Incomplete Block Designs (BIBDs), wasto construct weakly universal optimal block designs for the nearest neighbor correlation structure and multiple block sizes, for the hub correlation structure with any block size, and for circulant correlation with odd block size. We also constructed approximately weakly universal optimal block designs for the block-structured correlation. Lastly, we developed an improved Particle Swarm Optimization(PSO) algorithm with time varying parameters, and solved D-optimal design for linear regression with it. Then based on that improved algorithm, we combined the non-linear regression problem and decision making, and developed a nested PSO algorithm that finds (nearly) optimal experimental designs with each of the pessimistic criterion, index of optimism criterion, and regret criterion for the Michaelis-Menten model and logistic regression model

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit
    • 

    corecore