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Abstract
Let P be a simple polygon with n vertices. For any two points in P , the geodesic distance between
them is the length of the shortest path that connects them among all paths contained in P . Given a
set S of m sites being a subset of the vertices of P , we present the first randomized algorithm to
compute the geodesic farthest-point Voronoi diagram of S in P running in expected O(n + m) time.
That is, a partition of P into cells, at most one cell per site, such that every point in a cell has the
same farthest site with respect to the geodesic distance. This algorithm can be extended to run in
expected O(n + m log m) time when S is an arbitrary set of m sites contained in P .
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1 Introduction

Let P be a simple n-gon. Let S be a set of m ≥ 3 weighted sites (points) contained in
V (P ), where V (P ) denotes the set of vertices of P . That is, we have a function w : S → R
that assigns to each site of S a non-negative weight. We also extend the weight function to
any point in P by setting w(x) = 0 for all x ∈ P \ S. While we could allow the sites to lie
anywhere on the boundary, ∂P , of P , as long as we know their clockwise order along ∂P , we
can split the edges of P at the sites, and produce a new polygon where each site coincides
with a vertex. Therefore, we assume that S ⊆ V (P ).

Given two points x, y in P (either on the boundary or in the interior), the geodesic
path π

P
(x, y) is the shortest path contained in P connecting x with y. If the straight-line

segment connecting x with y is contained in P , then π
P

(x, y) is the straight-line segment xy.
Otherwise, π

P
(x, y) is a polygonal chain whose vertices (other than its endpoints) are reflex

vertices of P . We refer the reader to [14] for more information on geodesic paths.
For a segment xy, we denote its Euclidean length by |xy|. For a path, its Euclidean length

is the sum of the Euclidean length of all of its segments. Given two points x and y in P ,
their geodesic distance gP (x, y) is the Euclidean length of π

P
(x, y). The weighted geodesic

distance (or simply w-distance) between two points x and y in P , denoted by dP
w(x y), is

the sum of w(x) with the Euclidean length of π
P

(x, y), i.e., dP
w(x y) = w(x) + gP (x, y).

Notice that if all weights are set to zero, then the w-distance coincides with the classical
definition of geodesic distance [14]. Moreover, notice that this distance is not symmetric
unless the weights of x and y coincide.

Given a point x ∈ P , an S-farthest site of x in P is a site s of S whose w-distance to x is
maximized. To ease the description, we assume that each vertex of P has a unique S-farthest
neighbor. This general position condition was also assumed in [1, 3, 18] and can be obtained
by applying a slight perturbation [10].
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12:2 Geodesic Farthest-Point Voronoi Diagrams
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Figure 1 a) A simple polygon P with a set S of six weighted sites and their FVD. b) A new
polygon P ′ where a path of length w(s) is added at the location of each site s ∈ S. Then the weight
is set to zero and moved at the endpoint of its corresponding path. c) The FVD of S in P coincides
with the FVD of the new sites in the new polygon P ′.

For a site s ∈ S, let CellP (s,S) = {x ∈ P : dP
w(s x) ≥ dP

w(s′ x),∀s′ ∈ S} be the
(weighted farthest) Voronoi cell of s (in P with respect to S). That is, CellP (s,S) consists
of all the points of P that have s as one of their S-farthest sites. The union of all Voronoi
cells covers the entire polygon P , and the closure of the set int(P ) \ ∪s∈S int(CellP (s,S))
defines the (weighted farthest) Voronoi graph of S in P .

The Voronoi graph together with the set of Voronoi cells defines the weighted geodesic
farthest-point Voronoi diagram (or simply FVD) of S in P , denoted by vd(S, P ). Thus, we
indistinctively refer to vd(S, P ) as a graph or as a set of Voronoi cells; see Figure 1.

Notice that having non-zero weights on our set of sites does not make the problem harder.
To see this, consider a new polygon P ′, where at the location of each site s ∈ S, a path of
length w(s) is attached to the boundary of P . Additionally, the site s is given weight zero and
is moved to the other endpoint of this path; see Figure 1 for an illustration. In this way we
obtain a new weakly simple polygon P ′ and a new set of sites S ′ that defines the same FVD
as S in P . Therefore, a weighted FVD as described in this paper has the same properties as
the classical farthest-point Voronoi diagram constructed using the geodesic distance [3]. In
particular, we know that the Voronoi graph is a tree with leaves on the boundary of P . Also,
each edge of this graph consists of a sequence of straight lines and hyperbolic arcs that may
intersect ∂P only at its endpoints [3]. Thus, we refer to the Voronoi graph as a Voronoi tree.
While working with weighted sites might seem an unnecessary complication, we decided to
work with them to ease the description of the recursive construction that our algorithm uses.

Let FP (x,S) be the function that maps each x ∈ P to the w-distance to a S-farthest
neighbor of x (i.e., FP (x,S) = dP

w(x fP (x,S))). Notice that FP (x,S) can be seen as the
upper envelope of the w-distance functions from the sites in S. Throughout the paper, we
will play with this alternative way of thinking of Voronoi diagrams, either as graphs or as
upper envelopes. A point c ∈ P that minimizes FP (x,S) is called the geodesic center of P .
Similarly, a point s ∈ P that maximizes FP (x,S) (together with fP (s)) forms a diametral
pair and their w-distance is the geodesic diameter.

Related work. The problem of computing the geodesic center of a simple n-gon P (and its
counterpart, the geodesic diameter) were central in the 80’s in the computational geometry
community. Chazelle [7] provided the first O(n2)-time algorithm to compute the geodesic
diameter. Suri [21] improved upon it by reducing the running time to O(n logn). Finally,
Hershberger and Suri [12] introduced a matrix search technique that allowed them to obtain
a linear-time algorithm for computing the diameter.
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The first algorithm for computing the geodesic center of P was given by Asano and
Toussaint [4], and runs in O(n4 logn) time. This algorithm computes a super set of the
vertices of the Voronoi tree of vd(S, P ), where S is the set of vertices of P . Shortly after,
Pollack et al. [20] improved the running time to O(n logn). This remained the best running
time for many years until recently when Ahn et al. [1] settled the complexity of this problem
by presenting a Θ(n)-time algorithm to compute the geodesic center of P .

The problem of computing the FVD generalizes the problems of computing the geodesic
center and the geodesic diameter. For a set S of m ≥ 3 sites in a simple n-gon P , Aronov [3]
presented an algorithm to compute vd(S, P ) in O((n+m) log(n+m)) time. While the best
known lower bound is Ω(n+m logm), it was not known whether or not the dependence on n,
the complexity of P , is linear in the running time. In fact, this problem was explicitly posed
by Mitchell [14, Chapter 27] in the Handbook of Computational Geometry, and solving it has
become a prominent area of research in recent years. Oh et al. [18] (SoCG’16) present the first
improvement to this problem in more than 20 years. Using the new tools presented by Ahn
et al. [1], they introduce an O(n log logn+m logm)-time algorithm to compute vd(S, P ).
As a stepping stone, they present an O((n+m) log logn)-time algorithm for the simpler case
where all sites are vertices of P . In fact, any improvement on the latter algorithm translates
directly to an improvement on the general problem. In particular, a linear time algorithm
for the simpler case with sites on the boundary of P suffices to match the lower bound
and close the problem presented by Mitchell [14, Chapter 27] in the case of farthest-point
Voronoi diagrams.

Recently, not only farthest-point Voronoi diagrams have received attention. For the
nearest-point geodesic Voronoi diagram, two papers have focused in finding algorithms
matching the same lower bound of Ω(n+m logm) [13, 16]. While these results work only
for a limited range of m with respect to n, both papers have appeared in consecutive years
in the Symposium on Computational Geometry (SoCG). In a recent breakthrough to appear
in SODA’19, Oh [15] presents an optimal algorithm to compute the nearest-point geodesic
Voronoi diagram running in O(n+m logm) time. However, the techniques in these papers
are fundamentally based on data structures with logarithmic query time, and hence it is not
conceivable to adapt them to obtain a linear-time algorithm for the case when the sites are
vertices of the polygon.

Our results. In this paper, we provide an optimal, albeit randomized, algorithm to compute
vd(S, P ) for the important case where all sites of S are vertices of P . Our algorithm runs in
expected Θ(n+m) time, and uses a completely different set of tools to solve the problem.
Using the reduction presented by Oh et al. [18], we immediately obtain an algorithm for
the general case where the sites can be arbitrary points in P . This algorithm matches the
lower bound and runs in expected Θ(n+m logm) time thereby solving the problem posed
by Mitchell [14, Chapter 27] in the case of farthest-point Voronoi diagrams. It remains open
to find a deterministic algorithm with the same running time.

Our approach. Let P be a simple n-gon and let S be a set of m ≥ 3 sites contained in V (P ),
where V (P ) is the set of vertices of P . We present a randomized O(n+m)-time algorithm to
compute the FVD of S in P . We would like to use a variation of the randomized incremental
construction (RIC ) for Euclidean farthest-point Voronoi diagrams [9]. This algorithm inserts
the sites, one by one, in random order, and constructs the cell of each newly inserted site in
time proportional to its size. By bounding the expected size of each cell using backwards
analysis, the incremental construction can be carried out in total linear time.

SoCG 2019
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In the geodesic case however, the complexity of a cell depends not only on the set of sites,
but also on the complexity of the polygon [2]. Already the FVD of 3 sites can have Ω(n)
vertices and arcs. Moreover, there is an additional complication when using w-distances. To
achieve an incremental construction, one would need to have at hand a complete description
of the w-distance function dP

w(s x) inside of the newly created cell for the inserted site s. If
this function is precomputed in the entire polygon, this would be too costly. Thus, one needs
to define these functions only at the specific locations where they are needed. An additional
problem is that for a RIC, the first inserted sites must have their w-distance defined in almost
the entire polygon. Thus, already the description-size of the w-distances needed for the first
batch of sites (say the first m/100) becomes superlinear. Therefore, it seems hopeless to try
a RIC without somehow reducing the complexity of P throughout the process. Nevertheless,
a RIC works well for all the sites that come after this first batch. Intuitively, the latter
insertions define smaller cells, and the space needed to describe their w-distances can be
nicely bounded. Thus, the main question is how to deal with this first fraction of the sites.

In this paper we overcome these difficulties with a novel approach, and manage to deal
with this first fraction of the sites using pruning. First, we randomly partition the sites into
B and R, where |B| ≤ αm for some constant 0 < α < 1 (Section 3.1). Then, we construct
recursively an “approximation” of the FVD of B (Section 3.2). To this end, we define a new
weakly simple polygon Q containing B with only a constant fraction of the vertices of P .
Essentially we prune from P all the vertices that have nothing to do with geodesic paths
connecting sites in B with points in their respective Voronoi cells. Our approximation comes
from recursively computing the FVD of B in Q. We show that the complexity of Q decreases
sufficiently so that the recursive call leads to a linear overall running time.

However, reducing the complexity comes with a price. The w-distance from sites of B
inside of Q turns out to be only “similar” to that in P . However, we make sure that these
functions are accurate where it matters. After computing this “Voronoi-like” diagram for B,
we need to deal with the sites of R. To this end, we turn to the RIC (Section 4). We compute
the w-distance from sites in R only inside of specific parts of P , making sure that they suffice
for our purpose, while their overall complexity remains linear. Another challenge comes from
the fact that the w-distances from B are with respect to Q, while the ones from R are not.
Thus, we need to prove that the upper envelope of these functions induces a Voronoi diagram.
Once we deal with these technical details, we end up with an upper envelope of functions
that we prove to coincide with the FVD of S in P , finishing our construction.

We show that the insertion of each site r ∈ R can be carried out in expected O(n/m)
time. Thus, inserting all sites of R can be done in expected O(n+m) time. After inserting
the sites of R, the expected total running time of our algorithm is given by the simple
recurrence E [T (n,m)] ≤ T (n/2,m/2) +O(n+m) = O(n+m). The crucial aspect of our
approach that could not be achieved before this paper, is the reduction in the complexity
of the polygon. Overall, we combine many different tools, from recursion, pruning, and
randomization, together with all the machinery to deal with geodesic functions. Due to space
constraints, the proof of all results marked with [∗] have been omitted and can be found in
the full version of this paper [5].

2 Preliminaries

Let P be a simple n-gon and let S be a set of m ≥ 3 sites contained in V (P ). Because
S ⊆ V (P ), we know that m = |S| ≤ n.

A subset G ⊆ P is geodesically convex in P if for each x, y ∈ G, the geodesic path between
x and y is contained in G, i.e., if π

P
(x, y) ⊆ G. Given a set A of points in P , the geodesic

hull of A in P is the minimum geodesically convex set in P that contains A. In particular,
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if A ⊆ ∂P , then the boundary of the geodesic hull of A is obtained by joining consecutive
points of A along ∂P by the geodesic path between them. Note that this geodesic hull
is not necessarily a simple polygon but a weakly simple polygon. Geodesic functions in
weakly simple polygons behave in the exact same way as in simple polygons, and the existing
machinery applies directly with no overhead [6]. Thus, while many papers state their results
for simple polygons, they apply directly to weakly simple polygons. In particular, all results
and tools presented in this paper apply directly to weakly simple polygons. This remark is
already crucial in several recent papers [17, 18].

I Lemma 1 (Restatement of Lemma 2 of [19]). Let A ⊆ ∂P be a set of O(n) points sorted
along ∂P . Then the geodesic hull of A in P can be computed in O(n) time.

Let vd∂(S, P ) be the FVD of S restricted to the boundary of P . More formally, for each
s ∈ S, let bCellP (s,S) = CellP (s,S) ∩ ∂P be the boundary cell of s and let vd∂(S, P ) be
the union of these boundary cells. The construction of vd∂(S, P ) has often been a stepping
stone in the computation of vd(S, P ) [3, 18], and our algorithm follows the same approach.
The following result from [18] allows us to compute it efficiently.

I Theorem 2 (Theorem 9 of [18]). Let P be an n-gon and let S ⊆ V (P ) be a set of sites.
Then, we can compute vd∂(S, P ) in O(n) time.

Using this procedure, we can find out in O(n) time which sites of S have a non-empty
Voronoi cell. Therefore, we can forget about the sites with empty cells and assume without
loss of generality from now on that all sites of S have non-empty Voronoi cells.

Given a site s ∈ S and a polygonal chain C ⊆ ∂P with endpoints p and p′, the funnel of
s to C in P , denoted by FunnelP (s→ C), is the geodesic hull of s and C in P . It is known
that FunnelP (s→ C) coincides with the weakly simple polygon contained in P bounded by
C, π

P
(s, p′) and π

P
(s, p) [1]. For ease of notation, we denote FunnelP (s → bCellP (s,S))

simply by FunnelP (s,S), i.e., the funnel with apex s that goes to bCellP (s,S). The following
lemma shows the relation between Voronoi cells and their funnels.

I Lemma 3 (Consequence of Lemma 4.1 of [1]). Given a site s ∈ S, the Voronoi cell
CellP (s,S) is contained in the funnel FunnelP (s,S).

We are also interested in bounding the total complexity of the funnels of sites in S. Given
a polygon Q, let |Q| denote its combinatorial complexity (or just complexity), i.e., the number
of vertices and edges used to represent it.

I Lemma 4 (Consequence of Corollaries 3.8 and 4.4 of [1]). Given an n-gon P and a set
S ⊆ V (P ),

∑
s∈S |FunnelP (s,S)| = O(n). Also, all funnels can be computed in O(n) time.

2.1 The simplification transformation
The following transformation allows us to modify the input of our problem and assume some
nice structural properties without loss of generality. In this section and for this transformation,
we allow the given polygon P to be weakly simple instead of a simple n-gon. The result
of the transformation described in this section takes a weakly simple polygon with a set of
weighted sites as input, and produces a new simple polygon with a new set of weighted sites.
Moreover, this resulting polygon has a particular structure that is crucial in the recursive
calls of our algorithm.

Let LS,P
be the set of leaves of vd(S, P ). We first notice that we can focus on a specific

geodesically convex subpolygon of P to compute vd(S, P ).

SoCG 2019
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P P

H

a) b) c)

G

Figure 2 a) A simple polygon P with a set S of six weighted sites and their FVD. b) The polygon
H being the geodesic hull of LS,P and S. c) The simplification transformation allows to redefine the
problem inside a simpler polygon G with a new set of weighted sites and obtain the same FVD.

I Lemma 5. Let H be the geodesic hull of S∪LS,P
in P . Then, for each s ∈ S, CellH(s,S) ⊆

CellP (s,S). Moreover, the Voronoi trees of vd(S, H) and vd(S, P ) coincide.

Proof. Let s be a site of S and let x ∈ H. Because H is a geodesically convex subset of P ,
and since x, s ∈ H, we know that π

H
(x, s) = π

P
(x, s). That is, the w-distance to x from

each site in S is the same in P and H. Therefore, the S-farthest sites of x are also preserved,
which implies that CellH(s,S) ⊆ CellP (s,S). Because this happens for each Voronoi cell of
S in H, and since the leaves belong also to H, the Voronoi trees coincide. J

While the geodesic hull H of S ∪ LS,P
in P does not necessarily have lower complexity

than P , it has some nice structure. We know that its boundary consists of geodesic paths
that connect consecutive points in S ∪ LS,P

along ∂P . However, this geodesic hull H is not
necessarily a simple polygon; see Figure 2. To make it simple, we need to deal with “dangling
paths” as follows.

We say that a vertex of H is H-open if it is incident to the interior of H. For each s ∈ S,
let as be the H-open vertex of FunnelP (s,S) that is geodesically closest to s. Note that all
paths from s to any point in the interior of H pass through as. However, as long as the
length of the geodesic path π

P
(s, as) remains the same, the shape of this path is irrelevant.

In fact, this is equivalent to giving as a weight such that each distance measured from as to
points in the interior of H has an added value of dP

w(s as).
To formalize this intuition, we define a new polygon, a new set of sites, and a new weighted

distance function as follows. Let A = {as : s ∈ S} be the set of m H-open vertices defined
by S. These vertices are our new set of sites. Let G(P,S) (or simply G if P and S are
clear from the context) be the geodesic hull of A ∪ LS,P

in P . Note that G ⊆ H is a simple
polygon by the definition of each as in A. We define a new weight function w′ : G → R

so that w′(x) =
{

dP
w(s as) if x = as ∈ A

0 otherwise
, if s and as coincide, then their weight is w(s).

With this new weight function, we can think of A as a set of weighted sites in G.

I Lemma 6. [∗] It holds that vd(A, G) and vd(S, P ) have the same Voronoi trees.

By Lemma 6, we can always transform the problem of computing the FVD of S in P
as follows. Recall that LS,P

is the set containing each leaf of vd(S, P ) and that m = |S|.
Compute vd∂(S, P ) and the funnel FunnelP (s,S) of each site in S in total O(n) time.
Because S ∪ LS,P

⊆ ∂P and has size 2m = O(n), we can compute H the geodesic hull
of S ∪ LS,P

in P in O(n) time using Lemma 1. After that, consider the set A of H-open
vertices as defined above. Again, we can compute the geodesic hull G of A ∪ LS,P

in P in
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O(n) time using Lemma 1. By Lemma 6, vd(A, G) and vd(S, P ) coincide, so we can forget
about P and S, and focus simply on G and A to compute the FVD. We call this process the
simplification transformation; see Figure 2. Note that the only convex vertices of G are the
sites in A and the leaves in LS,P

. We summarize the main properties of this simplification
transformation in the following result.

I Lemma 7. Let P be a simple n-gon and let S ⊆ V (P ) be a set of m ≥ 3 sites. The
simplification transformation computes in O(n) time a new simple polygon G with at most
n+m vertices and a new set A ⊆ V (G) of m weighted sites such that (1) the Voronoi trees of
vd(A, G) and vd(B,P ) coincide, and (2) the set of convex vertices of G is exactly A∪LS,P

.

3 Computing the FVD

Let P be a simple polygon and let S be a set of m ≥ 3 weighted sites contained in V (P ).
Using the simplification transformation defined in Section 2.1, we can assume without loss
of generality that P is a simple polygon with at most n+m vertices, and among them, its
convex vertices are exactly the sites in S and the leaves of LS,P

(see Lemma 7). That is,
it consists of at most 2m convex vertices. If we consider consecutive vertices in S ∪ LS,P

along ∂P , the chain connecting them consists only of reflex vertices of P , or is a single
edge. The next step explained in the following section is to randomly partition S. Note
that if m = O(1), we can compute vd(S, P ) in O(n) time by computing their bisectors and
considering their overlay. Thus, we assume that m is larger than some predefined constant.

3.1 First phase: the partition
We compute in linear time vd∂(S, P ) using Lemma 2, and let LS,P

be the set of leaves of
vd(S, P ). Note that |LS,P

| = m. For each s ∈ S, we compute the funnel FunnelP (s,S).
Given a subset R ⊆ S, let κ(R) =

∑
r∈R |FunnelP (r,S)| be the magnitude of R. Lemma 4

implies that κ(S) = O(n), and that all these funnels can be computed in O(n) time. To be
more precise, let τ ≥ 2 be the constant hidden by the big O notation, i.e., κ(S) ≤ τn. Next,
we compute a random permutation Π of S. Let 0 < α < 1 be some constant to be defined
later. Let B and R be a partition of S such that B consists of the first bατmc sites according
to Π, and R = S \B. We refer to B and R as the sets of blue and red sites of S, respectively.

I Observation 8. It holds that E [κ(B)] ≤ αn and |B| = bατmc ≤ αm.

We would like to recursively compute a Voronoi-like diagram of the sites in B while
forgetting for a while about the red sites. Once we have this recursively computed diagram,
we perform a randomized incremental construction of vd(S, P ) by inserting the sites of R in
the random order according to permutation Π. In the next section we discuss the recursive
call to compute a diagram for B, and later spend Section 4 detailing the insertion process.

3.2 A smaller polygon
While it would be great to compute vd(B,P ), this may be too expensive as the diagram can
have large complexity, and we need our recursive call to have smaller complexity (a constant
fraction reduction in the size). Thus, we would not compute vd(B,P ) exactly, but we will
compute an “approximation” of it. Notice that we can see vd(B,P ) as the upper envelope
of the w-distances dP

w(b x). Because these functions have a complexity that depends on
the size of the polygon, we need to simplify them. To achieve this, for a site b ∈ B, this

SoCG 2019
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a) b) c) Q

PPP

Figure 3 a) The polygon obtained from the simplification transformation, and the decomposition
of its boundary into red and blue chains. b) The funnels of the sites in B are depicted, as well as all
vertices in VB . c) The polygon Q is obtained by taking a rubber band and keeping attached at all
vertices in VB ∪ VC and letting it snap.

simpler distance function will be completely accurate inside of CellP (b,S). However, for any
point x outside of CellP (b,S), this new distance from s to x will be only upper bounded by
dP

w(b x). That is, distances from b can only get shorter, and only outside of CellP (b,S).
To define these new distance functions, we define a new polygon Q of lower complexity

than P (although P ⊆ Q). Let VB be the set consisting of all vertices of P that belong to the
funnel FunnelP (b,S) of some b ∈ B. By Observation 8, we know that the expected size of VB
is at most αn. Note that we could repeat the construction of B and R an expected constant
number times, until we guarantee that VB ≤ αn. Let VC be the set of convex vertices of P .
By our assumption that the simplification transformation has already been applied to P ,
we know by Lemma 2.1 that VC consists of the union of S and LS,P

, where LS,P
is the set

of leaves of vd(S, P ), i.e., |VC | ≤ 2m. Let Q be a polygon defined as follows. Imagine the
boundary of P being a rubber band, and each vertex of VB ∪ VC being a pin. By letting the
rubber band free while keeping it attached at the pins, this rubber band snaps to a closed
curve defining a weakly simple polygon Q; see Figure 3.

I Lemma 9. [∗] The polygon Q contains P , is weakly simple, can be computed in expected
O(n) time, and has at most αn + 4m vertices. Moreover, for x, y ∈ P , it holds that
gQ(x, y) ≤ gP (x, y). In particular, for each b ∈ B and x ∈ P , dQ

w(b x) ≤ dP
w(b x), and if

x ∈ CellP (b,S), then dQ
w(b x) = dP

w(b x).

Sketch proof. The boundary of Q can be constructed by connecting consecutive points in
VB ∪ VC by geodesics contained in the complement of P , i.e., in a domain that has P as
a hole or obstacle (Q is also known as the relative hull of VB ∪ VC in this domain). Only
convex vertices of P can be in these paths, and they can be visited only twice. Therefore, Q
consists of at most |VB |+ 2|VC | ≤ αn+ 4m vertices. J

Our plan is now to compute the FVD of B in the new polygon Q, and then use this
as a “good” approximation of vd(B,P ) in P . By “good” we mean that the red sites can
be randomly inserted in this diagram, and that the result of this whole process is indeed
vd(S, P ). We will prove these properties in the next section, but for now, we focus on
describing the recursive algorithm.

Let I(n,m) be the time to insert back the sites of R and obtain vd(S, P ) after having
recursively computed vd(B,Q). Because Q consists of at most αn+4m vertices by Lemma 9,
and since |B| ≤ αm by Lemma 8, we get a recursion of the form T (n,m) = T (αn+4m,αm)+
I(n,m) for the running time of our algorithm. We claim that I(n,m) = O(n+m), and we
prove it in the next section. However, for T (n,m) to solve to O(n+m), we need to look at one
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more iteration of the recursion, as it can be that αn+ 4m is not really smaller than n if m is
large. Fortunately, because T (αn+4m,αm) = T (α(αn+4m)+4αm,α2m)+I(αn+4m,αm),
and by our assumption on the running time of I(n,m), we get that

T (n,m) = T (α2n+ 8αm,α2m) +O(n+m) +O(αn+ 4m+ αm).

By choosing the constant α sufficiently small, and since we assume that m ≤ n, we can
guarantee that T (n,m) ≤ T (n/2,m/2) +O(n+m) = O(n+m) proving the main result of
this paper. Therefore, it remains only to show that I(n,m) is indeed O(n+m), i.e., in linear
time we can insert back the red sites, and obtain the FVD vd(S, P ) from the recursively
computed diagram of vd(B,Q).

3.3 Preprocessing the red sites
Before going into the insertion process of the sites in R, we need to finish some preprocessing
on them. To be able to insert these sites efficiently, we need to have a representation of the
w-distance of each r ∈ R defined on a sufficiently large superset of CellP (r,S).

Note that we cannot define these distance functions in the entire polygon, otherwise we
are spending already too much time and space. On the other hand, if its representation is
too narrow, then during the insertion it might be that the distance information is insufficient.

Recall that LS,P
denotes the set of leaves of vd(S, P ). Color the leaves in LS,P

purple if
they are incident to the Voronoi cell of a site in B and a site in R; see Figure 4.

Q

b) c)

Gr

r

a)

P

vr

r

vr

ur ur

QQ

CellP (r,S)

Figure 4 a) The coloring of the purple leaves of LS,P . b) For a site r ∈ R, the construction of ur

and vr lying inside blue Voronoi cells. c) The polygon Gr where we compute the SPM of r.

Recall that given a polygon K and two points x and y on ∂K, ∂K(x, y) denotes the
polygonal chain that starts at x and follows the boundary of K clockwise until reaching y.
For each r ∈ R, let ur and vr respectively be the first purple leaves of LS,P

reached from
any point in bCellP (r,S) when walking counterclockwise and clockwise along ∂P . We then
move ur and vr slightly clockwise and counterclockwise, respectively, so that they both
sit inside of a blue Voronoi cell. Moreover, we know that bCellP (r,S) is contained in the
interior of the path ∂P (ur, vr). We define a new polygon where we define the w-function
of r as follows. Because both ur and vr lie on ∂P and on Voronoi cells of blue sites, we
know that ur and vr are both on ∂Q. Let Gr be a new weakly simple polygon bounded
by the paths π

P
(r, ur), ∂Q(ur, vr) and π

P
(vr, r). Notice however that the paths π

P
(r, ur)

and π
P

(vr, r), called the walls, are defined within the polygon P , while the other path
bounding Gr is contained in ∂Q. Since P ⊂ Q, we know that Gr ⊆ Q. Moreover, the funnel
FunnelP (r → ∂P (ur, vr)) is contained in Gr; see Figure 4.
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I Lemma 10. [∗] Given r ∈ R, it holds that CellP (r,S) ⊆ Gr. Moreover, it holds that

E
[∑
r∈R
|Gr|

]
= O(n) and

⋃
r∈R

Gr = Q.

The last technical detail is the structure used to store the w-distances from the sites in R.
Let s ∈ S and let H ⊆ P be a subpolygon such that s ∈ H. The shortest-path map (or SPM
for short) of s in H is a subdivision of H into triangles such that the geodesic path to all the
points in one triangle has the same combinatorial structure. By precomputing the geodesic
distance to each vertex of H, we get a constant-sized representation of the w-distance from s

inside each triangle (for more information on shortest-path maps refer to [11]). We know
also that the SPM of s in H can be computed in O(|H|) time [8, 11].

Using these SPM’s, we describe our w-distances as follows. For each r ∈ R, we compute
the SPM of r in Gr. Because the complexity of this SPM is O(|Gr|), we conclude that the
total expected complexity of all these SPM’s is E

[∑
r∈R |Gr|

]
= O(n) by Lemma 10.

4 Inserting back the red sites

After computing vd(B,Q) recursively, we would like to start the randomized incremental
construction of sites of R. But first, we should specify how we store vd(B,Q).

Using the SPM’s, we introduce the refined FVD of B in Q. This refined FVD is a
decomposition of Q into constant-size cells defined as follows: For each site b ∈ B, the
Voronoi cell CellQ(b, B) is subdivided by the defining triangles of the SPM of b in Q. That
is, we take the intersection of each defining triangle 4 of the SPM of b and intersect it with
the Voronoi cell of b to obtain a refined triangle. As usual, for each point in a refined triangle,
the geodesic distance is measured from its apex a and added with dP

w(b a). Thus, each
refined triangle and its distance function can be described with O(1) space. We say that b
owns these refined triangles. In other words, we have a way to describe the upper envelope of
the w-distances of the sites in B within Q using a collection of constant-size refined triangles.

Assume inductively that vd(B,Q) is represented as a refined FVD as described above.
That is, for each site b of B, there is a collection of refined triangles owned by b which cover
the entire Voronoi cell CellQ(b, B). Let fb : Q → R such that fb(x) = dQ

w(b x) for each
x ∈ Q, i.e., fb is the function that maps each point to its w-distance to b in Q. Note that
the refined triangles of b in the refined FVD of vd(B,Q) provide a representation of this
w-distance inside CellQ(b, B). We say that the geodesic path π

Q
(b, x) is the witness path of

the value of fb(x).

I Observation 11. Let b ∈ B. Given x ∈ P , it holds that fb(x) ≤ dP
w(b x). Moreover, if

x ∈ CellP (b,S), then fb(x) = dP
w(b x).

Let r ∈ R and recall that Gr is the polygon associated with r defined in Section 3.1. As a
preprocessing, we have computed the SPM of r within Gr. We define a function fr : Gr → R
that encodes the w-distances from r with respect to the polygon Gr, instead of Q. That is,
fr(x) = dGr

w (x r) for each x ∈ Gr. In this case we say that π
Gr

(r, x) is a witness path of
the value of fr(x). Note that by Lemma 10, the functions fr jointly cover polygon Q.

I Lemma 12. [∗] Let r ∈ R. Given x ∈ P , it holds that fr(x) ≤ dP
w(r x). Moreover,

if x ∈ CellP (r,S) and the path π
P

(r, x) contains no point of bCellP (r,S) other than its
endpoints, then fr(x) = dP

w(r x).



L. Barba 12:11

Note that for each site of R, we have considered their w-distances inside of Gr, while for
the sites in B, their w-distances are with respect to Q. Therefore, in the intermediate steps
of our incremental construction, we will not have the FVD of the sites, but some Voronoi-like
structure.

4.1 The envelope
Note that vd(B,Q) represents already the upper envelope of the functions fb for the sites
in B. We would like to complete this envelope by incrementally inserting the functions fr
for the sites in R. To deal with these upper envelopes, we introduce some definitions.

Consider the order of the sites of R according to the random permutation Π used to
construct B and R. Let S0 = B and for each 1 ≤ i ≤ |R|, let Si be the set consisting of B
and the first i red sites according to the permutation Π. This is the order that we use for
our randomized incremental construction. That is, on each insertion step we would like to
maintain a Voronoi-like structure for the sites in Si.

Let s be a site of Si. Given a point x of Q, we say that x is i-dominated by s if
fs(x) ≥ fs′(x) for all s′ ∈ Si. Notice that if a point x is i-dominated, then the witness path
of fs(x) must be defined.

I Lemma 13. [∗] Let s be a site of S, and let x be a point that is i-dominated by s. If z ∈ Q
is a point that lies on the witness path of fs(z), then z is i-dominated by s.

Let x be a point that is i-dominated by s. Extend the last segment of the witness path
of fs(x) until it touches the boundary of Q at a point x∗. We say that x∗ is the s-shadow
of x. A direct consequence of Lemma 13 is the following result.

I Corollary 14. Let s ∈ Si. If x is i-dominated by s, then its s-shadow is also i-dominated
by s and lies on ∂Q.

The following result is crucial to guarantee the resulting structure after the incremental
construction coincides with the desired FVD of S.

I Lemma 15. [∗] For each 0 ≤ i ≤ |R| and for each site s ∈ Si, each point in the Voronoi
cell CellP (s,S) is i-dominated by s.

4.2 The insertion process
Let r be the i-th site of R inserted in our randomized incremental construction. To simplify
our incremental construction, instead of constructing the entire set of points that are i-
dominated by r, which might contain several connected components, we focus exclusively on
constructing the connected component containing CellP (r,S). This simplifies the structure
of the upper envelope, and helps us to prove a bound on its complexity.

We define the envelope-graph of Si recursively. For the base case i = 0, the envelope-graph
of S0 is simply the Voronoi-tree of vd(B,Q). This envelope-graph induces a decomposition
of Q into 0-patches. The 0-patch of each site s ∈ S0 is the connected component in this
decomposition that contains CellP (s,S).

Given the envelope-graph of Si−1, the envelope-graph of Si is defined as follows. We
consider the set of all points of Q that are i-dominated by r and the connected components
that they induce. The i-patch of r is the connected component that contains CellP (r,S)
induced by these points. The envelope-graph of Si is then obtained by adding to it the
boundary of the i-patch of r, and removing everything inside it. In this way, the (i− 1)-
patches of the envelope graph of Si−1 might shrink. However, Lemma 15 guarantees that for
each site s ∈ Si, the Voronoi cell CellP (s,S) is i-dominated by s. Therefore, CellP (s,S) is
still contained in the i-patch of s, i.e., the i-patch of s is non-empty.

SoCG 2019
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I Lemma 16. [∗] The envelope-graph of Si is a tree with at most 2|Si| leaves lying on the
boundary of Q.

Proof sketch. The proof is by induction, with vd(B,Q) as base case. When inserting the
i-th site r ∈ R into the envelope-graph of Si−1, the i-patch of r is connected and intersects ∂Q
in a single connected component. By adding this i-patch, the tree structure is preserved. J

I Lemma 17. [∗] The i-patch of r is contained in Gr and does not intersect the walls of Gr.

4.3 Algorithmic description
We proceed now to describe algorithmically how to carry on the incremental construction
described above, and construct the envelope-graph of Si. Our algorithm starts with the
refined FVD of vd(B,Q), and on each round constructs the boundary of the i-patch of a
new site of R. In addition to our envelope-graph, we maintain a set of refined triangles that
cover each i-patch in the same way that they cover the Voronoi cells in the refined FVD; see
Figure 5. We call this representation the refined envelope of Si. We assume inductively that
the envelope-graph of Si is stored as a refined envelope. For the base case this holds as we
assume that we have at hand the refined FVD of vd(B,Q). In addition, we maintain the
invariant that for each vertex v of Q, we know the site whose i-patch contains v. Moreover,
we assume also that we have a pointer to the refined triangle of this i-patch that contains v.

a) b) c)

Q Q Q

Gr

z

b b b

r

Figure 5 a) a site b ∈ B and the defining triangles of fb. b) The refined triangles obtained by
intersecting with the 0-patch of b. c) The insertion of the red site r and the update of the envelope.

For each b ∈ B, let µb be the set of refined triangles that belong to b. For a site r ∈ R,
let µr denote the set of triangles used to describe fr, i.e, the set of triangles in the SPM of r
inside of Gr. Thus regardless of the case µs denotes a set of triangles (and their associated
distance function) owned by s.

I Lemma 18. [∗] Let r be the i-th site of R inserted in our randomized incremental con-
struction. The i-patch of r can be computed in O(Mr +Dr + |µr|) time, where Mr is the size
of the i-patch of r, and Dr is the number of arcs of the envelope-graph of Si−1 that disappear.
Moreover, the refined envelope of Si can be obtained within the same time from that of Si−1.

Proof Sketch. To compute the i-patch of r, the first step is to find a point lying on its
boundary, which can be done by locating the leaves of LS,P

bounding bCellP (r,S). Next,
we walk along ∂Q until finding an endpoint z of the intersection of ∂Q with the i-patch of r.
Finally, we trace the boundary of the i-patch of r inside of Q in the standard way used in the
RIC of Euclidean Voronoi diagrams. That is, by walking along the overlay of the triangles in
µr and the refined triangles of the refined envelope of Si−1, and constructing each arc of the
i-patch of r at a time. The insertion time is then proportional to the size of the i-patch. J
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The complexity of the envelope-graph of Si is the number of vertices and arcs defining it.

I Lemma 19. [∗] The expected complexity of the envelope-graph of Si is O(n).

Proof sketch. Recall that for b ∈ B, µb is the set of refined triangles that belong to b, and
for r ∈ R, µr is the set of triangles used to describe fr inside of Gr. Since vd(B,Q) is a
FVD of B in Q and by Lemma 10, we know that E

[∑
s∈S |µs|

]
= O(n). Using a charging

argument, we prove that the complexity of the envelope-graph of Si is at most
∑
s∈S |µs|. J

We are now ready to combine these lemmas into the main result of this section.

I Theorem 20. [∗] The envelope-graph and refined envelope of S|R| can be computed in
expected O(n) time. Moreover, for each s ∈ S, the envelope-graph of S|R| coincides with the
Voronoi tree of vd(S, P ).

Proof Sketch. By Lemma 15, the |R|-patch of each site s of S contains its corresponding
Voronoi cell CellP (s,S). Because the union of these Voronoi cells covers P , we conclude
that the |R|-patch of s and CellP (s,S) coincide inside P for each s ∈ S. That is, the
envelope-graph of S|R| coincides with the Voronoi tree of vd(S, P ).

By Lemma 18, the time needed to insert all sites of R, is O(
∑
r∈R(Mr+Dr+ |µr|)). Using

backwards analysis, we show that E [Mr] = O(n/|S|). Therefore, E
[∑

r∈RMr

]
= O(n).

Moreover, Lemma 10 implies that
∑
r∈R µr = O(n), and since an arc is destroyed only once,

we can charge this cost to the creation of the arc. Putting everything together, we conclude
that the expected time needed to insert all red sites is O(n). J

We are ready to state our main result. As mentioned in Section 3.2, the running time
of our algorithm is T (n,m) ≤ T (n/2,m/2) + I(n,m), where I(n,m) is the time to insert
the red sites. By Theorem 20, and by our assumption that m ≤ n, I(n,m) = O(n + m).
Therefore, by solving the recurrence we obtain the following result.

I Theorem 21. Let P be a simple polygon and let S be a set of m ≥ 3 weighted sites
contained in V (P ). We can compute the FVD of S in P in expected O(n+m) time.
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