16,061 research outputs found

    KRATOS: An Open Source Hardware-Software Platform for Rapid Research in LPWANs

    Full text link
    Long-range (LoRa) radio technologies have recently gained momentum in the IoT landscape, allowing low-power communications over distances up to several kilometers. As a result, more and more LoRa networks are being deployed. However, commercially available LoRa devices are expensive and propriety, creating a barrier to entry and possibly slowing down developments and deployments of novel applications. Using open-source hardware and software platforms would allow more developers to test and build intelligent devices resulting in a better overall development ecosystem, lower barriers to entry, and rapid growth in the number of IoT applications. Toward this goal, this paper presents the design, implementation, and evaluation of KRATOS, a low-cost LoRa platform running ContikiOS. Both, our hardware and software designs are released as an open- source to the research community.Comment: Accepted at WiMob 201

    ShapeClip: towards rapid prototyping with shape-changing displays for designers

    Get PDF
    This paper presents ShapeClip: a modular tool capable of transforming any computer screen into a z-actuating shape-changing display. This enables designers to produce dynamic physical forms by "clipping" actuators onto screens. ShapeClip displays are portable, scalable, fault-tolerant, and support runtime re-arrangement. Users are not required to have knowledge of electronics or programming, and can develop motion designs with presentation software, image editors, or web-technologies. To evaluate ShapeClip we carried out a full-day workshop with expert designers. Participants were asked to generate shape-changing designs and then construct them using ShapeClip. ShapeClip enabled participants to rapidly and successfully transform their ideas into functional systems

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Remote control of devices using an 8-bit embedded XML & dynamic web-server in a SmartHouse environment : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Computer Systems Engineering at Massey University

    Get PDF
    This paper focuses on an Embedded System known as "TCP/IC" and its role in the "house of the future" - the SmartHouse. Overall, the aim of the TCP/IC was to design a device which could interact with a user (or AI control system) and allow for the control of various attached peripherals remotely. Although such a device could well be used as a standalone device to aid in home-automation, this paper focuses on its use in a SmartHouse environment - one where a number of these devices are networked and controlled by a central AI. The different technologies and protocols involved in the implementation of the TCP/IC, along with its two primary interfaces, namely HTML (used for user interaction) and XML (used for machine interaction) are also discussed. The reader will also be introduced to Embedded Systems and the various design principles involved in the creation of quality Embedded Systems. Core-concepts of home-automation and its logical extension, the SmartHouse are also covered in detail. Various additional interfaces (e.g. Web, XML, custom-formatted text) are also discussed and compared, as are the result of my work and some ideas for future implementations

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    ECPlotter: A Toolkit for Rapid Prototyping of Electrochromic Displays

    Get PDF
    corecore