211 research outputs found

    Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

    Get PDF
    Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions

    Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks with Base Station Coordination

    Full text link
    This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular OFDMA system. Three definitions of the energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. %The performance of both an isolated and a non-isolated cluster of coordinated base stations is examined in the numerical experiments. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides a large saving in terms of dissipated energy. Also, the performance gap among the considered resource allocation strategies reduces as the out-of-cluster interference increases.Comment: to appear on IEEE Transactions on Wireless Communication

    Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission

    Full text link
    The throughput of multicell systems is inherently limited by interference and the available communication resources. Coordinated resource allocation is the key to efficient performance, but the demand on backhaul signaling and computational resources grows rapidly with number of cells, terminals, and subcarriers. To handle this, we propose a novel multicell framework with dynamic cooperation clusters where each terminal is jointly served by a small set of base stations. Each base station coordinates interference to neighboring terminals only, thus limiting backhaul signalling and making the framework scalable. This framework can describe anything from interference channels to ideal joint multicell transmission. The resource allocation (i.e., precoding and scheduling) is formulated as an optimization problem (P1) with performance described by arbitrary monotonic functions of the signal-to-interference-and-noise ratios (SINRs) and arbitrary linear power constraints. Although (P1) is non-convex and difficult to solve optimally, we are able to prove: 1) Optimality of single-stream beamforming; 2) Conditions for full power usage; and 3) A precoding parametrization based on a few parameters between zero and one. These optimality properties are used to propose low-complexity strategies: both a centralized scheme and a distributed version that only requires local channel knowledge and processing. We evaluate the performance on measured multicell channels and observe that the proposed strategies achieve close-to-optimal performance among centralized and distributed solutions, respectively. In addition, we show that multicell interference coordination can give substantial improvements in sum performance, but that joint transmission is very sensitive to synchronization errors and that some terminals can experience performance degradations.Comment: Published in IEEE Transactions on Signal Processing, 15 pages, 7 figures. This version corrects typos related to Eq. (4) and Eq. (28

    Distributed Resource Allocation Assisted by Intercell Interference Mitigation in Downlink Multicell MC DS-CDMA Systems

    Get PDF
    This paper investigates the allocation of resources, including subcarriers and spreading codes, as well as intercell interference (ICI) mitigation for multicell downlink multicarrier direct-sequence code division multiple-access systems, which aim to maximize the system's spectral efficiency (SE). The analytical benchmark scheme for resource allocation and ICI mitigation is derived by solving or closely solving a series of mixed integer non-convex optimization problems. Based on the optimization objectives the same as the benchmark scheme, we propose a novel distributed resource allocation assisted by ICI mitigation scheme referred to as resource allocation assisted by ICI mitigation (RAIM), which requires very low implementation complexity and demands little backhaul resource. Our RAIM algorithm is a fully distributed algorithm, which consists of the subcarrier allocation (SA) algorithm named RAIM-SA, spreading code allocation (CA) algorithm called RAIM-CA and the ICI mitigation algorithm termed RAIM-IM. The advantages of the RAIM are that its CA only requires limited binary ICI information of intracell channels, and it is able to make mitigation decisions without any knowledge of ICI information. Our simulation results show that the proposed RAIM scheme, with very low complexity required, achieves significantly better SE performance than other existing schemes, and its performance is very close to that obtained by the benchmark scheme
    corecore