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Abstract 

The scope of conjoint experiments on which we focus embraces those experiments 
in which each of the respondents receives a different set of profiles to rate. Carefully 
designing these experiments involves determining how many and which profiles each 
respondent has to rate and how many respondents are needed. To that end, the set 
of profiles offered to a respondent is viewed as a separate block in the design and 
a respondent effect is incorporated in the model, representing the fact that profile 
ratings from the same respondent are correlated. Optimal conjoint designs are then 
obtained by means of an adapted version of the algorithm of Goos and Vandebroek 
(2004). For various instances, we compute the optimal conjoint designs and provide 
some practical recommendations. 

Keywords: conjoint analysis, optimal block design, rating-based conjoint experi­
ments, V-optimality 

1 Introduction 

In marketing, conjoint experiments have frequently been carried out to measure consumer 
preferences for the attributes of various products or services (Green et al. 2001). They 
have been conducted for issues of new product development, pricing, advertising, and 
other areas across many different industrial sectors around the world (vVittink and Cattin 
1989, Wittink et al. 1994, Gustafsson et al. 2003). In a traditional conjoint experiment, 
respondents are presented with a set of alternatives or profiles that are defined as com­
binations of different attribute levels. Respondents are then requested to express their 
likelihood of purchase for each of the profiles by ranking them or by rating them on a 
point or monetary scale. Besides rating profiles on a scale, rating may also occur by means 
of directly asking reservation prices for the profiles. A reservation price for a good is the 
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highest price a consumer is willing to pay for the good. Note that responses obtained from 
ranking are non-metric, whereas those obtained from rating are metric. The correspond­
ing experiments are referred to as ranking-based and rating-based conjoint experiments. 

Nowadays, rating-based conjoint experiments are most frequently employed (Witt ink 
et al. 1994, Huber et al. 2003). This is mainly due to practical considerations such as 
the ease with which they can be used in telephone-interviews, web-based surveys, hybrid 
models and standard software packages. Therefore, in this paper, we devote all our at­
tention to rating-based conjoint experiments. 

In general, a conjoint experiment proceeds by submitting a small number of profiles to 
a limited number of respondents. In doing so, it aims at collecting as much information as 
possible on the utilities the respondents attach to the attributes of the product or service 
under investigation. To that end, an efficient experimental design needs to be developed. 
Most often, a different set of alternatives is given to each respondent as this enables the 
variation in the dependent variable to be better captured. However, the literature on con­
joint experiments is silent about how to carefully design different sets of profiles given the 
number of experimental observations. For example, if 30 observations are available, then 
it is unclear whether it is statistically more efficient to submit ten alternatives to three 
respondents or three alternatives to ten respondents. Hence, we ask ourselves how many 
and which profiles each respondent has to rate and how many respondents are needed. 
Remark that we have to make sure that the conjoint designs constructed still remain 
practical. The number of profiles administered to a respondent should be kept small in 
order not to give in on response quality (Malhotra, 1986). On the other hand, if there 
are costs involved per respondent needed, the total costs may not become excessive. If 
statistically efficient conjoint designs turn out to be impractical, some compromise has to 
be made between statistical efficiency and practicality. 

The approach we adopt to solve the conjoint problem is an algorithmic one and is based 
on the theory of optimal block designs, thoroughly dealt with in Goos and Vandebroek 
(2001a) and Goos (2002). Block designs are heavily used in industrial experimentation 
where observations are correlated. The model assumed is the linear random block effects 
model. This model incorporates a random effect representing the variation caused by 
the commonality on which the observations are grouped. In Goos (2002), optimal block 
designs are in depth compared to optimal completely randomized designs in terms of 
statistical efficiency. In contrast to block designs, observations in a completely randomized 
design are assumed to be uncorrelated and therefore, they are selected based on the 
linear model, without a block effect. Consequently, the observations are not grouped 
and can be randomly carried out. The comparison between the optimal block designs 
and the optimal completely randomized designs clearly demonstrated that in the case of 
correlated observations, optimal block designs are more efficient than optimal completely 
randomized designs. 
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Similar to block designs, we use the linear random block effects model to construct ef­
ficient conjoint designs. The motivation for this model in the conjoint setting is as follows. 
It is reasonable to assume that respondents are randomly selected from a population and 
that they are heterogeneous. Examples of respondent heterogeneity are the variations in 
terms of age, experience with the product or service under study, physical characteristics, 
cognitive abilities, etc. The consequence of this heterogeneity is that profile ratings from 
the same respondent are correlated. As a result, the random block effect in the model 
represents the effect of a respondent who has to rate a block of profiles. The efficient 
conjoint design for this model then consists of blocks of profiles that are each offered to a 
different respondent and the optimal number of respondents is derived from the number 
of blocks the design contains. We refer to the linear random block effects model in the 
conjoint setting as the linear random respondent effects model. Remark that we focus on 
main effects models only. 

Other approaches to tackle respondent heterogeneity can be found in Liski et al. (2002) 
and Entholzner et al. (2004). For repeated measurement situations, they mathematically 
derived efficient designs using the linear random coefficient regression model, which allows 
for individual-specific regression parameters. Furthermore, to design and estimate con­
joint experiments, Lenk et al. (1996) applied the hierarchical Bayes random effects model 
with subject-level covariates. Finally, in Cochran and Cox (1957), balanced incomplete 
block designs are recommended for preference rating as most of the design plans contain 
blocks with six or fewer units. Regrettably, these designs are only built on the levels of 
one qualitative experimental factor. These different levels are referred to as treatments. 
Together with balanced complete block designs, the designs belong to the class of bal­
anced block designs which have the property that any pair of treatments appears together 
in a block equally often. Note that balanced complete block designs are not taken into 
consideration for preference rating as they generally contain blocks with more than six 
profiles. Typical for the balanced block designs is that they are universally optimal for the 
estimation of the treatment and the block effect. In other words, a balanced block design 
is optimal with respect to any generalized optimality criterion. Besides the fact that only 
one factor is taken up in the design, another disadvantage of balanced incomplete block 
designs is that they can only be used for specific numbers of observations, treatments and 
blocks. Consequently, for design situations in which no balanced incomplete block design 
is available, a.o. situations with more than one factor, optimal conjoint designs need to 
be computed. 

The paper is organized as follows. First, we embark on the random respondent ef­
fects model in Section 2 and on the derivation of optimal conjoint designs in Section 3. 
Next, Section 4 presents the design construction algorithm and Section 5 discusses the 
computational results. Finally, Section 6 summarizes the paper. 
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2 The random respondent effects model 

Suppose that a conjoint experiment consists of n profiles to be rated. In total, b respon­
dents are appointed who each rate a different block or set of profiles. The profiles are 
correspondingly arranged in b blocks of sizes ml, ... , mb with n = L~=1 mi. If we assume 
that the respondents are random subjects from a population, then the utility Uij for the 
jth profile provided by the ith respondent can be modelled as 

(1) 

In this model, Xij is the k x 1 vector having one as first element and the attribute lev­
els describing profile j that is rated by respondent i as the remaining k - 1 elements. 
13 = [PI, ... , Pkl' is the k x 1 parameter vector with PI the intercept and (32, ... , (3k the 
weights associated with the attribute levels, hereby indicating the importance of the levels 
as viewed by the average respondent. Ii represents the random effect of the ith respondent 
triggered by the heterogeneity of the respondents and Cij is the random error term. Note 
that the attributes are quantitative or discrete factors and that their levels are coded by 
means of the so-called effects-type coding which is often employed in the literature. If 
the number of levels for an attribute equals l, then the attribute is characterized by l - 1 
elements in Xij and 13. To illustrate, in the case of a three-level attribute, the first level 
is coded as [1 0], the second level as [0 1] and the third level as [-1 -1]. For a two-level 
attribute, the codes are -1 for the first level and 1 for the second level. However, other 
types of coding may also be used as the choice of coding type does not affect the relative 
design efficiency in case the V-optimality criterion is used (see Section 3). 

In matrix notation, model (1) becomes 

u = Xj3 + Z'Y + c, (2) 

where u is a vector of n profile ratings, the vector 13 contains the k unknown fixed 
parameters, the vector 'Y = hI, ... , Ibl' contains the b random respondent effects and c is a 
random error vector. The matrices X and Z have dimensions n x k and n x b respectively. 
X is given by 

X = [X~, ... , X~]', (3) 

w here Xi = [XiI, ... , XimJ I collects the profiles rated by respondent i and Z is defined as 

where 1m is a mi x 1 vector of ones. It is assumed that 
" 

E(c) = On and Cov(c) = a;In' 

E('"'() = Ob and Cov('"'() = a~Ib' 

and Cov('"'(, c) = 0bxn, 
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where 0-; is the variability within respondents and 0-;' is the variability between respon­
dents. We refer to this model as the random respondent effects model. Under these 
assumptions, the variance-covariance matrix of the observations u can be written as 

Substituting 

v = Cov(Xt3 + Z'"'( + s), 

= Cov(Z'"'() + Cov(s), 

= o-~ZZ' + o-;In' 

= o-~diag[lmll~rq, ... , Imb1;nb] + (J;diag[Iml' ... , 1mb ], 

= diag[o-;Iml + (J~lmll~l' ... , (J;Imb + (J~lmbl~J 

leads to the variance-covariance matrix 

(8) 

(9) 

It is interesting to observe that the block matrices Vi are compound symmetric: the main 
diagonals of these matrices contain the constant variances of the profile ratings, while 
the off-diagonal elements are constant covariances. For example, the variance-covariance 
matrix of five profile ratings 'Uij obtained from two respondents, one of whom rated a 
block of two profiles and the other a block of three profiles, equals 

(J2 + (J2 
c 'Y 

(J2 
'Y 0 0 0 

(J2 
'Y 

0-2 + (J2 
c 'Y 0 0 0 

V= 0 0 (J2 + (J2 
c 'Y 

(J2 
'Y 

(J2 
'Y 

0 0 (J2 
'Y 

(J2 + (J2 
c 'Y 

(J2 
'Y 

0 0 (J2 
'Y 

(J2 
'Y 

(J2 + 0-2 
c 'Y 

The zero entries show that profile ratings from different respondents are assumed to be 
uncorrelated. The coefficient of correlation between two profile ratings from the same 
respondent is equal to 

(J2 

P = (J2; (J2 . (10) 
c 'Y 

This ratio p E [0, 1] measures the proportion of the total variability that is accounted for 
by the differences between respondents. If p -+ 0, or equivalently (J;' -+ 0, then the profile 
ratings from the same respondent are no longer correlated. In this case, 11 = ... = Ib = 0 
and as a result, the random respondent effects model degenerates to the uncorrelated 
model 

u = Xt3 + s. (11) 
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3 Analysis & design optimality 

When the error terms as well as the respondent effects are normally distributed, the 
maximum likelihood estimator of the unknown fixed model parameters f3 in (1) and (2) 
is the generalized least squares (GLS) estimator. The GLS estimator is the best linear 
unbiased estimator (BLUE) and is given by 

(12) 

with variance-covariance matrix 

(13) 

Sometimes, the variances components a; and a; are known from previous experimentation 
so that the estimator f3 and its variance-covariance matrix can be immediately obtained. 
Most often, however, the variances a; and a; are unknown and therefore, (12) and (13) 
cannot be applied directly. Instead, the variance components a; and a; have to be 
estimated, for example via restricted maximum likelihood (REML) (Gilmour and Trinca 
2000). The estimates 0-; and 0-; are then substituted in the GLS estimator (12), yielding 
the so-called feasible GLS estimator 

where 
Y~ ~ 21 ~ 2ZZ' =ac;n+a-y . 

In that case, the variance-covariance matrix (13) can be approximated by 

(14) 

(15) 

The derivation of optimal designs for conjoint experiments is related to the variance­
covariance matrix (13), and thus also to its inverse, the Fisher information matrix, on 
which we elaborate. The Fisher information matrix is denoted by 

I(X) = X'y-l X. (16) 

In order to obtain a maximum of information on the parameters, we evaluate different 
design options by means of the V-optimality criterion. The V-optimality criterion is by 
far the most frequently used optimality criterion and it is a direct function of I(X). A 
design X is called V-optimal if it maximizes the determinant of the information matrix, 
or equivalently, if it minimizes the determinant of the variance-covariance matrix of the 
parameter estimators. In this way, the generalized variance of the parameter estimators 
is minimized (Atkinson and Donev 1992). It is shown in Goos and Vandebroek (2001b) 
that because of the compound symmetric error structure of model (2), (16) is equal to 

(17) 
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In terms of the coefficient of correlation (10), (17) can be rewritten as 

I(X) = ~2 {X'X - ~ t ) (X;lm)(X;lm)'} . 
a L...... 1 + P nl,' - 1 ' , 

e: i=l 2 

(18) 

If p -----1 0, then the information matrix becomes 

I(X) = ~X'X, 
ae: 

(19) 

which is the information matrix for the uncorrelated model (11). We refer to a design 
that maximizes the V-criterion value la;2X'XI as a V-optimal completely randomized 
design (CRD). In contrast, a design that maximizes the V-criterion value IX'V-IXI for 
p significantly differing from zero is called a V-optimal conjoint design. It follows from 
the determinant expressions in these definitions that the relative statistical efficiency of 
a CRD is not affected by a; whereas that of a conjoint design depends on p through V. 
Note that a CRD can be seen as a conjoint design in which each of the profiles is assigned 
to a different respondent so that as many respondents as design profiles are needed. In 
that case, V is a diagonal matrix and the variability within respondents, a;, cannot be 
distinguished from the variability between respondents, a;. 

If p -----1 1, then (18) results in the information matrix for the model with fixed re­
spondent effects. When respondent effects are fixed, or non-stochastic, interest lies in 
the effects of the individual respondents and not in the possible effects of the population 
where the respondents belong to. In practice, the finding implies the V-optimal design 
in the presence of random respondent effects is equivalent to the V-optimal design in the 
presence of fixed respondent effects. 

In our study in Section 5, we first verify whether V-optimal conjoint designs are 
statistically more efficient than V-optimal CRDs. To that end, we compare the V-criterion 
values of the designs. A necessary condition to compare these values is that the variability 
assumed in the designs is the same. For that purpose, we assume without loss of generality 
a total variance of one in the designs. Hence, setting the only variance component a; to 
one in the information matrix (19), the V-criterion value of a V-optimal CRD becomes 

IX'XI· (20) 

However, to compute the proper V-criterion value of a V-optimal conjoint design, we 
have to take into account two variance components, CJ; and a;. These components have 
to sum to one so that CJ; = 1 - P and the V-criterion value of a V-optimal conjoint design 
comes down to 

(21 ) 

with k the number of parameters. Usually, V-criterion values are expressed per parameter 
so that the V-criterion values of a V-optimal CRD and a V-optimal conjoint design 
amount to 

(22) 
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4 Design construction algorithm 

The algorithm to generate V-optimal designs for conjoint experiments is adapted from 
the algorithm of Goos and Vandebroek (2004) for the construction of V-optimal split-plot 
designs. Split-plot designs are similar to block designs in that they group observations 
together, but the underlying reason for the grouping is different. In a split-plot design, 
the grouping occurs on the basis of common factor levels for some of the experimental 
factors which are, in some sense, hard to change. In contrast, the grouping in a block 
design depends on a certain characteristic of the observations independent of the factors 
under investigation. In our conjoint setting, this characteristic refers to the fact that each 
block of profiles is evaluated by a different respondent. 

The algorithm to construct V-optimal conjoint designs starts with the composition of 
the set of candidate profiles. For example, for one type of designs in our study in Section 5, 
we used four attributes, each acting at three levels so that the set of candidates consists of 
34 = 81 profiles in that case. Next, a starting design is computed by first randomly select­
ing a number of profiles from the list of candidates. The first selected profile constitutes 
the first block after which each of the other profiles is randomly assigned to an existing 
block or to a new block. The starting design is completed by using a greedy heuristic that 
sequentially adds the candidate profile that produces the largest increase in the determi­
nant. Also in this case, the profiles are randomly assigned to an existing or to a new block. 

In order to improve the starting design, two procedures are applied consecutively, 
namely interchanging design profiles from different blocks and exchanging design profiles 
with candidate profiles. In the interchange procedure, all possible interchanges of design 
profiles from different blocks are evaluated, but only the best one is carried out. This 
process is repeated until no further improvement can be made. In the exchange proce­
dure, three alternative exchange strategies are considered for each combination of a design 
profile and a candidate. In each of the strategies, the design profile is removed from the 
design and the candidate is added to the design. First, the candidate entering the design 
can be assigned to the same block as the profile removed from the design. Second, the 
entering profile can be assigned to another block than that of the removed profile. Finally, 
the entering profile can also be assigned to a new block. When all possible exchanges have 
been evaluated, the best one is performed. This procedure is repeated until improvement 
stops. The algorithm then returns to the interchange procedure and continues with eval­
uating interchanges and exchanges until no better design can be obtained. To avoid being 
stuck in a locally optimal design, more than one starting design is generated and the 
design search is repeated. Each repetition is called a try and the most efficient design 
from all tries is referred to as the V-optimal conjoint design. 

It is clear that the design problem of finding the optimal number of respondents, de­
rived from the number of blocks the V-optimal conjoint design contains, and selecting 
the profiles for each respondent is very complex. The more observations, attributes and 
attribute levels are involved, the more designs are possible and the higher the chance 
the algorithm yields poor local optima. Therefore, for large problem situations, a great 
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number of tries is needed. For example, we used 6000 tries to compute V-optimal conjoint 
designs consisting of 60 profiles in the case of four attributes, each acting at three levels. 
Nevertheless, we could benchmark the results by means of the algorithm of Coos and Van­
debroek (2001a) for the construction of optimal designs in the presence of random block 
effects. We refer to this algorithm as the benchmark algorithm and to the adapted version 
of the algorithm of Coos and Vandebroek (2004) as the main algorithm. The benchmark 
algorithm proceeds largely in the same way as the main algorithm. However, it differs 
in one crucial aspect from the main algorithm. Whereas the main algorithm determines 
the optimal number of respondents needed, b, and the optimal number of profiles for each 
respondent, ml, ... , mb, the benchmark algorithm requires the values band ml, ... , mb as an 
input. In other words, the benchmark algorithm computes the V-optimal conjoint design 
for a given design structure, represented by band ml, ... , mb, which is not necessarily the 
optimal design structure. Only the main algorithm is developed in such a way to provide 
the optimal design structure. As a consequence, the exchange procedure is limited to 
replacing the design profile by the candidate in the same block. Moreover, it is obvious 
that the design space the benchmark algorithm has to explore is much more constrained 
than that of the main algorithm. As a result, the benchmark algorithm requires less tries 
and computation time. 

Finally, to use the main and benchmark algorithms, an estimate of p must be provided. 
As a first illustration, we calculated an estimate p using the dataset from a ratings-based 
conjoint experiment carried out in the health economics area and described in Brazier et 
al. (2002). The dataset contains the ratings of 611 respondents who each had to evaluate a 
different set of six health states. By means of the SAS procedure PROC MIXED and REML' 
as its default estimation method to estimate model (2), we obtained a value of p = 0.62. 
As a second example, we received a dataset from a sensory experiment performed by 
the multinational brewer InBev. The experiment consisted of 100 respondents who each 
had to rate four types of beer with respect to four sensory characteristics. The estimates 
p for each of these characteristics amount to 0.48, 0.46, 0.36 and 0.41, respectively. In 
Section 5.3, we show however that for proper design construction the value of p does not 
need to be known as V-optimal conjoint designs are not very sensitive to misspecification 
of p. 

5 Results 

In this section, we present a selection of computational results that are representative of 
V-optimal conjoint designs of any type. We first prove that it is statistically justified 
to apply these designs instead of V-optimal CRDs. We then proceed with a discussion 
of the optimal design structure and the computation times needed. Next, we deal with 
some practical issues and seek for ways to save on computation time. Lastly, V-optimal 
arrangements of all candidate profiles are studied. 
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5.1 Design selection 

We computed V-optimal conjoint designs for 11 different sample sizes: 10, 20, 24, 30, 36, 
40, 50, 60, 70, 72 and 81. The profiles are composed of four attributes, each acting at 
a certain level. We investigated two possible settings of the attribute levels. In the first 
setting, all attributes have three levels and thus the attribute levels are homogeneous. In 
contrast, in the second setting, the attribute levels are heterogeneous: the first attribute 
acts at two levels, the second attribute at three levels, the third attribute at four levels 
and the fourth attribute again at three levels. As a consequence, the number of candidate 
profiles amounts to 34 = 81 in the homogeneous level setting and to 2 x 3 x 4 x 3 = 72 in 
the heterogeneous level setting. For each of the design problems, we applied 10 values of 
the degree of correlation p : 0,0.1, ... , 0.9. We included p = 0 to compute the V-optimal 
CRDs. Hence, in total, we constructed 11 x 2 x 9 = 198 V-optimal conjoint designs and 
11 x 2 = 22 V-optimal CRDs. 

5.2 Comparison of V-criterion values 

In Table 1, the V-criterion values of the V-optimal conjoint designs and CRDs are dis­
played. As discussed in Section 3, these values were calculated by means of the expressions 
in (22) to compare the V-optimal conjoint designs with the V-optimal CRDs for the same 
sample size and setting of the attribute levels. It turns out that the V-optimal CRDs 
are outperformed by each of the corresponding V-optimal conjoint designs. This result 
was expected as Goos (2002), page 133, extensively proved that V-optimal block designs 
are more efficient than V-optimal CRDs provided the experimental situation exhibits a 
block format. (see also Section 1). Hence, since profile ratings from the same respondent 
are correlated (p =1= 0), it is statistically justified to take into account the compound sym­
metric error structure when designing conjoint experiments. In addition, Table 1 reveals 
that the higher the correlation, the larger the efficiency gain of using a V-optimal conjoint 
design instead of a V-optimal CRD. Also this result is not a surprise as Goos (2002), page 
133, noted a similar finding for V-optimal block designs. 

It is obvious that the V-criterion values increase with the sample size because more 
information on the parameters is acquired by enlarging the experiment. It is however 
conceivable that a saturation level of V-efficiency is reached when exceeding a certain 
number of observations. For that reason, we examined more thoroughly the relationship 
between the sample size and the V-criterion values by plotting them against each other 
for the 10 degrees of correlation. The plot for the homogeneous level setting is displayed 
in Figure 1. The plot for the heterogeneous level setting exhibits the same pattern and is 
therefore not depicted. The plots show that the V-criterion values increase linearly with 
the sample size, hereby contracting the idea of a saturation level of V-efficiency for the 
sample sizes considered. 

5.3 Optimal number of respondents and profile selection 

In the previous section, we demonstrated that the V-optimal conjoint designs are statisti­
cally much more efficient than the V-optimal CRDs. As a result, the random respondent 
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Table 1: V-criterion values of the V-optimal conjoint designs for 11 different sample sizes n, for homogeneous and heterogeneous 
attribute levels and for various degrees of correlation p. 

hom/ p 
n het 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
10 hom 5.965 6.205 6.640 7.271 8.153 9.409 11.290 14.376 20.356 37.271 
10 het 5.311 5.575 5.996 6.586 7.402 8.556 10.279 13.102 18.569 34.022 
20 hom 12.088 12.957 14.112 15.628 17.661 20.497 24.699 31.553 44.799 82.200 
20 het 11.247 11.952 12.937 14.263 16.068 18.603 22.376 28.543 40.478 74.200 
24 hom 14.506 15.537 16.959 18.815 21.297 24.753 29.865 38.196 54.285 99.699 
24 het 13.768 14.632 15.826 17.435 19.627 22.710 27.299 34.807 49.338 90.407 
30 hom 18.253 19.578 21.369 23.708 26.836 31.190 37.632 48.130 68.404 125.628 
30 het 17.088 18.158 19.637 21.632 24.349 28.171 33.862 43.189 61.249 112.283 
36 hom 22.093 23.775 25.951 28.791 32.590 37.878 45.701 58.450 83.071 152.564 
36 het 20.696 22.007 23.810 26.237 29.538 34.181 41.090 52.392 74.266 136.086 
40 hom 24.428 26.187 28.535 31.611 35.755 41.532 50.087 64.036 90.982 167.051 
40 het 22.908 24.315 26.297 28.973 32.617 37.762 45.414 57.927 82.141 150.566 
50 hom 30.583 32.833 35.810 39.701 44.913 52.174 62.921 80.442 114.286 209.826 
50 het 28.709 30.500 32.986 36.345 40.919 47.353 56.932 72.598 102.920 188.612 
60 hom 36.737 39.497 43.112 47.830 54.141 62.925 75.922 97.101 138.002 253.450 
60 het 34.505 36.682 39.679 43.716 49.212 56.940 68.448 87.273 123.709 226.684 
70 hom 42.895 46.108 50.277 55.728 63.052 73.256 88.363 112.988 160.551 294.818 
70 het 40.238 42.758 46.243 50.947 57.354 66.365 79.781 101.726 144.200 264.238 
72 hom 44.185 47.514 51.862 57.538 65.129 75.697 91.331 116.809 166.013 304.893 
72 het 41.449 44.051 47.643 52.489 59.087 68.368 82.186 104.787 148.534 272.173 
81 hom 49.709 53.494 58.390 64.780 73.327 85.225 102.827 131.512 186.909 343.270 
81 het 46.577 49.503 53.542 58.987 66.403 76.832 92.361 117.761 166.925 305.873 
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Figure 1: V-criterion values of the V-optimal conjoint designs for sample sizes rang­
ing from 10 to 81, for homogeneous attribute levels and for degrees of correlation of 
0,0.1, ... ,0.9. 

effects model (2) is appropriate and it is prudent to assign a block of profiles to each of 
the respondents. Note that if the reverse was true, the uncorrelated model (11) had to be 
used and each respondent had to evaluate only one profile. In this section, we focus there­
fore on the V-optimal conjoint designs to derive more precisely how many respondents 
are required for a specific conjoint setting and which and how many profiles are offered 
to each of them. From the designs, we easily observe how many respondents are needed 
for a specific setting through the number of blocks the designs contain. The profiles in a 
block are then assigned to one respondent. In Table 2, the blocking or respondent-profile 
structures of the 198 V-optimal conjoint designs are presented. The designs themselves 
are not portrayed, but can be obtained from the authors. 

In total, we found 26 different V-optimal conjoint designs. This means that most of 
the designs for a particular sample size and setting of the attribute levels are optimal for 
a broad range of degrees of correlation. Consequently, the V-optimal conjoint designs are 
fairly robust against misspecifications of the degree of correlation. Also Goos (2002), page 
122, observed this result while computing V-optimal block designs for several degrees of 
correlation. 

It turns out it is often statistically most efficient to administer three profiles to respon­
dents. Nevertheless, when a heterogeneous number of levels is used and/or the degree of 
correlation is increased, it is sometimes most efficient to administer four profiles to one or 
more respondents. In that case, the optimal number of respondents decreases. The result 

12 



Table 2: Respondent-profile structures of the V-optimal conjoint designs for 11 different 
sample sizes n, for homogeneous and heterogeneous attribute levels and for 9 degrees of 
correlation p E {0.1; 0.2; ... ; 0.9}. 

Design n hom/het p Respondent-profile structure b 
1 10 hom 

{0.1; ... ; 0.9} mI = 3 1m2 = 7 2 
2 10 het mI = 4 I m2 = 6 2 
3 20 hom 

{0.1; ... ; 0.9} mll ... , m6 = 3 I m7 = 2 7 
4 20 het mI, ... , TT/'4 = 3 I m5, m6 = 4 6 
5 24 hom 

{0.1; ... ; 0.9} mI, ... , ms = 3 8 
6 24 het 
7 30 hom {0.1; ... ; 0.9} mI, ... , mlO = 3 10 
n 30 {0.1; ... ; 0.6} mI, ... , mlO = 3 10 () 

het 
9 30 {0.7; 0.8; 0.9} rnI, ... , m6 = 3 I m7, ms, mg = 4 9 
10 36 hom 

{0.1; ... ; 0.9} mll ... , m12 = 3 12 
11 36 het 
12 40 

hom 
{0.1; 0.2} mI, ... , m13 = 3 I m14 = 1 14 

13 40 {0.3; ... ; 0.9} mI, ... , m12 = 3 I m13 = 4 13 
14 40 

het 
{0.1; ... ; 0.4} mI, ... , m12 = 3 I m13 = 4 13 

15 40 {0.5; ... ; 0.9} TT/'I, ... , ms = 3 I mg, ... , m12 = 4 12 
16 50 hom 

{0.1; ... ; 0.9} mI, ... , m16 = 3 I m17 = 2 17 
17 50 het mI, ... , m14 = 3 I m15, rn16 = 4 16 
18 60 hom 

{0.1; ... ; 0.9} mI, ... , m20 = 3 20 
19 60 het 
20 70 

hom 
{0.1; 0.2} mI, ... , m23 = 3 I m24 = 1 24 

21 70 {0.3; ... ; 0.9} mI, ... , rn22 = 3 I m23 = 4 23 
22 70 het {0.1; ... ; 0.9} mI, ... , m22 = 3 I m23 = 4 23 
23 72 hom 

{0.1; ... ; 0.9} mI, ... ,71'/'24 = 3 24 
24 72 het 
25 81 hom 

{0.1; ... ; 0.9} mI, ... ,71'/'27 = 3 27 
26 81 het 
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that sometimes more profiles are grouped when the correlation is increased is related to 
Goos and Vandebroek (2004) who found that it generally holds for split-plot designs to 
group more experimental runs when the correlation is higher. 

Finally, the case of 10 observations is somewhat special in the sense that the profiles 
are not so equally spread over respondents in blocks of three and four as in the other 
design cases. Instead, two respondents are required to evaluate three and seven profiles, 
respectively, in the homogeneous level setting and four and six profiles in the heteroge­
neous level setting. As a consequence, assigning five profiles to two respondents each 
is also not an optimal design option. This is a striking result which is similar to Goos 
(2002), page 133, who observed that the two blocks of a 10 run V-optimal block design 
for quantitative factors and a second order model are asymmetric. 

5.4 Computation time and number of tries 

This section presents an overview ofthe computation times per 1000 tries and the numbers 
of tries utilized to generate the V-optimal conjoint designs by means of the main algo­
rithm as well as the benchmark algorithm. Recall from Section 4 that the main algorithm 
is vital for determining the optimal respondent-profile structures whereas the benchmark 
algorithm requires a respondent-profile structure as an input to generate the V-optimal 
conjoint design corresponding to that structure. To register the computation times, we 
applied the optimal respondent-profiles structures to the benchmark algorithm, although 
the use of other structures, except for the CRD structure of one profile per respondent, 
would not affect the times by much. Both algorithms were implemented in Fortran 77. 
The computation times were obtained by means of a Dell PC with a 1.80 GHz Intel Pro­
cessor and 256 MB RAM. In Table 3, exact times per 1000 tries are reported to construct 
the V-optimal conjoint designs for p = 0.5. The times in Table 3 are however representa­
tive of the V-optimal conjoint designs for any of the 9 values of p (p E {0.1; 0.2; ... ; 0.9}). 
Table 3 further lists the numbers of tries used to generate the V-optimal conjoint designs. 
We believe these numbers are sufficient in order not to be stuck in locally optimal designs. 

To study the computation times per 1000 tries more rigorously, we plotted them 
against the sample size. The plot for the homogeneous level setting is displayed in 
Figure 2. The plot for the heterogeneous level setting is omitted as it shows a similar 
pattern. Exploring the times per 1000 tries and the numbers of tries used, we observed 
that it takes very long to compute the V-optimal conjoint designs with a sample size of 40 
and more by means of the main algorithm. More specifically, computation times with the 
main algorithm grow exponentially with the sample size. On the other hand, the bench­
mark algorithm goes much faster and computation times with this algorithm increase 
slowly with the sample size. Lastly, note that for the construction of V-optimal CRDs, 
we used the benchmark algorithm that, in this case, only takes a quarter of the times 
registered for this algorithm in Table 3. However, to generate V-optimal CRDs, there 
are much faster algorithms in the literature on optimal design (e.g. BLKL-algorithm, see 
Atkinson and Donev 1992) which are specially developed for this purpose. 
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Table 3: Approximate computation times per 1000 tries and number of tries used to gen­
erate the V-optimal conjoint designs by means of the main algorithm and the benchmark 
algorithm. 

Main algorithm Benchmark algorithm 
n hom/het time/1000 tries # tries time/lOOO tries # tries 
10 hom 00.21h 1000 15s 1000 
10 het 00.23h 1000 15s 1000 
20 hom 01.17h 2000 00.02h 1000 
20 het 01.05h 2000 OO.01h 1000 
24 hom 02.04h 3000 00.02h 2000 
24 het 01.24h 3000 00.02h 2000 
30 hom 02.54h 3000 00.03h 2000 
30 het 02.02h 3000 00.03h 2000 
36 hom 03.58h 4000 00.04h 2000 
36 het 02.47h 4000 00.03h 2000 
40 hom 04.52h 4000 00.05h 2000 
40 het 03.05h 4000 00.04h 2000 
50 hom 08.31h 5000 00.08h 3000 
50 het 04.36h 5000 00.07h 3000 
60 hom 11.05h 6000 00.10h 3000 
60 het 07.14h 6000 00.09h 3000 
70 hom 15.42h 7000 00.15h 4000 
70 het 09.18h 7000 00.15h 4000 
72 hom 16.44h 7000 00.15h 4000 
72 het 10.43h 7000 00.15h 4000 
81 hom 21.19h 8000 00.21h 5000 
81 het 12.51h 8000 00.18h 5000 

5.5 Compromising between practical and optimal respondent­
profile structures 

In this section, we examine whether some of the optimal respondent-profile structures in 
Table 2 can be slightly adapted to result in more practical structures for which the corre­
sponding V-optimal conjoint designs are still statistically fairly efficient. These V-optimal 
conjoint designs are computed by means of the benchmark algorithm given a more prac­
tical respondent-profile structure as an input. We tackle the following three cases. The 
first case concerns the designs in which one or two profiles are administered to one of the 
respondents. It may be more sensible, however, to assign four profiles instead of three to 
one or two respondents so that one respondent less is needed. The second case covers the 
designs in which the profiles are not spread out as equally as possible over respondents in 
blocks of three. It would be very convenient for experimenters if the respondent-profile 
structure of three profiles per respondent could be generalized to the instances concerned. 
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Figure 2: Minutes of computation time per 1000 tries to generate the V-optimal conjoint 
designs by means of the main algorithm and the benchmark algorithm. 

The third case involves in fact all the designs, except for those with 10 observations, as it 
may be more useful to administer more than three profiles per respondent so as to reduce 
the number of respondents needed. We discuss these three cases more in detail and inves­
tigate how much one looses in V-efficiency by applying more practical respondent-profile 
structures than the optimal ones in Table 2. If the losses in V-efficiency incurred are 
negligible, then we retain the more practical structures. 

The approach we have adopted to express losses in V-efficiency when respondent­
profile structures are used different from the optimal ones in Table 2, is a functional one 
and proceeds as follows. For each setting of the attribute levels and degree of correlation 
(p i= 0), we performed a regression analysis of the V-optimal criterion values of Table 1 
with respect to the sample size. We denote these V-optimal criterion values as V::t . In 
total, the regression analyses yield 2 x 9 = 18 values for the intercept and the slope. The 
intercept and slope from a regression are referred to as 'ljJ and w. We then computed 
V-optimal conjoint designs for other respondent-profile structures than the optimal ones 
by means of the benchmark algorithm. These designs have one of the 11 different sample 
sizes n and their V-criterion values are denoted by V~ub since sub-optimal respondent­
profile structures are used. It is clear that the V-criterion values V~ub are lower than the 
V-criterion values V::t for n = n *. Hence, for each of the V-criterion values V~ub, we 
derived how many observations n* are required in the optimal case using the equations 

'T\sub _ 'T\Opt d 
Un - Un' an 

'T\Opt _ 0/' * 
Un' - 'f/ +wn . 
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Figure 3: Derivation of the redundant numbers of observations, n - n*, using regression 
analysis. 

To illustrate, expressions (23) and (24) are set out in Figure 3. Obviously, all the sample 
sizes n* found are lower than or, due to rounding, equal to the sample sizes n for which 
we constructed V-optimal conjoint designs with sub-optimal respondent-profile structures. 
Finally, the differences in number of observations, n - n*, give a clear indication of the 
extent of the efficiency losses when using sub-optimal respondent-profile structures. The 
larger the differences, the higher the losses. We refer to these differences as redundant 
numbers of observations as they specify how many observations would be redundant if 
optimal designs are applied to reach a given level of V-efficiency. 

One or two profiles for one respondent 

For sample sizes of 40 and 70 in the homogeneous level setting for values of p of 0.1 and 
0.2, it is statistically most efficient to administer one profile to one of the respondents. 
The assignment of one profile to one respondent seems however not very efficient from a 
practical point of view. Moreover, if there are costs associated per respondent needed, then 
it seems also not very cost efficient. If the profiles are easy to rate, then the same reasoning 
holds for the designs in which two profiles are administered to one of the respondents. 
These are the designs with a sample size of 20 and 50 in the homogeneous level setting. For 
these two design cases, we calculated how much one looses in V-efficiency when assigning 
four profiles instead of three to one or two respondents in order to save on one respondent. 
It turns out that the losses in V-efficiency from applying the more practical respondent­
profile structures are so small that there are no redundant numbers of observations. As 
a result, the structures constitute a good compromise between practical and statistical 
efficiency. 
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Blocks of three profiles 

As discussed in Section 5.3, blocks of three profiles are most often assigned to respon­
dents. Nevertheless, when a heterogeneous number of levels is used and/or the degree of 
correlation is increased, blocks of four profiles are sometimes administered. In the case of 
10 observations, even a block of seven profiles is administered in the homogeneous level 
setting and one of six profiles in the heterogeneous level setting. For these particular 
cases, we examined whether we can more equally spread out the profiles over respondents 
in blocks of three. For sample sizes that are not multiples of three, we opted for one or two 
blocks of four profiles (see the previous section). The reason for this study is that if the 
efficiency losses incurred turn out to be negligible, we can propose the general respondent­
profile structure of three profiles per respondent. Such a general structure allows to apply 
the benchmark algorithm to compute V-optimal conjoint designs for all possible sample 
sizes. As shown in Section 5.4, the benchmark algorithm drastically speeds up the com­
putation time. On the other hand, one may have to designate more respondents than 
optimally needed. 

Apart from the optimal designs with 10 observations, we did not find any redun­
dant numbers of observations when more equally dividing the profiles over respondents 
in blocks of three in the cases concerned. For a sample size of 10, the redundant numbers 
of observations are listed in Table 4. In part a, redundant numbers of observations are 
given for the respondent-profile structure that assigns three profiles to three respondents 
each and one profile to a fourth respondent. In part b on the other hand, they are shown 
for the more practical structure of three profiles to two respondents each and four profiles 
to a third respondent. In general, the redundant numbers are relatively high since the 
difference between the optimal respondent-profile structures and the structures in Table 4 
is quite large. The redundant numbers of observations are sometimes less for the more 
practical structure in part b as this structure resembles the optimal one more. The redun­
dant numbers of observations further increase with the degree of correlation. Significant 
differences between the homogeneous and heterogeneous level settings are however not 
observed. 

Table 4: Redundant numbers of observations indicating the degree of sub-optimality in 
case 10 profiles are divided in a statistically efficient way over a) four respondents in three 
blocks of three and one block of one; b) three respondents in two blocks of three and one 
block of four. 

hom/ p 
n het b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

a) 
10 hom 4 0 1 1 1 2 2 3 3 4 
10 het 4 1 1 1 2 2 2 3 3 4 

b) 
10 hom 3 0 0 1 1 1 2 2 2 3 
10 het 3 1 1 1 1 1 2 2 2 3 
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It follows from the account in this section that we can generalize the concept of blocks 
of three profiles to all design cases considered except for the case of 10 observations. To 
investigate from which sample size we may start applying blocks of three profiles, we 
computed V-optimal conjoint designs that equally spread the profiles over respondents in 
blocks of three for sample sizes between 11 and 20. We again chose for one or two blocks 
of four profiles in case the sample size is not a multiple of three. It turns out that the 
designs with a sample size of 11 and more do not result in any redundant numbers of 
observations. Hence, for sample sizes larger than or equal to 11, we propose the rule of 
thumb of three profiles per respondent. A consequence of this rule is that in case there 
are respondent costs, instead of first deciding on the number of observations, it may be 
more sensible to first decide on the number of respondents to appoint. If each respondent 
is then given three profiles to rate, the sample size is easily found. 

Blocks of more than three profiles 

A disadvantage of applying the general rule of three profiles per respondent is that it re­
quires relatively many respondents. Therefore, when profiles are very easy to rate, it may 
be more practical to administer more than three profiles per respondent. To that end, 
we investigated several combinations of numbers of respondents b and numbers of profiles 
rn assigned to each of the respondents given a sample size n. For example, if n = 72, 
then it is interesting to examine the combinations b = 18, m = 4; b = 12, rn = 6; b = 9, 
rn = 8 and b = 8, m = 9. For each of these combinations, we calculated the redundant 
numbers of observations to find the combination with the smallest losses in V-efficiency. 
We considered the 10 sample sizes starting at 20, the homogeneous and heterogeneous 
level settings and the 9 degrees of correlation. We expected the redundant numbers of 
observations to decrease with the number of respondents b or to increase with the number 
of profiles rn per respondent. 

It turns out that our expectation indeed holds for the V-optimal conjoint designs in 
the heterogeneous level setting that correspond to several combinations of band rn given 
n. However, in the homogeneous level setting, the result is surprisingly different. In this 
setting, the V-optimal conjoint designs in which the number of profiles per respondent is 
a multiple of three, represent the smallest efficiency losses. This is illustrated in Table 5 
where we have listed the redundant numbers of observations for sample sizes of 60 and 72. 
For 60 observations, the redundant numbers of observations from administering six profiles 
to ten respondents (b = 10, rn = 6) are lower than or equal to those from administering five 
profiles to twelve respondents (b = 12, rn = 5) or four profiles to fifteen respondents (b = 
15, rn = 4). For 72 observations, we observe that the redundant numbers of observations 
from assigning nine profiles to eight respondents (b = 8, m = 9) and six profiles to 
twelve respondents (b = 12, rn = 6) are lower than or equal to those from assigning eight 
profiles to nine respondents (b = 9, rn = 8) and four profiles to eighteen respondents 
(b = 18, m = 4), respectively. The finding that the efficiency losses are smallest when 
multiples of three profiles are administered in the homogeneous level setting is also valid 
for sample sizes that are not nicely divisible by three. For example, in the case of 40 
observations, the redundant numbers of observations from assigning six profiles to six 
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respondents and four profiles to a seventh respondent are smaller than or equal to those 
from assigning four profiles to ten respondents. To conclude, for all the design cases 
considered, we found that the redundant numbers of observations increase with the degree 
of correlation. 

Table 5: Redundant numbers of observations indicating the degree of sub-optimality in 
case 60 and 72 profiles in the homogeneous level setting are equally spread out in a 
statistically efficient way over different numbers of respondents b. 

p 
n b 'in 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

6 10 3 5 6 6 7 7 7 7 8 

60 
10 6 1 2 3 3 4 4 4 4 4 
12 5 2 3 3 4 4 4 5 5 5 
15 4 1 2 3 4 4 4 4 5 5 
8 9 3 5 6 6 7 7 7 8 8 

72 
9 8 3 5 6 6 7 7 8 8 8 

12 6 2 3 3 4 4 4 5 5 5 
18 4 2 3 4 4 5 5 5 6 6 

5.6 Replicating V-optimal conjoint designs 

In this section, we investigate whether replicating small V-optimal conjoint designs is 
statistically as efficient as generating larger V-optimal conjoint designs. Clearly, less 
computation time would be needed if a large conjoint experiment could be set up by 
means of a small design. To evaluate the statistical efficiency of design plans that contain 
replications of small V-optimal conjoint designs, we calculated the redundant numbers of 
observations associated with these plans. These numbers are derived by first computing 
the V-criterion values of the plans. The V-criterion value, V n , of a design plan consisting 
of a multiple c of a small V-optimal conjoint design with sample size ns is given by 

(25) 

where V~s denotes the V-criterion value of the small V-optimal conjoint design. This 

value is found in Table 1. Using Vn = v~~t in combination with regression expression 
(24) for each design plan then yields the redundant numbers of observations, n - n*. 

In Table 6, redundant numbers of observations are given in the case V-optimal conjoint 
designs with sample sizes of 10, 20, 24, 30 and 36 are replicated to carry out experiments 
with 20, 30, 40, 50, 60 and 72 observations. The numbers are only reported for the 
homogeneous level setting as the numbers for the heterogeneous level setting are compa­
rable. It turns out that there are no or little redundant numbers of observations when 
the V-optimal conjoint designs with sample sizes of 20, 24, 30 and 36 are replicated. On 
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the other hand, replicating the V-optimal conjoint design with 10 observations results in 
redundant numbers of observations that increase with the degree of correlation and the 
number of replications. 

The findings in Table 6 can be explained by two reasons. The first reason is that the 
optimal respondent-profile structures in the case of 10 observations differ substantially 
from the optimal structures in the case of 20, 24, 30 and 36 observations. The second 
reason comes down to the fact that maximum 10 different profiles are included for a 
sample size of 10 whereas more different profiles are taken up for the other sample sizes. 
As a result, to set up large conjoint experiments in a time-efficient manner, it is prudent 
to replicate the V-optimal conjoint designs with sample sizes of 20, 24, 30 and 36, but 
not those with a sample size of 10. 

Table 6: Redundant numbers of observations indicating the degree of sub-optimality when 
replications of the V-optimal conjoint designs with sample sizes of 10, 20, 24, 30 and/or 
36 are used instead of the V-optimal conjoint designs with sample sizes of 20, 30, 40, 50, 
60, 70 and 72. Numbers are given for the homogeneous level setting. 

p 

n ex ns 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
20 2 x 10 1 1 1 1 2 2 2 2 2 
30 3 x 10 1 2 2 2 3 3 3 3 3 
40 4 x 10 2 3 3 4 4 4 4 4 4 

2 x 20 0 1 1 1 1 1 1 1 1 
50 5 x 10 3 4 4 5 5 5 5 5 6 
60 6 x 10 3 5 5 6 6 6 7 7 7 

3 x 20 1 1 1 1 1 1 1 2 2 
2 x 30 1 1 1 0 0 0 0 0 0 

70 7 x 10 4 5 6 7 7 8 8 8 8 
72 3 x 24 1 1 1 1 1 1 1 1 1 

2 x 36 0 0 0 0 0 0 0 0 0 

5.7 Randomly distributing profiles from 'V-optimal CRDs 

In this section, we examine how well the 22 V-optimal CRDs perform when the profiles are 
randomly distributed over respondents according to the optimal respondent-profile struc­
tures in Table 2. In other words, we analyze each of the V-optimal CRDs by means of the 
random respondent effects model (2) using the optimal number of respondents b and the 
optimal number of profiles per respondent, ml, ... , mb, for the design problem considered. 
If the V-optimal CRDs perform well in this way, then they may be preferred to V-optimal 
conjoint designs to save on computation time. The method we have adopted to score the 
V-optimal CRDs on the random respondent effects model proceeds as follows. For each of 
the V-optimal CRDs and corresponding optimal respondent-profile structure(s), we first 
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randomly generated 1000 arrangements of the CRD-profiles. As there are 21 different 
respondent-profile structures in Table 2, we obtained in total 21 arrays of 1000 profile 
arrangements. We then computed the V-criterion values of all profile arrangements using 
the degrees of correlation associated with the respondent-profile structures. 

For each array of 1000 profile arrangements, we found that the V-criterion values for 
each of the corresponding degrees of correlation are bell-shaped. The average V-criterion 
values for the 9 degrees of correlation in the homogeneous level setting are shown in 
Figure 4. For the heterogeneous level setting, a similar figure is obtained and is therefore 
omitted. It is interesting to compare this figure with Figure 1 in which the V-criterion val­
ues of the V-optimal conjoint designs are shown. As in Figure 1, the average V-criterion 
values of the profile arrangements also increase with the sample size and the degree of 
correlation. The average V-criterion values are however much lower than the V-criterion 
values of the V-optimal conjoint designs, suggesting that randomly distributing CRD­
profiles over respondents is statistically not very efficient. In addition to the averages, we 
also computed the standard deviations of the V-criterion values for each array of 1000 
profile arrangements and corresponding degrees of correlation. It turns out that also the 
standard deviations increase with the sample size and the degree of correlation. 
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Figure 4: A verage V-criterion values of 1000 profile arrangements of the V-optimal 
CRDs in the homogeneous level setting. Profiles are arranged according to the optimal 
respondent-profile structures. 

For the average V-criterion values, which we refer to as v~vg, we computed the redun­
dant numbers of observations to specify the efficiency losses from randomly distributing 
CRD-profiles over respondents. The numbers are derived using v~vg = v~~t in combi-

22 



o 

o 
+ 

• 
0.9 
0.8 
0.7 

20 

L>. 

• 
o 

0.6 
0.5 
0.4 

40 

<> 
• 

0.3 
0.2 
0.1 

Number of observations 

60 80 

Figure 5: Average redundant numbers of observations of 1000 profile arrangements of the 
V-optimal CRDs in the homogeneous level setting. Profiles are arranged according to the 
optimal respondent-profile structures. 
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Figure 6: Minima and maxima of redundant numbers of observations of 1000 profile 
arrangements of the V-optimal CRDs in the homogeneous level setting. Profiles are 
arranged according to the optimal respondent-profile structures for degrees of correlation 
of 0.1 and 0.9. 
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nation with regression expression (24). Obviously, these redundant numbers are average 
numbers. The average redundant numbers of observations in the homogeneous level set­
ting are shown in Figure 5. The averages in the heterogeneous level setting are not 
displayed as they exhibit the same pattern. As expected from Figure 4, the average re­
dundant numbers of observations are substantial and increase with the sample size and 
the degree of correlation. 

Besides the average V-criterion values, we also calculated the minimum and maximum 
V-criterion values and corresponding redundant numbers of observations. The minimum 
V-criterion values result in the largest redundant numbers of observations whereas the 
maximum V-criterion values result in the smallest numbers. The maxima and minima 
of redundant numbers of observations in the homogeneous level setting for degrees of 
correlation of 0.1 and 0.9 are displayed in Figure 6. They serve as bounds between 
which the maxima and minima of the numbers for the other 7 degrees of correlation are 
comprised. For the heterogeneous level setting, the figure is practically the same and is 
left out. We observe that the maxima are more dispersed than the minima and that the 
spread between the maxima and minima increases with the degree of correlation. 

5.8 Efficiently distributing the candidate profiles 

This last section looks more closely at the 81 candidate profiles in the homogeneous level 
setting and the 72 candidate profiles in the heterogeneous level setting. For each set of 
candidates, we arranged the candidate profiles according to the optimal respondent-profile 
structure of three profiles per respondent. Numerous arrangements are possible, but we 
retained the arrangement with the highest V-criterion value for both sets. Both arrange­
ments are statistically most efficient for any of the 9 degrees of correlation. We then 
investigated whether the statistical efficiency of the arrangements is the same as that of 
the V-optimal conjoint designs in Table 1 for the corresponding sample size and level set­
ting. Note that the V-optimal conjoint designs in Table 1 contain some of the candidate 
profiles more than once and thus some other candidates are not included. Recall further 
that the V-optimal conjoint designs with sample sizes of 81 and 72 in the homogeneous 
and heterogenous level setting, respectively, are equivalent for the 9 degrees of correlation. 

Comparing the V-criterion values of the V-optimal arrangements of all candidate 
profiles with those of the V-optimal conjoint designs in Table 1 revealed that the values 
are identical for the same sample size and level setting. As a result, the V-optimal 
arrangements of all candidate profiles are statistically as efficient as the designs in Table 1. 
The reason for this design equivalence lies in the fact that the V-optimal conjoint designs 
are constructed for the random respondent effects model (2) embracing main effects only. 
It is therefore also most likely that there are still other conjoint designs equivalent to the 
V-optimal ones. The V-optimal arrangements of all candidate profiles are displayed in 
Tables 7 and 8 for the homogeneous and heterogeneous level setting, respectively. In Wu 
and Hamada (2000), page 253, the 81 run V-optimal 34 block design containing 27 blocks 
of size three is also listed. 
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Table 7: V-optimal arrangement of the 81 candidate profiles in the homogeneous level 
setting. 

Attributes Attributes Attributes 
Block 1 2 3 4 Block 1 2 3 4 Block 1 2 3 4 

1 1 1 1 1 10 1 1 2 1 19 1 1 3 1 
1 3 2 2 2 10 3 2 3 2 19 3 2 1 2 
1 2 3 3 3 10 2 3 1 3 19 2 3 2 3 
2 2 1 1 1 11 2 1 2 1 20 2 1 3 1 
2 1 2 2 2 11 1 2 3 2 20 1 2 1 2 
2 3 3 3 3 11 3 3 1 3 20 3 3 2 3 
3 3 1 1 1 12 3 1 2 1 21 3 1 3 1 
3 2 2 2 2 12 2 2 3 2 21 2 2 1 2 
3 1 3 3 3 12 1 3 1 3 21 1 3 2 3 
4 1 2 1 1 13 1 2 2 1 22 1 2 3 1 
4 3 3 2 2 13 3 3 3 2 22 3 3 1 2 
4 2 1 3 3 13 2 1 1 3 22 2 1 2 3 
5 2 2 1 1 14 2 2 2 1 23 2 2 3 1 
5 1 3 2 2 14 1 3 3 2 23 3 1 2 3 
5 3 1 3 3 14 3 1 1 3 23 1 3 1 2 
6 3 2 1 1 15 3 2 2 1 24 3 2 3 1 
6 2 3 2 2 15 2 3 3 2 24 2 3 1 2 
6 1 1 3 3 15 1 1 1 3 24 1 1 2 3 
7 1 3 1 1 16 1 3 2 1 25 1 3 3 1 
7 3 1 2 2 16 3 1 3 2 25 3 1 1 2 
7 2 2 3 3 16 2 2 1 3 25 2 2 2 3 
8 2 3 1 1 17 2 3 2 1 26 2 3 3 1 
8 1 1 2 2 17 1 1 3 2 26 1 1 1 2 
8 3 2 3 3 17 3 2 1 3 26 3 2 2 3 
9 3 3 1 1 18 3 3 2 1 27 3 3 3 1 
9 2 1 2 2 18 1 2 1 3 27 2 1 1 2 
9 1 2 3 3 18 2 1 3 2 27 1 2 2 3 
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Table 8: V-optimal arrangement of the 72 candidate profiles in the heterogeneous level 
setting. 

Attributes Attributes Attributes 
Block 1 2 3 4 Block 1 2 3 4 Block 1 2 3 4 

1 1 1 1 3 9 1 3 1 3 17 1 1 3 1 
1 2 2 3 2 9 2 1 2 1 17 1 3 4 2 
1 2 3 2 1 9 2 2 4 2 17 2 2 1 3 
2 1 1 2 3 10 1 3 2 3 18 1 1 4 1 
2 2 2 4 1 10 2 1 1 2 18 1 3 3 2 
2 2 3 1 2 10 2 2 3 1 18 2 2 2 3 
3 1 1 3 3 11 1 3 3 3 19 1 1 1 2 
3 2 2 1 1 11 2 1 4 1 19 1 3 2 1 
3 2 3 4 2 11 2 2 2 2 19 2 2 3 3 
4 1 1 4 3 12 1 3 4 3 20 1 1 2 1 
4 2 2 2 1 12 2 1 3 1 20 1 3 1 2 
4 2 3 3 2 12 2 2 1 2 20 2 2 4 3 
5 1 2 1 3 13 1 2 4 1 21 1 1 2 2 
5 2 1 4 2 13 1 3 2 2 21 1 2 3 1 
5 2 3 3 1 13 2 1 1 3 21 2 3 1 3 
6 1 2 2 3 14 1 2 3 2 22 1 1 1 1 
6 2 1 3 2 14 1 3 1 1 22 1 2 4 2 
6 2 3 4 1 14 2 1 2 3 22 2 3 2 3 
7 1 2 3 3 15 1 2 2 2 23 1 1 4 2 
7 2 1 2 2 15 1 3 4 1 23 1 2 1 1 
7 2 3 1 1 15 2 1 3 3 23 2 3 3 3 
8 1 2 4 3 16 1 2 1 2 24 1 1 3 2 
8 2 1 1 1 16 1 3 3 1 24 1 2 2 1 
8 2 3 2 2 16 2 1 4 3 24 2 3 4 3 
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6 Summary and conclusion 

In this paper, we constructed V-optimal designs for rating-based conjoint experiments 
by means of the linear random respondent effects model. In this model, a respondent 
effect is included to represent the fact that profile ratings from the same respondent are 
correlated. The resulting V-optimal conjoint designs are statistically more efficient than 
V-optimal completely randomized designs, which are based on the linear model without 
a respondent effect. Focussing on the V-optimal conjoint designs, we could observe how 
many respondents are optimally needed for a specific conjoint setting and which and how 
many profiles are administered to each of them. Generally, it turns out that it is statisti­
cally most efficient to administer three profiles per respondent provided the sample size n 
is not too small (n > 10). If the sample size is not a multiple of three, four profiles can be 
assigned to one or two respondents. Consequently, if there are respondent costs, instead 
of determining the number of observations to carry out, it is more sensible to determine 
the number of respondents to appoint and to assign to each of them three profiles. Fur­
thermore, to select the optimal profiles for quite large conjoint experiments (n > 40), it is 
advisable to replicate a smaller V-optimal design (n > 10) to save on computation time. 
Finally, trying to save more on computation time by constructing V-optimal completely 
randomized designs and arbitrary distributing three profiles per respondent, or sometimes 
four profiles in case the sample size is not a multiple of three, is on average statistically 
very inefficient. 

References 

Atkinson, A. C. and Donev, A. N. (1992). Optimum Experimental Designs, Oxford U.K.: 
Clarendon Press. 

Brazier, J., Roberts, J. and Deverill M. (2002). The estimation of a preference-based 
measure of health from the SF-36, Journal of Health Economics 21: 271-292. 

Cochran, W. G. and Cox, G. M. (1957). Experimental designs, New York: Wiley. 

Entholzner, M., Benda N., Schmelter T. and Schwabe, R. (2004). A note on designs 
for estimating population parameters, working paper, Otto von Guericke University, 
Institute for Mathematical Stochastics, Magdeburg, Germany. 

Gilmour, S. G. and Trinca, L. A. (2000). Some practical advice on polynomial regression 
analysis from blocked response surface designs, Communications in Statistics: Theory 
and Methods 29: 2157-2180. 

Goos, P. (2002). The Optimal Design of Blocked and Split-plot Experiments, New York: 
Springer. 

27 



Goos, P. and Vandebroek, M. (2001a). D-optimal response surface designs in the pres­
ence of random block effects, Computational Statistics and Data Analysis 37: 433-453. 

Goos, P. and Vandebroek, M. (2001b). Optimal split-plot designs, Journal of Quality 
Technology 33: 436-450. 

Goos, P. and Vandebroek, M. (2004). Outperforming completely randomized designs, 
Journal of Quality Technology 36: 12-26. 

Green, P. E., Krieger, A. M. and Wind, Y. (2001). Thirty years of conjoint analysis: 
reflections and prospects, Interfaces 31: 56-73. 

Gustafsson, A., Herrmann A. and Huber, F. (2003). Conjoint analysis as an instrument 
of market research practice, in Conjoint Measurement: Methods and Applications, 3rd 
edition, edited by Gustafsson, A., Herrmann, A. and Huber, F., Berlin: Springer, pp. 
5-46. 

Huber, F., Herrmann A. and Gustafsson, A. (2003). On the influence of the evaluation 
methods in conjoint design - Some empirical results, in Conjoint Measurement: Meth­
ods and Applications, 3rd edition, edited by Gustafsson, A., Herrmann, A. and Huber, 
F., Berlin: Springer, pp. 209-234. 

Lenk, P. J., DeSarbo, W. S., Green, P. E. and Young, M. R (1996). Hierarchical Bayes 
conjoint analysis: recovery of partworth heterogeneity from reduced experimental de­
signs, Marketing Science 15: 173-191. 

Liski, E. P., MandaI, N. K., Shah, K. R and Sinha, B. K. (2002). Topics in optimal 
design, Lecture Notes in Statistics 163, New York: Springer. 

Malhotra, N. K. (1986). An approach to the measurement of consumer preferences using 
limited information, Journal of Marketing Research 23: 33-49. 

Wittink, D. Rand Cattin, P. (1989). Commercial use of conjoint analysis: an update, 
Journal of Marketing 53: 91-96. 

Wittink, D. R, Vriens, M. and Burhenne, W. (1994). Commercial use of conjoint anal­
ysis in Europe: results and critical reflections, International Journal of Research in 
Marketing 11: 41-52. 

Wu, C. F. J. and Hamada, M. (2000). Experiments: Planning, Analysis, and Parameter 
Design Optimization, New York: Wiley. 

28 


