1,945 research outputs found

    A Lightweight Approach for the Semantic Validation of Model Refinements

    Get PDF
    Model Driven Engineering proposes the use of models at different levels of abstraction. Step by step validation of model refinements is necessary to guarantee the correctness of the final product with respect to its initial models. But, given that accurate validation activities require the application of formal modeling languages with a complex syntax and semantics and need to use complex formal analysis tools, they are rarely used in practice. In this article we describe a lightweight validation approach that does not require the use of third-party (formal) languages. The approach makes use of the standard OCL as the only visible formalism, so that refinements can be checked by using tools that are fully understood by the MDE community. Additionally, for the efficient evaluation of the refinement conditions a hybrid strategy that combines model checking, testing and theorem proving is implemented. Correctness and complexity of the proposal are empirically validated by means of the development of case studies and a comparison with the Alloy analyzer.Laboratorio de Investigación y Formación en Informática Avanzad

    A Lightweight Approach for the Semantic Validation of Model Refinements

    Get PDF
    Model Driven Engineering proposes the use of models at different levels of abstraction. Step by step validation of model refinements is necessary to guarantee the correctness of the final product with respect to its initial models. But, given that accurate validation activities require the application of formal modeling languages with a complex syntax and semantics and need to use complex formal analysis tools, they are rarely used in practice. In this article we describe a lightweight validation approach that does not require the use of third-party (formal) languages. The approach makes use of the standard OCL as the only visible formalism, so that refinements can be checked by using tools that are fully understood by the MDE community. Additionally, for the efficient evaluation of the refinement conditions a hybrid strategy that combines model checking, testing and theorem proving is implemented. Correctness and complexity of the proposal are empirically validated by means of the development of case studies and a comparison with the Alloy analyzer.Laboratorio de Investigación y Formación en Informática Avanzad

    A Lightweight Approach for the Semantic Validation of Model Refinements

    Get PDF
    Model Driven Engineering proposes the use of models at different levels of abstraction. Step by step validation of model refinements is necessary to guarantee the correctness of the final product with respect to its initial models. But, given that accurate validation activities require the application of formal modeling languages with a complex syntax and semantics and need to use complex formal analysis tools, they are rarely used in practice. In this article we describe a lightweight validation approach that does not require the use of third-party (formal) languages. The approach makes use of the standard OCL as the only visible formalism, so that refinements can be checked by using tools that are fully understood by the MDE community. Additionally, for the efficient evaluation of the refinement conditions a hybrid strategy that combines model checking, testing and theorem proving is implemented. Correctness and complexity of the proposal are empirically validated by means of the development of case studies and a comparison with the Alloy analyzer.Laboratorio de Investigación y Formación en Informática Avanzad

    Goal sketching: towards agile requirements engineering

    Get PDF
    This paper describes a technique that can be used as part of a simple and practical agile method for requirements engineering. The technique can be used together with Agile Programming to develop software in internet time. We illustrate the technique and introduce lazy refinement, responsibility composition and context sketching. Goal sketching has been used in a number of real-world development projects, one of which is described here

    A practical approach to goal modelling for time-constrained projects

    Get PDF
    Goal modelling is a well known rigorous method for analysing problem rationale and developing requirements. Under the pressures typical of time-constrained projects its benefits are not accessible. This is because of the effort and time needed to create the graph and because reading the results can be difficult owing to the effects of crosscutting concerns. Here we introduce an adaptation of KAOS to meet the needs of rapid turn around and clarity. The main aim is to help the stakeholders gain an insight into the larger issues that might be overlooked if they make a premature start into implementation. The method emphasises the use of obstacles, accepts under-refined goals and has new methods for managing crosscutting concerns and strategic decision making. It is expected to be of value to agile as well as traditional processes

    Predicting operator workload during system design

    Get PDF
    A workload prediction methodology was developed in response to the need to measure workloads associated with operation of advanced aircraft. The application of the methodology will involve: (1) conducting mission/task analyses of critical mission segments and assigning estimates of workload for the sensory, cognitive, and psychomotor workload components of each task identified; (2) developing computer-based workload prediction models using the task analysis data; and (3) exercising the computer models to produce predictions of crew workload under varying automation and/or crew configurations. Critical issues include reliability and validity of workload predictors and selection of appropriate criterion measures

    Recurrent Contour-based Instance Segmentation with Progressive Learning

    Full text link
    Contour-based instance segmentation has been actively studied, thanks to its flexibility and elegance in processing visual objects within complex backgrounds. In this work, we propose a novel deep network architecture, i.e., PolySnake, for contour-based instance segmentation. Motivated by the classic Snake algorithm, the proposed PolySnake achieves superior and robust segmentation performance with an iterative and progressive contour refinement strategy. Technically, PolySnake introduces a recurrent update operator to estimate the object contour iteratively. It maintains a single estimate of the contour that is progressively deformed toward the object boundary. At each iteration, PolySnake builds a semantic-rich representation for the current contour and feeds it to the recurrent operator for further contour adjustment. Through the iterative refinements, the contour finally progressively converges to a stable status that tightly encloses the object instance. Moreover, with a compact design of the recurrent architecture, we ensure the running efficiency under multiple iterations. Extensive experiments are conducted to validate the merits of our method, and the results demonstrate that the proposed PolySnake outperforms the existing contour-based instance segmentation methods on several prevalent instance segmentation benchmarks. The codes and models are available at https://github.com/fh2019ustc/PolySnake

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research
    corecore