841 research outputs found

    A Study on Remaining Useful Life Prediction for Prognostic Applications

    Get PDF
    We consider the prediction algorithm and performance evaluation for prognostics and health management (PHM) problems, especially the prediction of remaining useful life (RUL) for the milling machine cutter and lithium ‐ ion battery. We modeled battery as a voltage source and internal resisters. By analyzing voltage change trend during discharge, we made the prediction of battery remain discharge time in one discharge cycle. By analyzing internal resistance change trend during multiple cycles, we were able to predict the battery remaining useful time during its life time. We showed that the battery rest profile is correlated with the RUL. Numerical results using the realistic battery aging data from NASA prognostics data repository yielded satisfactory performance for battery prognosis as measured by certain performance metrics. We built a battery test platform and simulated more usage pattern and verified the prediction algorithm. Prognostic performance metrics were used to compare different algorithms

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    Advanced Battery Technologies: New Applications and Management Systems

    Get PDF
    In recent years, lithium-ion batteries (LIBs) have been increasingly contributing to the development of novel engineering systems with energy storage requirements. LIBs are playing an essential role in our society, as they are being used in a wide variety of applications, ranging from consumer electronics, electric mobility, renewable energy storage, biomedical applications, or aerospace systems. Despite the remarkable achievements and applicability of LIBs, there are several features within this technology that require further research and improvements. In this book, a collection of 10 original research papers addresses some of those key features, including: battery testing methodologies, state of charge and state of health monitoring, and system-level power electronics applications. One key aspect to emphasize when it comes to this book is the multidisciplinary nature of the selected papers. The presented research was developed at university departments, institutes and organizations of different disciplines, including Electrical Engineering, Control Engineering, Computer Science or Material Science, to name a few examples. The overall result is a book that represents a coherent collection of multidisciplinary works within the prominent field of LIBs

    Battery Management in Electric Vehicles: Current Status and Future Trends

    Get PDF
    Lithium-ion batteries are an indispensable component of the global transition to zero-carbon energy and are instrumental in achieving COP26's objective of attaining global net-zero emissions by the mid-century. However, their rapid expansion comes with significant challenges. The continuous demand for lithium-ion batteries in electric vehicles (EVs) is expected to raise global environmental and supply chain concerns, given that the critical materials required for their production are finite and predominantly mined in limited regions worldwide. Consequently, significant battery waste management will eventually become necessary. By implementing appropriate and enhanced battery management techniques in electric vehicles, the performance of batteries can be improved, their lifespan extended, secondary uses enabled, and the recycling and reuse of EV batteries promoted, thereby mitigating global environmental and supply chain concerns. Therefore, this reprint was crafted to update the scientific community on recent advancements and future trajectories in battery management for electric vehicles. The content of this reprint spans a spectrum of EV battery advancements, ranging from fundamental battery studies to the utilization of neural network modeling and machine learning to optimize battery performance, enhance efficiency, and ensure prolonged lifespan

    Design and realization of a smart battery management system

    Get PDF
    Battery management system (BMS) emerges a decisive system component in battery-powered applications, such as (hybrid) electric vehicles and portable devices. However, due to the inaccurate parameter estimation of aged battery cells and multi-cell batteries, current BMSs cannot control batteries optimally, and therefore affect the usability of products. In this paper, we proposed a smart management system for multi-cell batteries, and discussed the development of our research study in three directions: i) improving the effectiveness of battery monitoring and current sensing, ii) modeling the battery aging process, and iii) designing a self-healing circuit system to compensate performance variations due to aging and other variations.published_or_final_versio

    Development Schemes of Electric Vehicle Charging Protocols and Implementation of Algorithms for Fast Charging under Dynamic Environments Leading towards Grid-to-Vehicle Integration

    Get PDF
    This thesis focuses on the development of electric vehicle (EV) charging protocols under a dynamic environment using artificial intelligence (AI), to achieve Vehicle-to-Grid (V2G) integration and promote automobile electrification. The proposed framework comprises three major complementary steps. Firstly, the DC fast charging scheme is developed under different ambient conditions such as temperature and relative humidity. Subsequently, the transient performance of the controller is improved while implementing the proposed DC fast charging scheme. Finally, various novel techno-economic scenarios and case studies are proposed to integrate EVs with the utility grid. The proposed novel scheme is composed of hierarchical stages; In the first stage, an investigation of the temperature or/and relative humidity impact on the charging process is implemented using the constant current-constant voltage (CC-CV) protocol. Where the relative humidity impact on the charging process was not investigated or mentioned in the literature survey. This was followed by the feedforward backpropagation neural network (FFBP-NN) classification algorithm supported by the statistical analysis of an instant charging current sample of only 10 seconds at any ambient condition. Then the FFBP-NN perfectly estimated the EV’s battery terminal voltage, charging current, and charging interval time with an error of 1% at the corresponding temperature and relative humidity. Then, a nonlinear identification model of the lithium-polymer ion battery dynamic behaviour is introduced based on the Hammerstein-Wiener (HW) model with an experimental error of 1.1876%. Compared with the CC-CV fast charging protocol, intelligent novel techniques based on the multistage charging current protocol (MSCC) are proposed using the Cuckoo optimization algorithm (COA). COA is applied to the Hierarchical technique (HT) and the Conditional random technique (CRT). Compared with the CC-CV charging protocol, an improvement in the charging efficiency of 8% and 14.1% was obtained by the HT and the CRT, respectively, in addition to a reduction in energy losses of 7.783% and 10.408% and a reduction in charging interval time of 18.1% and 22.45%, respectively. The stated charging protocols have been implemented throughout a smart charger. The charger comprises a DC-DC buck converter controlled by an artificial neural network predictive controller (NNPC), trained and supported by the long short-term memory neural network (LSTM). The LSTM network model was utilized in the offline forecasting of the PV output power, which was fed to the NNPC as the training data. The NNPC–LSTM controller was compared with the fuzzy logic (FL) and the conventional PID controllers and perfectly ensured that the optimum transient performance with a minimum battery terminal voltage ripple reached 1 mV with a very high-speed response of 1 ms in reaching the predetermined charging current stages. Finally, to alleviate the power demand pressure of the proposed EV charging framework on the utility grid, a novel smart techno-economic operation of an electric vehicle charging station (EVCS) in Egypt controlled by the aggregator is suggested based on a hierarchical model of multiple scenarios. The deterministic charging scheduling of the EVs is the upper stage of the model to balance the generated and consumed power of the station. Mixed-integer linear programming (MILP) is used to solve the first stage, where the EV charging peak demand value is reduced by 3.31% (4.5 kW). The second challenging stage is to maximize the EVCS profit whilst minimizing the EV charging tariff. In this stage, MILP and Markov Decision Process Reinforcement Learning (MDP-RL) resulted in an increase in EVCS revenue by 28.88% and 20.10%, respectively. Furthermore, the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technologies are applied to the stochastic EV parking across the day, controlled by the aggregator to alleviate the utility grid load demand. The aggregator determined the number of EVs that would participate in the electric power trade and sets the charging/discharging capacity level for each EV. The proposed model minimized the battery degradation cost while maximizing the revenue of the EV owner and minimizing the utility grid load demand based on the genetic algorithm (GA). The implemented procedure reduced the degradation cost by an average of 40.9256%, increased the EV SOC by 27%, and ensured an effective grid stabilization service by shaving the load demand to reach a predetermined grid average power across the day where the grid load demand decreased by 26.5% (371 kW)

    VRLA battery state of health estimation based on charging time

    Get PDF
    Battery state of health (SoH) is an important parameter of the battery’s ability to store and deliver electrical energy. Various methods have been so far developed to calculate the battery SoH, such as through the calculation of battery impedance or battery capacity using Kalman Filter, Fuzzy theory, Probabilistic Neural Network, adaptive hybrid battery model, and Double Unscented Kalman Filtering (D-UKF) algorithm. This paper proposes an approach to estimate the value of battery SoH based on the charging time measurement. The results of observation and measurements showed that a new and used batteries would indicate different charging times. Unhealthy battery tends to have faster charging and discharging time. The undertaken analysis has been focused on finding out the relationship between the battery SoH and the charging time range. To validate the results of this proposed approach, the use of battery capacity method has been considered as comparison. It can be concluded that there is a strong correlation between the two discussed SoH estimation methods, confirming that the proposed method is feasible as an alternative SoH estimation method to the widely known battery capacity method. The correlation between the charging-disharging times of healthy and unhealthy batteries is very prospective to develop a battery charger in the future with a prime advantage of not requiring any sensor for the data acquisition

    Technology development of electric vehicles: A review

    Get PDF
    To reduce the dependence on oil and environmental pollution, the development of electric vehicles has been accelerated in many countries. The implementation of EVs, especially battery electric vehicles, is considered a solution to the energy crisis and environmental issues. This paper provides a comprehensive review of the technical development of EVs and emerging technologies for their future application. Key technologies regarding batteries, charging technology, electric motors and control, and charging infrastructure of EVs are summarized. This paper also highlights the technical challenges and emerging technologies for the improvement of efficiency, reliability, and safety of EVs in the coming stages as another contribution
    corecore