
Monitoring and debugging using an SDK for
NFV-powered telecom applications

Steven Van Rossem∗, Wouter Tavernier∗, Manuel Peuster †, Didier Colle∗,
Mario Pickavet∗ and Piet Demeester∗

∗Ghent University iMinds, Department of Information Technology.
Email: {steven.vanrossem, wouter.tavernier, didier.colle, mario.pickavet, piet.demeester} @intec.ugent.be

† Paderborn University
Email: {manuel.peuster}@uni-paderborn.de

Abstract—The next generation of telecom services will require
an unprecedented level of flexibility and functionality. In this 5G
network context, Software-Defined-Networking (SDN) and Net-
work Function Virtualization (NFV) offer new ways of managing
the network and the connected traffic processing nodes. This
leads to a programmable way to do Service Function Chaining
(SFC), effectively automating the deployment and management
of such network services. The growing interest and development
in the field of virtualization techniques such as virtual machines
or containers further proves that software can indeed play an
increasingly important role within telecom services, an area
previously dominated by hardware appliances. As a side effect,
these softwarization and virtualization techniques also enable
a very high degree of customization and configurability, which
can also introduce bugs into the service definition, complicating
and potentially slowing down service provisioning. In order to
close the gap between the development and operations side of a
provided service (DevOps), adequate tools are required that allow
rapid testing and verification of any modified parameter. To this
end we present a set of monitoring and debugging functionalities
in the context of aSoftware Development Kit (SDK) that allows
a service developer to rapidly setup and provision a network
service. By demonstrating how several example services can be
deployed in this SDK, we show how this light-weight toolchain
can be used to rapidly develop and debug NFV-based services.

Index Terms—SDK, DevOps, SFC, NFV

I. INTRODUCTION AND MOTIVATION

We start from the viewpoint that a network service consists
of several packet processing nodes called Virtualized Network
Functions (VNFs). In production, these softwarized network
functions can be deployed in multiple datacenters but prior to
this stage, it would be beneficial if these VNFs can be tested
in a more light-weight environment. Not only to ensure the
correct configuration of the packet processing software, but
also taking into account additional service related processes
such as orchestration, scaling and state migration.

When applying Network Function Virtualization (NFV) to
a telecom network service, it consists of several packet pro-
cessing nodes called Virtualized Network Functions (VNFs).
In a production context, these softwarized network functions
can be deployed in multiple datacenters but prior to this stage,
it would be beneficial if these VNFs can be tested in a more
confined, light-weight environment. This would allow testing
the configuration the packet processing software, the chaining
of functionality, but also taking into account the impact of

orchestration, scaling and state migration. Directly testing this
in a production-alike environment might involve risks and
allow few options for monitoring and debugging. Service
providers would benefit from a more light-weight sandbox for
NFV (micro-)services, as it enables fast prototyping of new
telecom services, combined with a set of tools to check and
debug its configuration and functionality. This also implies that
the development of such NFV-based telecom services must be
compatible with the platform providing them. Network service
Management and Orchestration platforms (MANO), typically
only provide the operational aspect of deploying a service, but
lack specific support for developing, testing and debugging.
Frameworks presented in [1] and [2] highlight the need for
specialized tools related to NFV-based services but only focus
on a single aspect or metric. Tools as developed in [3] try
to combine several monitoring functionalities, but miss the
ability to emulate or deploy a service for testing. The SONATA
project 1 aims to fully incorporate the development aspect
as well. A Software Development Kit (SDK) is introduced,
allowing to design, test and update services before they are
(re-)deployed on a production environment, like SONATAs
service platform. This continuous cycle between development
and operations, a concept known as DevOps, is a well-known
practice from software development. SONATA is developing
an NFV framework that provides a programming model and
development toolchain for virtualized services, fully integrated
with a DevOps-enabled service platform and orchestration
system.

It is worth mentioning that all software and examples shown
in this demo are open-source and can be freely downloaded
from the projects GitHub repository [4] and webpage [5].

II. AN SDK FOR NFV-BASED SERVICES

The SDK is built as a set of small independent tools which
can be combined into a workflow to develop a service. This
design enables an agile way of working, involving quick
and iterative cycles of development, with the possibility to
rapidly transition between development and operations, which
is one of the key characteristics of the SONATA approach.
The software design of the SDK tries to re-use existing

1http://sonata-nfv.eu/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84045765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. The SDK flow of development and debugging, with a loop to re-iterate the development process either from the SDK or the production environment.

workflows and concepts in software development such as the
use of workspaces, project folders and packaging techniques.
This will enable new developers to get acquainted with the
SONATA development methodology and tool-set in a short
time. Where possible, existing software or libraries have been
re-used, to increase the robustness and overall feature set of
the SONATA SDK.

Figure 1 shows the global workflow and functionalities
implemented in the SDK. The different functionalities imple-
mented in the SDK are listed. They range from tools like
editors to describe the service in a specified format, to the
deployment, debugging and analysis of the service inside the
SDK environment. From the SDK, the service can be pushed
to the actual production environment, once development is
considered ready. Different re-iterations from both the SDK or
the production environment can be done to debug and update
a service.

A. Development & debugging process
From the global workflow in Figure 1, we highlight the

following two functions in this demo as they form the core of
the development and debugging process in the SDK:

• son-emu: Extends a Mininet-based environment where
VNFs implemented as Docker [6] containers can be
deployed and chained, as described in [7] and [8].

• son-monitor: A collection of tools that gather and store
several monitored metrics, giving the developer a quick
and user-defined real-time overview of those metrics,
helping to test and debug the service. This is further
detailed in section II-C.

As can be seen in Figure 2, the emulator is able to :
• Emulate an available infrastructure as a network of linked

datacenters or Points of Presence (PoP), interconnected
by switches. (Two PoPs in this case)

• Deploy VNFs (in the form of Docker containers) inside
the PoPs at runtime.

• Chain the different VNFs together.
Likewise, as depicted in Figure 2, the monitoring framework

is able to :

• Monitor compute, storage and network metrics (cpu,
mem, traffic rates) of the VNFs themselves.

• Monitor custom and user-defined flows inside the emu-
lator network (inspect the links between the VNFs).

• Start specific commands in the access points of the
service to measure end-to-end metrics (eg. start a packet
stream at the input and monitor the delay and packet loss
at the output).

These tools form the base for a sandbox that can be used to
easily deploy and monitor NFV-based services. The monitored
metrics and provided functionality allow a developer to check
the configuration and basic performance of each VNF and the
total service.

B. Service components

The SONATA programming model focuses on the common
concepts of service chains and service graphs comprised
by individual network functions. Each of these components
are defined by their corresponding descriptors following a
particular data model. The used data models are built upon
ongoing standards (ie. TOSCA or ETSI) or outcomes of
research projects (ie. FP7 T-NOVA, UNIFY), extending them
when appropriate. A SONATA service is characterized by a
network service descriptor (NSD), a set of virtual network
function descriptors (VNFD), and a package descriptor for
the overall service. Each of these descriptors define artifacts
containing data and information such as images, files and/or
configuration parameters or scripts. The descriptors follow a
YAML schema language format. A set of validation tools have
been implemented to check if given descriptors are compliant
with the SONATA format.

Also visible in Figure 2 are the inputs to the emulator
and monitoring framework. The NSD and VNFD descriptor
files include the necessary information to deploy the VNFs
and the links of the service in the emulator. The list of
monitored metrics can also be parsed from a descriptor file
or manually given via the command-line. The VNFDs and
NSD are packaged and sent to the emulator for deployment.



Fig. 2. High-level architecture of the SDK showing the emulator and its
monitor framework including a deployed service.

A specific architectural aspect of the SONATA platform is
that the service developer can ship the service package to the
service platform together with service- or function-specific
management or configuration code, expressing and realizing
requirements and preferences. This code is referred to in
SONATA as Service-Specific Managers (SSM) and Function-
Specific Managers (FSM), respectively. SSMs and FSMs
can influence the Service and VNF lifecycle management
operations, e.g., by specifying desired placement or scaling
behaviour. This grants the developers increased flexibility,
control and resilience of their service. The architecture of
the SONATA service platform is documented in [9]. Also in
a context of closed-source VNFs, where a developer cannot
make internal modifications inside the VNF code, the SSM
might offer a way to translate or ’glue’ the API of one VNF
to that of another one. This is illustrated in Figure 2 where
an SSM is connected to the management interface of different
VNFs in order to configure them and receive additional data
from them. The SDK can be a sandbox to test this SSM and
FSM code since the interfaces to the VNFs are available when
deployed in the SDK. The SSM/FSM will use the VNF APIs
to communicate with the VNFs and it can be tested if these
APIs are indeed available and working as expected.

C. SDK architecture

A detailed breakdown of the SDK architecture can be
seen in Figure 3. Son-monitor is part of SONATA’s son-cli
repository and can be installed on the development machine
from a debian package or as a docker container. Son-emu can
be deployed as a Docker container (requiring privileged root
access to control the networking of the SDK machine) or as
an isolated VM using a Vagrant script.

All installation instructions can be found in the SONATA
github page: [4]. The SONATA specific Docker containers are
also available from its public Docker hub2.

2https://hub.docker.com/u/sonatanfv/

Fig. 4. An IDS service consisting of multiple VNFs and an SSM.

Additional containers are being deployed to help gather,
store and visualize monitored metrics:

• cAdvisor [10] : Analyzes resource usage and performance
characteristics of running containers.

• Prometheus DB and pushgateway [11] : Used as database
to gather and temporarily store the monitored metrics.

• Grafana [12] : Visualization of the metrics.

A complete description of the SDK and its current capabil-
ities can be found in [13].

One of the main advantages of this architecture is that it’s
light-weight enough to be executed on a single machine (eg.
the service developer’s laptop) and allows rapid prototyping
of NFV-based services.

III. DEMONSTRATION: DEVELOPING AND DEBUGGING AN
INTRUSION DETECTION SERVICE

To illustrate the capabilities of this SDK, we want to deploy
the service illustrated in Figure 4, by sending the appropriate
service package to the emulator. By generating traffic and
monitoring specific link and VNF metrics, we will be able
to identify possible bugs or a misconfiguration in the service.
Once verified and assumed to be correctly functioning in
the SDK, the service package is ready for the production
environment.

A. Service description

This Intrusion Detection System (IDS) consists out of a
Firewall (Ryu Openflow controller + OpenVSwitch) and a
Deep Packet Inspector (SNORT). The Firewall mirrors every
received packet on a port to the DPI. This mirrored traffic is
analyzed and when malicious traffic is found, the DPI sends
an alert to the Ryu controller of the Firewall, instructing it to
block certain flows of traffic. This is translated to installing a
blocking flowrule in the OpenVswitch’s flowtable, effectively
blocking the malicious traffic.



Fig. 3. Low-level architecture of the SDK showing the emulator and its monitor framework, including the different sub-components.

B. Components and descriptors
The NSD and VNFD yaml files that describe the service can

be shown during the demo and are sent as a package to the
emulator to be deployed. They basically inform the emulator
to deploy every VNF and link shown in Figure 4. Additionally
we construct a monitoring descriptor file that contains all the
metrics we want to monitor while the service is running in
the SDK. This monitoring descriptor file is parsed by the son-
monitor command and as a result a Grafana dashboard where
all the metrics are shown in real-time is automatically created.
Figure 5 and 6 illustrate the Grafana output. This dashboard
offers the main overview for the developer to check if the
service is functioning correctly.

Fig. 5. VNF metrics (cpu, mem, traffic rate) monitored by Grafana

C. Debugging
By using a combination of user-defined metrics and gener-

ated traffic from the service access points, it will be possible

Fig. 6. Packet counters for user flows monitored by Grafana

to verify the correct functionality of the service. We assume
the service developer has pre-installed some rules in SNORT
to detect and block traffic such as ping flood attacks or a
website that should be blocked. By generating ping messages
and website requests from the service access points, we can
monitor if and how long it takes for the service to effectively
block the traffic. By monitoring cpu rate, traffic rate and end-
to-end packet loss, we can get a first idea of the service per-
formance while generating different packet streams. Different
packet generators can be used such as iperf, netperf, scapy
or tcpreplay to stream a pre-created pcap file. In addition to
checking the service functionality, the monitoring framework
can assist in debugging specific bugs or errors that might occur
when creating NFV-based network services.

1) NSD fault: This fault is caused by an error is the NSD
file. This can be a link between two VNFs that is wrongly



defined in the NSD. For example if the link between OVS and
Ryu in Figure 4 is forgotten or attached to another interface,
we will not monitor OpenFlow tcp packets on the link of ovs
to Ryu. By monitoring the packet rates on any VNF interface
a broken link can be easily identified.

2) VNF fault: This can be caused by a misconfiguration
of the VNF or a VNF software bug. For example if the
OVS is wrongly configured and sends the mirrorred traffic
out on another port, then SNORT will not receive any traffic
to analyze and no alert will be sent. This will be noticed when
monitoring the mirrored traffic and alerts on the specified links.

3) SSM fault: This kind of error is related to failing service
specific management, for example the wrong use of the API of
a VNF. If for example the user wants to install a new rule into
SNORT this can be automated by letting the SSM ssh into the
VNF and modify the configuration files or rule files. Also the
REST API of Ryu can be used to configure additional rules
in the firewall. In the SDK, we can test the any API call the
SSM would need to use.

IV. FUTURE WORK

The SDK emulator is currently limited to deploying Docker
containers. These are relatively light-weight VNFs that enable
a local deployment on a single machine. Some production
environments lack however good support to deploy containers
and only accept Virtual Machines (VMs). To keep the SDK
light-weight and fast, it is not recommended to deploy actual
VMs inside the emulator, but it can be investigated how a
Docker container can be automatically transferred to a VM
and how much the performance overhead can be minimized.

Building specialized monitoring agents that can be deployed
as VNFs inside the service enable monitoring features that can
be moved from the service endpoints to anywhere inside the
service. Our research will further build upon this to develop
standard validation tests for SFC’s and profiling procedures
that help in the prediction of VNF performance.

V. DEMO RELATED TOPICS

To show the demo, only the presenter’s laptop will be used.
One additional monitor (to be provided by the organization) is
recommended. As tentative schedule, minimal 5 mins. would
be necessary to explain the basic architecture and show a
running example. This includes a walk-through of the devel-
opment cycle starting from the creation of a network service
(including introduced bugs), its deployment in the emulator
of the SDK, demonstration of monitored metrics, debugging
actions, and redeployment.

VI. CONCLUSION

The presented SDK environment is a light-weight sandbox
that allows rapid prototyping of NFV-based services. The
SDK provides the developer a confined environment, where
network services can be evaluated in terms of functionality
rather than pure performance, monitored and debugged be-
fore they actually need to reach the market or production
environment. This implementation has the big advantage that

service chains can be set up, tested and monitored in a very
short timeframe (seconds to minutes), allowing fast reboots
and reconfigurations of parameters inside the VNFs or in
the emulator network. After the NFV-based service has been
tested in the SDK, a basic verification of its configuration
and descriptors has been done, increasing its chances of a
successful deployment in the production environment.

All software and examples shown in this demo are open-
source and can be freely downloaded from the project’s
GitHub repository [4] and webpage [5]. More example ser-
vices and VNFs will be included in the SONATA GitHub
pages as the project continues.

ACKNOWLEDGEMENT

This work has been performed in the framework of the
SONATA project, funded by the European Commission under
Grant number 671517 through the Horizon 2020 and 5G-
PPP programs. The authors would like to acknowledge the
contributions of their colleagues of the SONATA partner
consortium (www.sonata-nfv.eu).

REFERENCES

[1] H. Mahkonen, R. Manghirmalani, M. Shirazipour, M. Xia, and
A. Takacs, “Elastic network monitoring with virtual probes,” in Network
Function Virtualization and Software Defined Network (NFV-SDN), 2015
IEEE Conference on. IEEE, 2015, pp. 1–3.

[2] M. Xia, M. Shirazipour, H. Mahkonen, R. Manghirmalani, and
A. Takacs, “Resource optimization for service chain monitoring in
software-defined networks,” in 2015 Fourth European Workshop on
Software Defined Networks. IEEE, 2015, pp. 91–96.

[3] I. Pelle, T. Lévai, F. Németh, and A. Gulyás, “One tool to rule them all:
a modular troubleshooting framework for sdn (and other) networks,” in
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. ACM, 2015, p. 24.

[4] SONATA consortium, “SONATA github,” https://github.com/sonata-nfv,
2016.

[5] SONATA project, “SONATA webpage,” http://sonata-nfv.eu, 2016.
[6] Docker Inc., “Docker: An open platform for distributed applications,”

Website, August 2013, online at http://www.docker.com/.
[7] M. Peuster, H. Karl, and S. van Rossem, “Medicine: Rapid

prototyping of production-ready network services in multi-pop
environments,” CoRR, vol. abs/1606.05995, 2016. [Online]. Available:
http://arxiv.org/abs/1606.05995

[8] M. Peuster, “containernet,” https://github.com/mpeuster/containernet,
2016.

[9] SONATA consortium, “D2.2 Architecture Design,” http://sonata-
nfv.eu/content/architecture, 2015.

[10] Google, “cAdvisor,” 2014. [Online]. Available: https://github.com/
google/cadvisor

[11] Prometheus authors, “Prometheus - Monitoring system and time series
database,” 2016. [Online]. Available: https://prometheus.io

[12] Grafana, “Grafana - Beautiful metric and analytic dashboards,” 2015.
[Online]. Available: http://grafana.org/

[13] W. Tavernier, S. V. Rossem, T. Batista, M. Bredel, G. Chollon, M. S.
Siddiqui, M. Peuster, and S. Draxler, “Deliverable 3.1: Basic SDK Pro-
totype,” http://sonata-nfv.eu/content/d31-basic-sdk-prototype, SONATA
consortium, Tech. Rep., 2016.


