1,658 research outputs found

    Methods for Spatio-Temporal Analysis of Embryo Cleavage In Vitro

    Get PDF
    Automated or semiautomated time-lapse analysis of early stage embryo images during the cleavage stage can give insight into the timing of mitosis, regularity of both division timing and pattern, as well as cell lineage. Simultaneous monitoring of molecular processes enables the study of connections between genetic expression and cell physiology and development. The study of live embryos poses not only new requirements on the hardware and embryo-holding equipment but also indirectly on analytical software and data analysis as four-dimensional video sequencing of embryos easily creates high quantities of data. The ability to continuously film and automatically analyze growing embryos gives new insights into temporal embryo development by studying morphokinetics as well as morphology. Until recently, this was not possible unless by a tedious manual process. In recent years, several methods have been developed that enable this dynamic monitoring of live embryos. Here we describe three methods with variations in hardware and software analysis and give examples of the outcomes. Together, these methods open a window to new information in developmental embryology, as embryo division pattern and lineage are studied in vivo

    Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning

    Get PDF
    Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150 kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34 established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process

    Automatic Annotation of Spatial Expression Patterns via Sparse Bayesian Factor Models

    Get PDF
    Advances in reporters for gene expression have made it possible to document and quantify expression patterns in 2D–4D. In contrast to microarrays, which provide data for many genes but averaged and/or at low resolution, images reveal the high spatial dynamics of gene expression. Developing computational methods to compare, annotate, and model gene expression based on images is imperative, considering that available data are rapidly increasing. We have developed a sparse Bayesian factor analysis model in which the observed expression diversity of among a large set of high-dimensional images is modeled by a small number of hidden common factors. We apply this approach on embryonic expression patterns from a Drosophila RNA in situ image database, and show that the automatically inferred factors provide for a meaningful decomposition and represent common co-regulation or biological functions. The low-dimensional set of factor mixing weights is further used as features by a classifier to annotate expression patterns with functional categories. On human-curated annotations, our sparse approach reaches similar or better classification of expression patterns at different developmental stages, when compared to other automatic image annotation methods using thousands of hard-to-interpret features. Our study therefore outlines a general framework for large microscopy data sets, in which both the generative model itself, as well as its application for analysis tasks such as automated annotation, can provide insight into biological questions

    Statistical inference of the time-varying structure of gene-regulation networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological networks are highly dynamic in response to environmental and physiological cues. This variability is in contrast to conventional analyses of biological networks, which have overwhelmingly employed static graph models which stay constant over time to describe biological systems and their underlying molecular interactions.</p> <p>Methods</p> <p>To overcome these limitations, we propose here a new statistical modelling framework, the ARTIVA formalism (Auto Regressive TIme VArying models), and an associated inferential procedure that allows us to learn temporally varying gene-regulation networks from biological time-course expression data. ARTIVA simultaneously infers the topology of a regulatory network and how it changes over time. It allows us to recover the chronology of regulatory associations for individual genes involved in a specific biological process (development, stress response, etc.).</p> <p>Results</p> <p>We demonstrate that the ARTIVA approach generates detailed insights into the function and dynamics of complex biological systems and exploits efficiently time-course data in systems biology. In particular, two biological scenarios are analyzed: the developmental stages of <it>Drosophila melanogaster </it>and the response of <it>Saccharomyces cerevisiae </it>to benomyl poisoning.</p> <p>Conclusions</p> <p>ARTIVA does recover essential temporal dependencies in biological systems from transcriptional data, and provide a natural starting point to learn and investigate their dynamics in greater detail.</p
    corecore