

Rectilinear link diameter and radius in a rectilinear polygonal
domain
Citation for published version (APA):
Arseneva, E., Chiu, M. K., Korman, M., Markovic, A., Okamoto, Y., Ooms, A., van Renssen, A., & Roeloffzen, M.
(2021). Rectilinear link diameter and radius in a rectilinear polygonal domain. Computational Geometry, 92,
Article 101685. https://doi.org/10.1016/j.comgeo.2020.101685

Document license:
TAVERNE

DOI:
10.1016/j.comgeo.2020.101685

Document status and date:
Published: 01/01/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1016/j.comgeo.2020.101685
https://doi.org/10.1016/j.comgeo.2020.101685
https://research.tue.nl/en/publications/9c78ef42-e32e-4317-9d6d-d5b0e48f1c88

Comput. Geom. 92 (2021) 101685
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Rectilinear link diameter and radius in a rectilinear polygonal
domain ✩

Elena Arseneva a, Man-Kwun Chiu b, Matias Korman c, Aleksandar Markovic d,
Yoshio Okamoto e,f, Aurélien Ooms g, André van Renssen h,∗, Marcel Roeloffzen d

a St. Petersburg State University, St. Petersburg, Russia
b Institut für Informatik, Freie Universität Berlin, Berlin, Germany
c Tufts University, Boston, USA
d TU Eindhoven, Eindhoven, the Netherlands
e University of Electro-Communications, Tokyo, Japan
f RIKEN Center for Advanced Intelligent Project, Tokyo, Japan
g Université libre de Bruxelles (ULB), Brussels, Belgium
h University of Sydney, Sydney, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 April 2019
Received in revised form 2 October 2019
Accepted 27 June 2020
Available online 11 July 2020

Keywords:
Rectilinear link distance
Polygonal domain
Diameter
Radius

We study the computation of the diameter and radius under the rectilinear link distance
within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of
oriented distances to encode the distance between pairs of points of the domain. This helps
us transform the problem so that we can search through the candidates more efficiently.
Our algorithm computes both the diameter and the radius in O (min(nω, n2 +nh log h +χ2))

time, where ω < 2.373 denotes the matrix multiplication exponent and χ ∈ �(n) ∩ O (n2)

is the number of edges of the graph of oriented distances. We also provide an alternative
algorithm for computing the diameter that runs in O (n2 logn) time.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Diameters and radii are popular characteristics of metric spaces. For a compact set S with a metric d : S × S → R+ , its
diameter is defined as diam(S) := maxp∈S maxq∈S d(p, q), and its radius is defined as rad(S) := minp∈S maxq∈S d(p, q). The
pair (p, q) and the point p that realize these distances are called the diametral pair and center, respectively. These terms are

✩ An extended abstract appeared at the 29th International Symposium on Algorithms and Computation (ISAAC 2018) [3]. EA was supported by the SNF
Early Postdoc Mobility grant P2TIP2-168563, Switzerland, F.R.S.-FNRS, Belgium, and by the Foundation for the Advancement of Theoretical Physics and
Mathematics “BASIS” Grant Leader 19-7-1-31-2, Russia. MC, AvR and MR were supported by JST ERATO Grant Number JPMJER1201, Japan. MC was also
supported in part by ERC StG 757609. MK was supported in part by KAKENHI No. 17K12635, Japan and NSF award CCF-1422311. AM was supported by
the Netherlands Organisation for Scientific Research (NWO) under project no. 024.002.003. YO was partially supported by JSPS KAKENHI Grant Number
15K00009 and JST CREST Grant Number JPMJCR1402, and Kayamori Foundation of Informational Science Advancement Grant Number K28-XXI-48. AO was
supported by the Fund for Research Training in Industry and Agriculture (FRIA) Grant Numbers 5112416F and 5203818F.

* Corresponding author.
E-mail addresses: e.arseneva@spbu.ru (E. Arseneva), chiumk@zedat.fu-berlin.de (M.-K. Chiu), matias.korman@tufts.edu (M. Korman), a.markovic@tue.nl,

m.j.m.roeloffzen@tue.nl (A. Markovic), okamotoy@uec.ac.jp (Y. Okamoto), aureooms@ulb.ac.be (A. Ooms), andre.vanrenssen@sydney.edu.au (A. van Renssen).
https://doi.org/10.1016/j.comgeo.2020.101685
0925-7721/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2020.101685
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2020.101685&domain=pdf
mailto:e.arseneva@spbu.ru
mailto:chiumk@zedat.fu-berlin.de
mailto:matias.korman@tufts.edu
mailto:a.markovic@tue.nl
mailto:m.j.m.roeloffzen@tue.nl
mailto:okamotoy@uec.ac.jp
mailto:aureooms@ulb.ac.be
mailto:andre.vanrenssen@sydney.edu.au
https://doi.org/10.1016/j.comgeo.2020.101685

2 E. Arseneva et al. / Comput. Geom. 92 (2021) 101685
the natural extension of the same concepts in a disk and give some interesting properties of the environment, such as the
worst-case response time or ideal location of a serving facility.

Much research has been devoted towards finding efficient algorithms to compute the diameter and radius for various
types of sets and metrics. In computational geometry, one of the most well-studied and natural metric spaces is a polygon
in the plane. This paper focuses on the computation of the diameter and the radius of a rectilinear polygon, possibly with
holes (i.e., a rectilinear polygonal domain) under the rectilinear link distance. Intuitively, this metric measures the minimum
number of links (segments) required in any rectilinear path connecting two points in the domain, where rectilinear indicates
that we are restricted to horizontal and vertical segments only.

1.1. Previous work

The ordinary link distance is a very natural metric and simple to describe. Initially, the interest was motivated by the
potential robotics applications (i.e., having some kind of robot with wheels for which moving in a straight line is easy, but
making turns is costly in time or energy). Since then, it has attracted a lot of attention from a theoretical point of view.

Indeed, many problems that are easy under the L1 or Euclidean metric turn out to be more challenging under the link
distance. For example, the shortest path between two points in a polygonal domain of combinatorial complexity n can
be found in O (n log n) time for both Euclidean [11] and L1 metrics [14,15]. However, even approximating the shortest path
within a factor of (2 −ε) under the link distance is 3-SUM hard [16], and thus it is unlikely that a significantly subquadratic-
time algorithm is possible. Recently the bit complexity of this problem was studied [12] and it was shown that sometimes
�(n log n) bits is required to represent coordinates of some vertices of the optimal path.

The problem of computing the diameter and radius is no exception to this rule: when polygons are simple (i.e., they
do not have holes) and have n vertices, the diameter and center can be found in linear time for both Euclidean [2,10]
and L1 metrics [6]. However, the best known algorithm for the link distance runs in O (n log n) time [8,21]. Lowering the
running times or proving the impossibility of this is a longstanding open problem in the field. The only partial answer to
this question was given by Nilsson and Schuierer [18,19]; they showed that the diameter and center can be found in linear
time under the rectilinear link distance (i.e., when we are only allowed to use rectilinear paths).

We focus on polygons with holes. The addition of holes to the domain introduces significant difficulties to the problem.
For example, the diameter and radius under the rectilinear link distance can be uniquely realized by points in the interior
of a polygonal domain (see Fig. 1). Hence, it does not suffice to determine the distance only between every pair of vertices
of the domain. Other strange situations can happen, such as the diameter and radius being arbitrarily close (see e.g. Fig. 2).

Fig. 1. An example showing no diametral pair lies on the boundary of the polygonal domain. The points in the dashed blue regions will have distance 6
from each other (out of the 4 shortest paths connecting them two are shown) whereas other pairs will have distance 5 or less.

These difficulties have a clear impact in the runtime of the algorithms. In most metrics, the runtime changes from linear
or slightly superlinear to large polynomial terms. The difference between the link distance and other metrics becomes even
more significant: no algorithm for computing the diameter and radius under the link distance is known, not even one
that runs in exponential time (or one that works for particular cases such as rectilinear polygons). A summary of the best
running time for computing the diameter and center under different metrics can be found in Table 1.

In this paper we provide the first step towards understanding such a difficult metric. Similarly to the simple polygon
case [18,19], we start by considering the computation of both the diameter and radius under the rectilinear link distance.
We hope that the ideas of this paper will motivate future research in solving the more difficult problem of computing the
diameter and radius under the (ordinary) link distance.

E. Arseneva et al. / Comput. Geom. 92 (2021) 101685 3
Fig. 2. Example with diameter 8 (crossed points) and radius 7 (dotted point). By increasing the number of bends in the holes the diameter and radius
become arbitrarily close. Note that any point in the domain is either a center or belongs to a diametral pair.

Table 1
Summary of the best known results for computing the diameter and radius of a polygonal domain of n
vertices and h holes under different metrics. In the table, ω < 2.373 is the matrix multiplication exponent.

Metric Simple polygon Polygonal domain

Diameter Radius Diameter Radius

Euclidean O (n) [10] O (n) [2] O (n7.73) [5] O (n11 logn) [23]
L1 O (n) [6] O (n) [6] O (n2 + h4) [4] Õ (n4 + n2h4) [4]
Ordinary link O (n logn) [21] O (n logn) [8] open open
Rectilinear link O (n) [18] O (n) [19] O (n2 log n) (Theorem 3) O (nω) (Theorem 4)

1.2. Results

Several of the difficulties of the link distance disappear when restricting the problem to a rectilinear setting. For example,
one can easily partition the domain into O (n2) rectangular cells such that all points in a cell have the same distance to all
points in another cell (for some domains the number of such cells is �(n2)). With this partition, brute-force algorithms that
find the diameter and radius in O (n3 log n) time immediately follow. Alternatively, you can use a slightly coarser method to
approximate either value: in O (n2 + nh log h) or O (n2 log log n) time we can compute an estimate of the diameter (details
of these methods are given in Section 2). This estimate will either be the exact diameter or will be the diameter plus one
(i.e., the path computed may contain an additional link that is not needed).

In our work we improve this second approach. By using some geometric observations, we characterize exactly when the
estimate is off by one unit. Thus, we can transform the approximation algorithm into an exact one by adding a verification
step that checks whether or not the one additive error has actually happened.

We provide three different algorithms for making the above additional verification step. In Section 3 we characterize what
we should look for to determine what the exact diameter is. This characterization then leads to a brute-force algorithm that
runs in O (n2 + nh log h +χ2) time, where χ is a parameter of the input that ranges from �(n) to �(n2). To reduce running
times when χ is large we present another algorithm to compute the diameter in Section 4. This algorithm, which runs
in O (n2 log n) time, exploits properties of the diameter. Specifically, we heavily use that this value is a maximum over a
maximum of distances, hence it can only be used for the diameter (recall that we have a minimum-maximum alternation
in the definition of the radius). For the radius we then present a third algorithm that uses matrix multiplication to speed
up computation. This solution runs in time O (nω), where ω < 2.373 is the matrix multiplication exponent (Le Gall [13]
provided the best known bound on ω). This last solution can also be adapted to compute the diameter, but our second
algorithm results in a faster method.

Another interesting benefit of our approach is that we may be able to obtain a certificate. In previous algorithms for
computing the diameter or center in polygonal domains, the diameter is found via exhaustive search. Thus, even if somehow
the points that realize the diameter or center are given, the only way to verify that the answer is correct is to run the whole
algorithm. In our algorithm, knowing the diameter can reduce the time needed for verification. Although the reduction in
computation time is not large (from O (n2 logn) for computing to O (n2 log log n) for verifying the diameter, for example), we
find it to be of theoretical interest.

Further note that, when comparing with the algorithms for other metrics, the running time for simple and polygonal
domains differs by at least a cubic factor. In our case, running times only increase by a slightly superlinear factor when
compared to the case of simple polygons [18,19]. This is partially due to the fact that rectilinear link distance is much easier
than the ordinary link distance, but also because we use this new verification approach. We believe this to be our main
contribution and hope that it motivates a similar approach in other metrics.

4 E. Arseneva et al. / Comput. Geom. 92 (2021) 101685
1.3. Preliminaries

A rectilinear simple polygon (also called an orthogonal polygon) is a simple polygon that has horizontal and vertical edges
only. A rectilinear polygonal domain P with h pairwise disjoint holes and n vertices is a connected and compact subset of R2

with h pairwise disjoint holes, in which the boundary of each hole is a simple closed rectilinear curve. Thus, the boundary
∂ P of P consists of n line segments.

Each of the holes as well as the outer boundary of P is regarded as an obstacle that paths in P are not allowed to
cross. A rectilinear path π from p ∈ P to q ∈ P is a path from p to q that consists of vertical and horizontal segments, each
contained in P , and such that along π each vertical segment is followed by a horizontal one and vice versa. Recall that P
is a closed set, so π can traverse the boundary of P (along the outer face and any of the h obstacles).

We define the link length of such a path to be the number of segments composing it. The rectilinear link distance between
points p, q ∈ P is defined as the minimum link length of a rectilinear path from p to q in P , and denoted by 	P (p, q).
It is well known that in rectilinear polygonal domains there always exists a rectilinear polygonal path between any two
points p, q ∈ P , and thus the distance is well defined. Once the distance is defined, the definitions of rectilinear link diameter
diam(P) and rectilinear link radius rad(P) directly follow.

For simplicity in the description, we assume that a pair of vertices do not share the same x- or y-coordinate unless they
are connected by an edge. This general position assumption can be removed with classic symbolic perturbation techniques.
Also notice that, since we are considering rectilinear polygons, no edge has length 0. However, for simplicity in the analysis
we will allow edges in a rectilinear path to have length 0. These edges of length 0 are considered as edges and thus poten-
tially contribute to the link distance (naturally, no shortest path will ever have such an edge). The reason for considering
these is that we will consider oriented paths, where the first and last edge are forced to be horizontal or vertical, this
enforcement may require edges of length 0. From now on, for ease of reading, we will refer to rectilinear simple polygons
and rectilinear polygonal domains as “simple polygons” and “domains.” Similarly, we will use the term “distance” to refer
to the rectilinear link distance.

2. Graph of oriented distances

In this section we introduce the graph of oriented distances and show how it can be used to encode the rectilinear link
distance between points of the domain. We note that, although we have not been able to find a reference to this graph in
the literature, some properties are already known. For example, the horizontal and vertical decompositions (defined below)
were used by Mitchell et al. [17] to compute minimum-link rectilinear paths.

For any domain P , we extend any horizontal segment of the domain to the left and right until it hits another segment
of P , partitioning it into rectangles. We call this partition the horizontal decomposition (see Fig. 3, left). Let H(P) be the set
containing those rectangles. Similarly, if we extend all the vertical segments up and down, we get the vertical decomposition
(see Fig. 3, right). Let V(P) be the set of rectangles in this second decomposition. Observe that both decompositions have
linear size and can be computed in O (n log n) time with a plane sweep.

Fig. 3. The horizontal and vertical decompositions of the domain. Note that, because of our general position assumption, both subdivisions have the same
number of rectangles.

The overlay of both subdivisions creates a finer subdivision that has the well-known property that pairwise cell distance
is constant (that is, the distance between any pair of points in two fixed cells of this subdivision will remain constant).
Thus, by computing the distance between all pairs of cells we can find both the diameter and center. The major problem

E. Arseneva et al. / Comput. Geom. 92 (2021) 101685 5
of this approach is that the finer subdivision may have �(n2) cells, and thus it is hard to obtain an algorithm that runs in
subcubic time. Instead, we avoid the overlay and use both subdivisions separately to obtain the diameter.

Given two rectangles i, j ∈ H(P) ∪ V(P), we use i � j to denote the boolean operation which returns true if and only if
the rectangles i and j properly intersect (i.e. their intersection has non-zero area). This implies that one of i, j belongs to
H(P), and the other to V(P).

Definition 1 (Graph of oriented distances). Given a rectilinear polygonal domain P , let G(P) be the unweighted undirected
graph defined as G(P) = (H(P) ∪ V(P), { (h, v) ∈H(P) × V(P) : h � v }).

In other words, vertices of G(P) correspond to rectangles of the horizontal and the vertical decompositions of P . We add
an edge between two vertices if and only if the corresponding rectangles properly intersect. Note that this graph is bipartite,
and has O (n) vertices. From now on, we make a slight abuse of notation and identify a rectangle with its corresponding
vertex (thus, we talk about the neighbors of a rectangle i ∈ H(P) in G(P), for example).

The name Graph of Oriented Distances is explained as follows (see also the paragraph after Lemma 2). Consider a rectilinear
path π between two points in P . Each horizontal edge of π is contained in a rectangle of H(P) and each vertical edge is
contained in a rectangle of V(P). A bend in the path takes place in the intersection of the rectangles containing the two
adjacent edges and corresponds to an edge of G(P). So every rectilinear path π has a corresponding walk π ′ in G(P) (and
vice versa). Moreover, each bend of π is associated with an edge of π ′ .

Definition 2 (Oriented distance). Given a rectilinear polygonal domain P , let i and j be two vertices of G(P), let
(i, j) to be
the length of the shortest path between i and j in graph G(P) plus one. We also define
(i, i) = 1.

The reason why we add the extra unit is to make sure that the link distance and the oriented distance match (see
Lemma 2 below). We first list some useful properties of the oriented distance, which directly follow from the definition.
Then we show the relationship between the oriented distance
(·, ·) in G(P) and the link distance 	P (·, ·) in P .

Lemma 1. Let i, j, i′, j′ be any (not necessarily distinct) rectangles in H(P) ∪V(P) such that i � i′ , and j � j′ . Then, the following hold.

(a)
(i, j) =
(j, i).
(b)
(i′, j) ∈ {
(i, j) − 1,
(i, j) + 1 }.
(c)
(i′, j′) ∈ {
(i, j) − 2,
(i, j),
(i, j) + 2 }.

Proof. The first statement follows from the fact that any path can be followed in reverse order. Thus, a path from i to j
immediately transforms into a path of the same length from j to i. The second statement follows from the fact that i � i′ ,
hence i and i′ are adjacent in G(P). By following that edge we have that the distance from any j to i and i′ can differ by at
most one unit. The two values cannot be equal by the fact that i ∈ H(P) ⇔ i′ ∈ V(P) and since they are adjacent they are
in different sets of the bipartite graph, and hence, their distance to any other node cannot be the same. The third statement
follows from the second statement applied to the two pairs (i, i′) and (j, j′). �
Lemma 2. Let p and q be two points of the rectilinear polygonal domain P . The rectilinear link distance 	P (p, q) between p and q can
be characterized as follows. If p and q lie in the same vertical or horizontal rectangle of V(P) or H(P) then 	P (p, q) = 1 (if p and q
share a coordinate) or 	P (p, q) = 2 (if both x- and y-coordinates of p and q are distinct). Otherwise, let i ∈H(P), i′ ∈ V(P), j ∈H(P)

and j′ ∈ V(P) be vertices of the graph of oriented distances such that p ∈ i ∩ i′ and q ∈ j ∩ j′ . Then

	P (p,q) = min{
(i, j),
(i, j′),
(i′, j),
(i′, j′) }.

Proof. The case in which p and q lie in the same rectangle R is easy: in either case we can connect them with either a
single segment or a path with exactly one bend and stay within R . Since we are within R the path is feasible and has the
minimum number of links possible.

Now suppose that there is no rectangle that contains both p and q. Let π be a shortest rectilinear path from p to q
in P . It cannot lie entirely in one rectangle. Assume that the first and the last link of π are horizontal. Then the length of π
is equal to
(i, j). Moreover, if one of
(i, j′),
(i′, j),
(i′, j′) was strictly smaller than
(i, j), then it would correspond
to a path π ′ shorter than π . Analogous arguments for other orientations of the initial and final links of π complete the
proof. �

Intuitively speaking, if we are given two disjoint rectangles i, j ∈ H(P), then
(i, j) denotes the minimum number of
links needed to connect any two points p ∈ i and q ∈ j under the constraint that the first and the last segments of the path
are horizontal. If we looked for rectangles in V(P), we would instead require that the path starts (or ends) with vertical
segments. It follows that the link distance is the minimum of the four possible options.

6 E. Arseneva et al. / Comput. Geom. 92 (2021) 101685
In our algorithms we will often look for oriented distances between rectangles, so we compute it and store them in a
preprocessing phase. Fortunately, a similar decomposition was used by Mitchell et al. [17]. Specifically, they show how to
compute the distance from a single rectangle to all other rectangles in O (n +h log h) time with an O (n)-size data structure.1

Lemma 3. [17] Given the horizontal and vertical decompositions H(P) and V(P) we can compute for a single rectangle i in either
decomposition the oriented distance
(i, j) to every other rectangle j in O (n + h log h) time.

We construct this data structure for each of the O (n) rectangles. This allows us to compute (and store) the O (n2)

oriented distances in O (n2 + nh log h) time. Alternatively, we can use a recent result by Chan and Skrepetos [7] to compute
the same distances in O (n2 log log n) time.

3. Characterization via boolean formulas

Let d̂ = maxi, j∈H(P)∪V(P)
(i, j) be the largest distance between vertices of G(P). Similarly, we define r̂ =
mini∈H(P)∪V(P) max j∈H(P)∪V(P)
(i, j). Note that these two values are the diameter and the radius of G(P) plus one
(recall that we add one unit to the graph distance when defining
). We use d̂ and r̂ to approximate the diameter
diam(P) and radius rad(P) of a domain P under the rectilinear link distance. First, we relate the distance between
two points p, q ∈ P to the oriented distances between the rectangles that contain p and q. Specifically, from Lemma 2,
we know that 	P (p, q) = min{
(i, j),
(i, j′),
(i′, j),
(i′, j′) }, where i, j ∈ H(P) are the horizontal rectangles con-
taining p and q, respectively, and i′, j′ ∈ V(P) are the vertical rectangles containing p and q. Similarly, we define
	̂(p, q) = max{
(i, j),
(i, j′),
(i′, j),
(i′, j′) }. It then follows from Lemma 1 that these two values differ by at most 2.

Lemma 4. For any two points p, q ∈ P , let i, j ∈ H(P) and i′, j′ ∈ V(P) be the rectangles containing p and q, i.e., p ∈ i ∩ i′ and
q ∈ j ∩ j′ . Then, it holds that 	̂(p, q) − 2 ≤ 	P (p, q) ≤ 	̂(p, q) − 1.

This relation allows us to express the rectilinear link diameter of a domain in terms of d̂.

Theorem 1. The rectilinear link diameter diam(P) of a rectilinear polygonal domain P satisfies diam(P) = d̂ − 1 if and only if there
exist i, i′, j, j′ ∈H(P) ∪ V(P) with i � i′ and j � j′ , such that
(i, j) = d̂ and
(i′, j′) = d̂. Otherwise, diam(P) = d̂ − 2.

Proof. Before giving our proof, we emphasize that the fact that diam(P) ∈ {d̂ − 1, ̂d − 2} is folklore (although we have found
no reference, several researchers mentioned that they were aware of it). Our major contribution is the characterization of
which of the two cases it is.

Now observe that for any pair of points p, q ∈ P we have 	P (p, q) ≤ 	̂(p, q) − 1 ≤ d̂ − 1 by Lemma 4. Hence, the diameter
of P is at most d̂ − 1. Similarly, by the definitions of d̂ and 	̂(·, ·), there must be a pair of points p, q ∈ P so that 	̂(p, q) = d̂.
Again by Lemma 4 it follows that diam(P) ≥ 	P (p, q) ≥ 	̂(p, q) − 2 = d̂ − 2.

Next we show that the diameter is d̂ − 1 if and only if the above condition holds. If
(i, j) = d̂ and
(i′, j′) = d̂, then
by Lemma 1 and the fact that neither
(i, j′) nor
(i′, j) can be larger than d̂, we know that
(i, j′) =
(i′, j) = d̂ − 1. It
follows from Lemma 2 that a pair of points p ∈ i ∩ i′ and q ∈ j ∩ j′ has 	P (p, q) = d̂ − 1. Thus, the diameter is d̂ − 1.

Now consider any pair p, q and the set of rectangles i, j ∈ H(P) and i′, j′ ∈ V(P) with p ∈ i ∩ i′ and q ∈ j ∩ j′ . Recall that
	P (p, q) = min{
(i, j),
(i, j′),
(j′, i),
(i′, j′)}. By Lemma 1,
(i, j) and
(i′, j′) must differ by exactly one from
(i′, j)
and
(i, j′). That implies that two distances may be d̂ − 1, but if the condition in the lemma is not satisfied, at most one
can be d̂ and the fourth must be d̂ − 2 or less. Therefore, if the condition is not satisfied for i, i′, j, j′ , then the diameter is
indeed d̂ − 2. �

For the radius we can make a similar argument.

Theorem 2. The rectilinear link radius rad(P) of a rectilinear polygonal domain P satisfies rad(P) = r̂ − 1 if and only if for all i, i′ ∈
H(P) ∪V(P) with i � i′ there exist j, j′ ∈H(P) ∪V(P) with j � j′ such that
(i, j) ≥ r̂ and
(i′, j′) ≥ r̂ . Otherwise, rad(P) = r̂ − 2.

Proof. We first show by contradiction that the real radius satisfies rad(P) ≤ r̂ − 1. Suppose the radius is greater than or
equal to r̂. Then, for all p ∈ P there exists a point q ∈ P such that 	P (p, q) ≥ r̂. Now consider a rectangle i ∈ H(P) ∪ V(P),
a point p ∈ i and a point q at distance r̂ from p. Consider the two rectangles j ∈ H(P) and j′ ∈ V(P) so that q ∈ j ∩ j′ . By

1 As a subproblem towards obtaining their main result, Mitchell et al. [17] show how to compute the distance from a single point to any other location
in the domain with paths of fixed orientation. They call these the h-h-map, v-v-map, v-h-map and h-v-map and they correspond to our rectangular
decompositions. Although their method considers a single starting point, it can be adapted to compute the distance from a rectangle as all points inside
each rectangle we consider will have the same resulting distances to the other rectangles.

E. Arseneva et al. / Comput. Geom. 92 (2021) 101685 7
Lemma 2 we know that
(i, j) ≥ 	P (p, q) ≥ r̂ and
(i, j′) ≥ 	P (p, q) ≥ r̂. By Lemma 1b
(i, j) and
(i, j′) differ by one,
and thus one of them must be at least r̂ + 1. That is, for any rectangle i we can find a second rectangle at oriented distance
r̂ + 1. This implies that r̂ = mini∈H(P)∪V(P) max j∈H(P)∪V(P)
(i, j) ≥ r̂ + 1, which is a contradiction. Therefore, our initial
assumption that rad(P) ≥ r̂ is false and we conclude that rad(P) ≤ r̂ − 1.

Next we show that rad(P) ≥ r̂ − 2. Consider any point p and a rectangle i ∈ H(P) that contains it. By definition of r̂
there is a rectangle j ∈ H(P) ∪ V(P) so that
(i, j) ≥ r̂. Let q be any point in j. From Lemma 4 we get that 	P (p, q) ≥
	̂(p, q) − 2 ≥
(i, j) − 2 ≥ r̂ − 2. Hence for any point p, there is a point q that is at distance at least r̂ − 2, which implies
rad(P) ≥ r̂ − 2.

Now we show that if the above condition is satisfied, then it must hold that rad(P) = r̂ − 1. Assume the condition holds
and consider any point p and two rectangles i, i′ ∈ H(P) ∪ V(P) so that i � i′ and p ∈ i ∩ i′ . There exist j, j′ ∈ H(P) ∪ V(P)

so that j � j′ ,
(i, j) ≥ r̂, and
(i′, j′) ≥ r̂. By Lemma 1 we know that
(i, j′) and
(i′, j) must be at least r̂ − 1. Therefore
	P (p, q) ≥ r̂ −1 for any point q ∈ j ∩ j′ . This shows that for any point p there is a point q whose link distance to p is at least
r̂ −1, giving a lower bound on the radius. Combining this with the upper bound shown above, we obtain that rad(P) = r̂ −1
as claimed.

If the condition is not true, then we know there exist rectangles i, i′ ∈ H(P) ∪ V(P) so that i � i′ , and for every j, j′ ∈
H(P) ∪ V(P) with j � j′ the above statement is not true. Now consider a point p ∈ i ∩ i′ . We argue that p has distance
at most r̂ − 2 to any other point q ∈ P . Consider any point q and let j, j′ ∈ H(P) ∪ V(P) be the rectangles containing q.
We perform a case analysis on the value of
(i, j). First consider the case
(i, j) ≥ r̂ + 1. In this case
(i′, j) ≥ r̂ and

(i, j′) ≥ r̂ which contradicts our assumption that the above statement is not true for every (j, j′). If
(i, j) = r̂, then by
Lemma 1 and the assumption that not both
(i, j) ≥ r̂ and
(i′, j′) ≥ r̂ we find that
(i′, j′) = r̂ − 2 which implies that
	P (p, q) ≤ r̂ −2. If
(i, j) = r̂ −1, then by Lemma 1, both
(i, j′) and
(i′, j) differ from
(i, j) by 1, but by our assumption
that not both
(i, j′) ≥ r̂ and
(i′, j) ≥ r̂, one of them must be r̂ − 2. Lastly, if
(i, j) ≤ r̂ − 2, we can already conclude that
	P (p, q) ≤ r̂ − 2. This shows that from p any other point q is at most distance r̂ − 2 away, hence the radius is at most r̂ − 2.
Combining this with the lower bound of r̂ − 2 (shown above), we conclude that the radius must be r̂ − 2. �

With the above characterization, we can naively compute the diameter and the radius by checking all O (n4) quadruples
(i, i′, j, j′) ∈H(P) × V(P) ×H(P) × V(P). However, the approach can be improved by using G(P).

Corollary 1. The rectilinear link diameter diam(P) and radius rad(P) of a rectilinear polygonal domain P consisting of n vertices and h
holes can be computed in O (n2 +nh log h +χ2) time, where χ is the number of edges of G(P) (i.e., the number of pairs of intersecting
rectangles of H(P) and V(P)).

Proof. First, we use Lemma 3 to compute the oriented distance
(·, ·) between each pair of oriented rectangles from the
horizontal and the vertical decompositions in O (n2 + nh log h) time.

Recall that G(P) adds an edge between two rectangles i, i′ if and only if i � i′ . Thus, rather than looking at all quadruples
(i, i′, j, j′) ∈H(P) ×V(P) ×H(P) ×V(P), we can look at pairs of edges of G(P). For each of the O (χ2) pairs we can test the
conditions from Theorems 1 and 2 in a brute-force manner in constant time which gives us the claimed running time. �

As we discuss later, this method is only useful when χ is very small, i.e. almost linear size or smaller.

Remark on the interior realization of the diameter/radius Theorems 1 and 2 together with Lemma 1b imply that a necessary
condition for the diameter to be uniquely realized by pairs of points in the interior of P is that diam(P) = d̂ − 1. Similarly,
for all centers to be determined by points in the interior we must have rad(P) = r̂ − 1. However, neither condition is
sufficient. This transformation of the problem into a search of quadruples of rectangles allows us to handle the interior cases
(when all centers or, respectively, all members of all diameter pairs are interior points) in the same way as the boundary
cases (when at least one of the centers or, respectively, at least one point of some diameter pair lies on the boundary of P).

4. Computing the diameter faster

We present a faster method for computing the diameter. This method uses the fact that the diameter is defined as a
maximum over maxima which allows us to reduce the running time to O (n2 log n). Recall that the radius is a minimum
over maxima, thus the algorithm of this section does not trivially extend to the computation of the radius. The rest of this
section is the proof of the following statement.

Theorem 3. The rectilinear link diameter diam(P) of a rectilinear polygonal domain P of n vertices can be computed in O (n2 log n)

time.

By Theorem 1, after we compute the oriented diameter d̂, we only need to consider d̂ − 1 or d̂ − 2 as candidates to be
diam(P). The following corollary of Theorem 1 can be obtained by applying Lemma 1c.

8 E. Arseneva et al. / Comput. Geom. 92 (2021) 101685
Corollary 2. The diameter diam(P) equals d̂ − 2 if and only if for all rectangles i and j with
(i, j) = d̂, and for all rectangles i′ and j′
with i � i′ and j � j′ , we have
(i′, j′) = d̂ − 2. Otherwise, diam(P) = d̂ − 1.

This condition can be checked in O (n4) time in a brute-force manner as follows. We iterate over every pair (i, j) with

(i, j) = d̂. For each such pair we find the sets cover(i) = {i′ : i � i′} and cover(j) = { j′ : j � j′}. Then for each pair (i′, j′) ∈
cover(i) × cover(j) we check if
(i′, j′) = d̂ − 2. If there is a pair for which this is not the case, then by the above corollary
the diameter is d̂ − 1. Since each of the covers may have linear size, the running time is �(n4).

The key observation that allows us to reduce this to O (n2 logn) time is that in the end there are only O (n2) unique pairs
to test. Indeed, what we are checking is the distance of every pair (i′, j′) in the set

T = {(i′, j′) : ∃i, j such that (i′ � i, j � j′,
(i, j) = d̂)}
which clearly has only quadratic size. Next we show that this set has more structure than just being an arbitrary set of
rectangles, which allows us to compute it more quickly.

First, instead of iterating over every pair (i, j) with
(i, j) = d̂ and computing all pairs in cover(i) × cover(j), we iterate
over i and compute all pairs in cover(i) × ⋃

j :
(i, j)=d̂ cover(j). For a rectangle i ∈ H(P) ∪ V(P), let Si denote the set of

rectangles at oriented distance d̂ from i. Now let

T =
⋃

i

Ti =
⋃

i

{(i′, j′) : ∃ j such that (i′ � i, j′ � j, j ∈ Si)}.

Note that the rectangles fulfilling the role of i′ are easily found (i.e., they must intersect i and must have different
orientation), but naively computing the ones that fulfill the role of j′ leads to a quadratic runtime. That is, if we were to
compute for each j ∈ Si its cover, then this may take �(n2) time. However, there are only O (n) rectangles that can fulfill
the role of j′ and we show how to find them in O (n log n) time.

For this purpose we use an orthogonal segment intersection reporting data structure, derived from a known dynamic
vertical ray shooting data structure [9]. The data structure we use stores horizontal line segments. It allows to add or remove
horizontal line segments in O (log n) time per segment. The structure reports the first segment hit by a vertical query ray
in O (log n) time. By repeatedly using the structure, we can find all z horizontal line segments intersected by a vertical line
segment in O ((z + 1) log n) time. While performing the query, we also remove all the reported segments from the data
structure in the same time complexity.

For a rectangle k, we define the middle segment 	k of k. If k is a horizontal rectangle, i.e., k ∈ H(P), then 	k is the line
segment connecting the midpoints of its left and right boundary; if k is a vertical rectangle, i.e., k ∈ V(P), then 	k is the
segment connecting the midpoints of its top and bottom boundary.

We fix a rectangle i, and assume without loss of generality that the rectangles in Si are vertical. Insert the middle
segments of all horizontal rectangles in H(P) into the intersection reporting data structure. Then, for each rectangle j ∈
Si , we query its corresponding middle segment. By the definition of middle segments, each reported horizontal segment
corresponds to a rectangle j′ intersecting j. Since we remove each segment as we find it, no rectangle is reported twice.
Repeating this for all j ∈ Si finds the set Ci = { j′ : j′ � j, j ∈ Si } of all horizontal rectangles that intersect at least one
rectangle in Si . Each query can be charged either to the horizontal segment that is deleted from the data structure or, in
case z = 0, to the rectangle j ∈ Si that we are querying. Hence, the total query time sums to O (n log n).

For each rectangle in the set Ci , we should check the distance to every rectangle i′ such that i′ � i. Doing this explicitly
takes O (n2) time. Thus, summing over all rectangles i, we get the total running time of O (n3).

To bring the running time down to O (n2 log n), we create a reverse map of the map i → Ci . For each rectangle k, we
build a collection Lk that contains i if and only if k belongs to Ci . Given a rectangle j′ , we need to check the distance
between j′ and i′ for any (i, i′) with i ∈L j′ and i � i′ . Using the intersection reporting data structure, we compute for each
rectangle j′ the set D j′ , which is the set of all rectangles intersecting those in L j′ . For each rectangle i′ ∈ D j′ , we test if

(i′, j′) = d̂ − 2. Again recall that if we find a pair with d̂, then the diameter must be d̂ − 1 (otherwise, the diameter is
d̂ − 2). This proves Theorem 3.

5. Computation via matrix multiplication

In this section we provide an alternative method to compute the diameter and radius. This method also uses the con-
ditions in Theorem 1 and 2, but instead exploits the behavior of matrix multiplication on (0,1)-matrices. Recall that, given
two (0,1)-matrices A and B , their product is (AB)i, j = ∑

k(Ai,k · Bk, j) = |{ k : Ai,k = 1 ∧ Bk, j = 1 }|.
We define a (0,1)-matrix I , which is used to compute both the diameter and radius:

Ii, j =
{

1 if i � j,

0 otherwise.

E. Arseneva et al. / Comput. Geom. 92 (2021) 101685 9
In other words, for each pair i, j of rectangles in H(P) ∪ V(P), the matrix I indicates whether i and j intersect and have
different orientations (one horizontal, one vertical). Note that, for ease of explanation, we have slightly abused the notation
and identified rectangles of H(P) ∪ V(P) with indices in the matrix.

5.1. Computing the diameter

We use Theorem 1 to compute the diameter. Thus, we need to determine if there exist four rectangles in H(P) ∪ V(P)

that satisfy the condition of Theorem 1. If so, the diameter will be d̂ − 1; otherwise, d̂ − 2. In order to do so, we define the
(0,1)-matrix D that indicates, for a pair i, j of rectangles in H(P) ∪V(P), whether the oriented distance between them is d̂:

Di, j =
{

1 if
(i, j) = d̂,

0 otherwise.

By multiplying I and D , we obtain

(I D)i, j′ = |{ i′ : (i � i′) ∧ (
(i′, j′) = d̂) }|.
In other words, the entry at (i, j′) of the product I D counts the number of rectangles in H(P) ∪ V(P) that intersect

rectangle i and are oriented differently from it, and at the same time are at oriented distance d̂ from rectangle j′ . We
construct the (0,1)-matrix M that records when an entry in the product I D is non-zero:

Mi, j =
{

1 if (I D)i, j > 0,

0 otherwise.

Finally, we look at the product DM . Note that (DM)i,i′ > 0 if and only if there are two rectangles j and j′ with j � j′
such that
(i, j) = d̂ and
(i′, j′) = d̂

The quantifier on j′ and the condition on its intersection with j can be moved just to the right of the quantifier on
j without altering the meaning of the formula, since both of them are existential quantifiers. Therefore, the condition in
Theorem 1 is satisfied if and only if there exists a 1-entry in I whose corresponding entry in DM is non-zero. This condition
can be checked in quadratic time (once matrix DM has been computed) by iterating over the entries of the matrices in
quadratic time since the matrices have linearly many rows and columns.

5.2. Computing the radius

A similar construction can be used to verify the condition in Theorem 2 and compute the radius. Similar to the matrix
D given above, we define the (0,1)-matrix R which indicates whether a pair of rectangles is at oriented distance at least r̂
from each other:

Ri, j =
{

1 if
(i, j) ≥ r̂,

0 otherwise.

By multiplying I and R , we obtain

(I R)i, j′ = |{ i′ : (i � i′) ∧ (
(i′, j′) ≥ r̂) }|.
Analogous to matrix M , we that indicates whether the corresponding entry of I R is non-zero, as follows:

Ni, j =
{

1 if (I R)i, j > 0,

0 otherwise.

We now look at the product RN . Note that (RN)i,i′ > 0 if and only if there are two rectangles j and j′ with j � j′ such
that
(i, j) ≥ r̂ and
(i′, j′) ≥ r̂

By a similar argument as in the diameter case, the condition on Theorem 2 is satisfied if and only if for each 1-entry in
I the corresponding entry in RN is non-zero. As before, this condition can be checked by iterating over the entries of the
matrices in quadratic time once the matrix RN has been computed.

Note that the time taken by the computation of the various matrix products dominates the time taken by the other loops
and operations. Each matrix has O (n) rows and columns, and the product of two O (n) × O (n) matrices can be computed in
O (nω) time. We summarize the results of this section in the following theorem.

Theorem 4. The rectilinear link diameter diam(P) and radius rad(P) of a rectilinear polygonal domain P consisting of n vertices can
be computed in O (nω) time.

10 E. Arseneva et al. / Comput. Geom. 92 (2021) 101685
6. Conclusions

Our algorithms heavily rely on Theorems 1 and 2. They implicitly do a search among a list of candidates for the diametral
pair or radius, but as mentioned in the introduction they have the advantage that can be used to yield a certificate. For
example, if the diameter is d̂ − 1, it suffices to report the four rectangles that satisfy the condition of Theorem 1. Then,
if someone wants to verify that any pair in the intersection of the two pairs forms diameter, they have to compute the
oriented distances (to obtain d̂) and then verify that indeed the four given rectangles satisfy the property of Theorem 1 (a
similar certificate can be obtained when the radius is r̂ − 1 and Theorem 2).

The verification runtime is dominated by the time needed to compute the oriented distance between all pairs of rect-
angles (which can be done in O (n2 log log n) time using the result of Chan and Skrepetos, and is not known whether it can
be done in subquadratic time [7]). We wonder if a similar certificate approach can be designed for the case in which the
diameter is d̂ − 2, the radius is r̂ − 2 and/or other metrics, specifically for the classic link distance (for which no algorithm
is yet known).

We note that d̂ and r̂ can be used to give an approximation of the diameter and radius, respectively, with an additive
error of only one unit. However, the running time of computing these two values is almost as large as computing the exact
values. It would be interesting to see if there is another way to approximate the diameter or radius.

This consideration, together with our results, reminds us of recent lower bound results in fine-grained complexity. For
n-vertex sparse unweighted undirected graphs, under the orthogonal vectors conjecture, computing the diameter and even
approximating it within a factor of 3/2 − ε cannot be done in O (n2−o(1)) time for any ε > 0 [20], and under the hitting set
conjecture, computing the radius and even approximating it within a factor of 3/2 − ε cannot be done in O (n2−o(1)) time
for any ε > 0 [1]. It is known that both the strong exponential-time hypothesis and the hitting set conjecture individually
imply the orthogonal vectors conjecture (see Vassilevska Williams’ survey [22]). As we already pointed out, the (not rec-
tilinear) link distance computation is 3-SUM hard [16], and it is straightforward to adapt the proof to show that the (not
rectilinear) link diameter computation is 3-SUM hard, too. However, we have been unable to show the 3-SUM hardness of
computing the rectilinear link diameter or radius, nor any hardness of having an O (n2−o(1))-time algorithm based on the
strong exponential-time hypothesis, the orthogonal vectors conjecture, or the hitting set conjecture so far. Such a result
would show that our algorithms are close to optimal.

A natural way to extend our results would be to consider the c-oriented link distance. In this distance we are allowed
to use c slopes in our path, normally in steps of 2π/c radians. In general allowing more directions would create more nat-
ural paths and potentially much shorter paths. Unfortunately non-orthogonal directions create some problems. The duality
between the graph G(P) and oriented distance relies on the observation that within a horizontal rectangle we can reach
every point with just one bend, regardless of where we enter the rectangle with a vertical ray. When the directions are no
longer orthogonal we cannot give this guarantee anymore (see Fig. 4). This may be solved by counting bends that “skip”
over orientations to count heavier. That is, within the path, we force adjacent edges to have adjacent orientations, even if
those edges have length 0. For example, in the 8-oriented distance, an L-shaped path would have a cost of 3. However, it is
not clear how to extend our results to this model. More importantly, this distance would differ a lot from the classical link
distance.

Fig. 4. Illustration of why our results do not extend to 8 orientations.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

E. Arseneva et al. / Comput. Geom. 92 (2021) 101685 11
References

[1] Amir Abboud, Virginia Vassilevska Williams, Joshua R. Wang, Approximation and fixed parameter subquadratic algorithms for radius and diameter in
sparse graphs, in: Robert Krautamer (Ed.), Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, SIAM, 2016, pp. 377–391.

[2] Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, Eunjin Oh, A linear-time algorithm for the geodesic center of a simple
polygon, Discrete Comput. Geom. 56 (4) (2016) 836–859.

[3] Elena Arseneva, Man-Kwun Chiu, Matias Korman, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, Marcel Roeloffzen, Recti-
linear link diameter and radius in a rectilinear polygonal domain, in: Proc. 29th International Symposium on Algorithms and Computation, ISAAC, in:
Leibniz International Proceedings in Informatics, vol. 123, 2018, 58.

[4] Sang Won Bae, Matias Korman, Joseph S.B. Mitchell, Yoshio Okamoto, Valentin Polishchuk, Haitao Wang, Computing the L1 geodesic diameter and
center of a polygonal domain, Discrete Comput. Geom. 57 (3) (2017) 674–701.

[5] Sang Won Bae, Matias Korman, Yoshio Okamoto, The geodesic diameter of polygonal domains, Discrete Comput. Geom. 50 (2) (2013) 306–329.
[6] Sang Won Bae, Matias Korman, Yoshio Okamoto, Haitao Wang, Computing the L1 geodesic diameter and center of a simple polygon in linear time,

Comput. Geom. Theory Appl. 48 (6) (2015) 495–505.
[7] Timothy M. Chan, Dimitrios Skrepetos, All-pairs shortest paths in geometric intersection graphs, J. Comput. Geom. 10 (1) (2019) 27–41.
[8] Hristo Djidjev, Andrzej Lingas, Jörg-Rüdiger Sack, An O (n logn) algorithm for computing the link center of a simple polygon, Discrete Comput. Geom.

8 (1992) 131–152.
[9] Yoav Giyora, Haim Kaplan, Optimal dynamic vertical ray shooting in rectilinear planar subdivisions, ACM Trans. Algorithms 5 (3) (2009) 28.

[10] John Hershberger, Subhash Suri, Matrix searching with the shortest-path metric, SIAM J. Comput. 26 (6) (1997) 1612–1634.
[11] John Hershberger, Subhash Suri, An optimal algorithm for Euclidean shortest paths in the plane, SIAM J. Comput. 28 (6) (1999) 2215–2256.
[12] Irina Kostitsyna, Maarten Löffler, Valentin Polishchuk, Frank Staals, On the complexity of minimum-link path problems, J. Comput. Geom. 8 (2) (2017)

80–108.
[13] François Le Gall, Powers of tensors and fast matrix multiplication, in: Katsusuke Nabeshima, Kosaku Nagasaka, Franz Winkler, Ágnes Szántó (Eds.),

Proc. 25th International Symposium on Symbolic and Algebraic Computation, ISSAC, ACM, 2014, pp. 296–303.
[14] Joseph S.B. Mitchell, An optimal algorithm for shortest rectilinear paths among obstacles, in: Proc. 1st Canadian Conference on Computational Geome-

try, CCCG, 1989.
[15] Joseph S.B. Mitchell, L1 shortest paths among polygonal obstacles in the plane, Algorithmica 8 (1) (1992) 55–88.
[16] Joseph S.B. Mitchell, Valentin Polishchuk, Mikko Sysikaski, Minimum-link paths revisited, Comput. Geom. Theory Appl. 47 (6) (2014) 651–667.
[17] Joseph S.B. Mitchell, Valentin Polishchuk, Mikko Sysikaski, Haitao Wang, An optimal algorithm for minimum-link rectilinear paths in triangulated

rectilinear domains, Algorithmica 81 (1) (2019) 289–316.
[18] Bengt J. Nilsson, Sven Schuierer, Computing the rectilinear link diameter of a polygon, in: Proc. Computational Geometry — Methods, Algorithms and

Applications, International Workshop on Computational Geometry CG’91, 1991, pp. 203–215.
[19] Bengt J. Nilsson, Sven Schuierer, An optimal algorithm for the rectilinear link center of a rectilinear polygon, Comput. Geom. Theory Appl. 6 (1996)

169–194.
[20] Liam Roditty, Virginia Vassilevska Williams, Fast approximation algorithms for the diameter and radius of sparse graphs, in: Dan Boneh, Tim Rougarden,

Joan Feigenbaum (Eds.), Proc. Symposium on Theory of Computing Conference, STOC, ACM, 2013, pp. 515–524.
[21] Subhash Suri, Computing geodesic furthest neighbors in simple polygons, J. Comput. Syst. Sci. 39 (2) (1989) 220–235.
[22] Virginia Vassilevska Williams, Hardness of easy problems: basing hardness on popular conjectures such as the strong exponential time hypothesis

(invited talk), in: Proc. 10th International Symposium on Parameterized and Exact Computation, IPEC, 2015, pp. 17–29.
[23] Haitao Wang, On the geodesic centers of polygonal domains, J. Comput. Geom. 9 (1) (2018) 131–190.

http://refhub.elsevier.com/S0925-7721(20)30079-1/bib3ED998D440DE0BC53C5FEA7FB71CF6D9s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib3ED998D440DE0BC53C5FEA7FB71CF6D9s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibB68D5217FC0818015385EE5BB971678As1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibB68D5217FC0818015385EE5BB971678As1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibF2CE47DE238A21ECCFFB9A969E736B81s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibF2CE47DE238A21ECCFFB9A969E736B81s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibF2CE47DE238A21ECCFFB9A969E736B81s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib6223D8D1FB6A1803B1419C31085B517Cs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib6223D8D1FB6A1803B1419C31085B517Cs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibF49CD73D4CDA5CE2DD987C66AD767701s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib3E973FF05B98B877FD94C294839528C1s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib3E973FF05B98B877FD94C294839528C1s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib56A2CB9C8612F71E6729395C13A9930Fs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibE30C2B7DDBA3B53D0F5E8537E108CEDCs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibE30C2B7DDBA3B53D0F5E8537E108CEDCs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibF49177261EF332905465EDE126D4B764s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib5F2DB20D9F2A13AF759243E99EFE46CFs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib5F1D84E45F4649A31913E64C39C08F96s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib84A5D7F83DB484D76F476DC43295781Ds1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib84A5D7F83DB484D76F476DC43295781Ds1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib7F02B04AB1724C8DEE53DD9B049471A5s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib7F02B04AB1724C8DEE53DD9B049471A5s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibD9F2F020F12C103A537A6E64D9C41F50s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibD9F2F020F12C103A537A6E64D9C41F50s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib696DA00F63C3FC2C4AA4925C619917B8s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib4245D0F706629084B17508B6FDCB60AEs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib16010DEDB41F85A54259D005DC015409s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib16010DEDB41F85A54259D005DC015409s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib25790506E1F73364F2F1D19C718A3BA1s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib25790506E1F73364F2F1D19C718A3BA1s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibCBB5DF9AB2006E03170C292989A22364s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibCBB5DF9AB2006E03170C292989A22364s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib18A7F18B5F9BC82E7060DD39E8748FD7s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib18A7F18B5F9BC82E7060DD39E8748FD7s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bib7F52D7D0C5D33BD33D8D77DC8406AE6Bs1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibEBDE8D2E6EE1D6529560AA0CF0D2CEC6s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibEBDE8D2E6EE1D6529560AA0CF0D2CEC6s1
http://refhub.elsevier.com/S0925-7721(20)30079-1/bibC02FE3AA2F654F5D58BAFB2615BF9D32s1

	Rectilinear link diameter and radius in a rectilinear polygonal domain
	1 Introduction
	1.1 Previous work
	1.2 Results
	1.3 Preliminaries

	2 Graph of oriented distances
	3 Characterization via boolean formulas
	4 Computing the diameter faster
	5 Computation via matrix multiplication
	5.1 Computing the diameter
	5.2 Computing the radius

	6 Conclusions
	References

