19 research outputs found

    Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

    Get PDF
    We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of nn vertices and hh holes. We introduce a \emph{graph of oriented distances} to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in min{O(nω),O(n2+nhlogh+χ2)}\min \{\,O(n^\omega), O(n^2 + nh \log h + \chi^2)\,\} time, where ω<2.373\omega<2.373 denotes the matrix multiplication exponent and χΩ(n)O(n2)\chi\in \Omega(n)\cap O(n^2) is the number of edges of the graph of oriented distances. We also provide a faster algorithm for computing the diameter that runs in O(n2logn)O(n^2 \log n) time

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

    Get PDF
    We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in O(min(n^omega, n^2 + nh log h + chi^2)) time, where omega<2.373 denotes the matrix multiplication exponent and chi in Omega(n) cap O(n^2) is the number of edges of the graph of oriented distances. We also provide an alternative algorithm for computing the diameter that runs in O(n^2 log n) time

    Constrained Geodesic Centers of a Simple Polygon

    Get PDF
    For any two points in a simple polygon P, the geodesic distance between them is the length of the shortest path contained in P that connects them. A geodesic center of a set S of sites (points) with respect to P is a point in P that minimizes the geodesic distance to its farthest site. In many realistic facility location problems, however, the facilities are constrained to lie in feasible regions. In this paper, we show how to compute the geodesic centers constrained to a set of line segments or simple polygonal regions contained in P. Our results provide substantial improvements over previous algorithms

    Convex Hulls in Polygonal Domains

    Get PDF
    We study generalizations of convex hulls to polygonal domains with holes. Convexity in Euclidean space is based on the notion of shortest paths, which are straight-line segments. In a polygonal domain, shortest paths are polygonal paths called geodesics. One possible generalization of convex hulls is based on the "rubber band" conception of the convex hull boundary as a shortest curve that encloses a given set of sites. However, it is NP-hard to compute such a curve in a general polygonal domain. Hence, we focus on a different, more direct generalization of convexity, where a set X is geodesically convex if it contains all geodesics between every pair of points x,y in X. The corresponding geodesic convex hull presents a few surprises, and turns out to behave quite differently compared to the classic Euclidean setting or to the geodesic hull inside a simple polygon. We describe a class of geometric objects that suffice to represent geodesic convex hulls of sets of sites, and characterize which such domains are geodesically convex. Using such a representation we present an algorithm to construct the geodesic convex hull of a set of O(n) sites in a polygonal domain with a total of n vertices and h holes in O(n^3h^{3+epsilon}) time, for any constant epsilon > 0

    The Visibility Center of a Simple Polygon

    Get PDF
    We introduce the visibility center of a set of points inside a polygon - a point c_V such that the maximum geodesic distance from c_V to see any point in the set is minimized. For a simple polygon of n vertices and a set of m points inside it, we give an O((n+m) log (n+m)) time algorithm to find the visibility center. We find the visibility center of all points in a simple polygon in O(n log n) time. Our algorithm reduces the visibility center problem to the problem of finding the geodesic center of a set of half-polygons inside a polygon, which is of independent interest. We give an O((n+k) log (n+k)) time algorithm for this problem, where k is the number of half-polygons

    The Geodesic Edge Center of a Simple Polygon

    Get PDF
    The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path distance inside the polygon. We give a linear-time algorithm to find a geodesic edge center of a simple polygon. This improves on the previous O(n log n) time algorithm by Lubiw and Naredla [European Symposium on Algorithms, 2021]. The algorithm builds on an algorithm to find the geodesic vertex center of a simple polygon due to Pollack, Sharir, and Rote [Discrete & Computational Geometry, 1989] and an improvement to linear time by Ahn, Barba, Bose, De Carufel, Korman, and Oh [Discrete & Computational Geometry, 2016]. The geodesic edge center can easily be found from the geodesic farthest-edge Voronoi diagram of the polygon. Finding that Voronoi diagram in linear time is an open question, although the geodesic nearest edge Voronoi diagram (the medial axis) can be found in linear time. As a first step of our geodesic edge center algorithm, we give a linear-time algorithm to find the geodesic farthest-edge Voronoi diagram restricted to the polygon boundary

    Optimal Algorithm for Geodesic Farthest-Point Voronoi Diagrams

    Get PDF
    Let P be a simple polygon with n vertices. For any two points in P, the geodesic distance between them is the length of the shortest path that connects them among all paths contained in P. Given a set S of m sites being a subset of the vertices of P, we present the first randomized algorithm to compute the geodesic farthest-point Voronoi diagram of S in P running in expected O(n + m) time. That is, a partition of P into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic distance. This algorithm can be extended to run in expected O(n + m log m) time when S is an arbitrary set of m sites contained in P
    corecore