1,454 research outputs found

    A Sparse Graph-Structured Lasso Mixed Model for Genetic Association with Confounding Correction

    Full text link
    While linear mixed model (LMM) has shown a competitive performance in correcting spurious associations raised by population stratification, family structures, and cryptic relatedness, more challenges are still to be addressed regarding the complex structure of genotypic and phenotypic data. For example, geneticists have discovered that some clusters of phenotypes are more co-expressed than others. Hence, a joint analysis that can utilize such relatedness information in a heterogeneous data set is crucial for genetic modeling. We proposed the sparse graph-structured linear mixed model (sGLMM) that can incorporate the relatedness information from traits in a dataset with confounding correction. Our method is capable of uncovering the genetic associations of a large number of phenotypes together while considering the relatedness of these phenotypes. Through extensive simulation experiments, we show that the proposed model outperforms other existing approaches and can model correlation from both population structure and shared signals. Further, we validate the effectiveness of sGLMM in the real-world genomic dataset on two different species from plants and humans. In Arabidopsis thaliana data, sGLMM behaves better than all other baseline models for 63.4% traits. We also discuss the potential causal genetic variation of Human Alzheimer's disease discovered by our model and justify some of the most important genetic loci.Comment: Code available at https://github.com/YeWenting/sGLM

    A Penalized Multi-trait Mixed Model for Association Mapping in Pedigree-based GWAS

    Full text link
    In genome-wide association studies (GWAS), penalization is an important approach for identifying genetic markers associated with trait while mixed model is successful in accounting for a complicated dependence structure among samples. Therefore, penalized linear mixed model is a tool that combines the advantages of penalization approach and linear mixed model. In this study, a GWAS with multiple highly correlated traits is analyzed. For GWAS with multiple quantitative traits that are highly correlated, the analysis using traits marginally inevitably lose some essential information among multiple traits. We propose a penalized-MTMM, a penalized multivariate linear mixed model that allows both the within-trait and between-trait variance components simultaneously for multiple traits. The proposed penalized-MTMM estimates variance components using an AI-REML method and conducts variable selection and point estimation simultaneously using group MCP and sparse group MCP. Best linear unbiased predictor (BLUP) is used to find predictive values and the Pearson's correlations between predictive values and their corresponding observations are used to evaluate prediction performance. Both prediction and selection performance of the proposed approach and its comparison with the uni-trait penalized-LMM are evaluated through simulation studies. We apply the proposed approach to a GWAS data from Genetic Analysis Workshop (GAW) 18

    Analysis of historical selection in winter wheat

    Get PDF
    KEY MESSAGE: Modeling of the distribution of allele frequency over year of variety release identifies major loci involved in historical breeding of winter wheat. Winter wheat is a major crop with a rich selection history in the modern era of crop breeding. Genetic gains across economically important traits like yield have been well characterized and are the major force driving its production. Winter wheat is also an excellent model for analyzing historical genetic selection. As a proof of concept, we analyze two major collections of winter wheat varieties that were bred in Western Europe from 1916 to 2010, namely the Triticeae Genome (TG) and WAGTAIL panels, which include 333 and 403 varieties, respectively. We develop and apply a selection mapping approach, Regression of Alleles on Years (RALLY), in these panels, as well as in simulated populations. RALLY maps loci under sustained historical selection by using a simple logistic model to regress allele counts on years of variety release. To control for drift-induced allele frequency change, we develop a hybrid approach of genomic control and delta control. Within the TG panel, we identify 22 significant RALLY quantitative selection loci (QSLs) and estimate the local heritabilities for 12 traits across these QSLs. By correlating predicted marker effects with RALLY regression estimates, we show that alleles whose frequencies have increased over time are heavily biased toward conferring positive yield effect, but negative effects in flowering time, lodging, plant height and grain protein content. Altogether, our results (1) demonstrate the use of RALLY to identify selected genomic regions while controlling for drift, and (2) reveal key patterns in the historical selection in winter wheat and guide its future breeding

    Analysis of historical selection in winter wheat

    Get PDF
    KEY MESSAGE: Modeling of the distribution of allele frequency over year of variety release identifies major loci involved in historical breeding of winter wheat. ABSTRACT: Winter wheat is a major crop with a rich selection history in the modern era of crop breeding. Genetic gains across economically important traits like yield have been well characterized and are the major force driving its production. Winter wheat is also an excellent model for analyzing historical genetic selection. As a proof of concept, we analyze two major collections of winter wheat varieties that were bred in Western Europe from 1916 to 2010, namely the Triticeae Genome (TG) and WAGTAIL panels, which include 333 and 403 varieties, respectively. We develop and apply a selection mapping approach, Regression of Alleles on Years (RALLY), in these panels, as well as in simulated populations. RALLY maps loci under sustained historical selection by using a simple logistic model to regress allele counts on years of variety release. To control for drift-induced allele frequency change, we develop a hybrid approach of genomic control and delta control. Within the TG panel, we identify 22 significant RALLY quantitative selection loci (QSLs) and estimate the local heritabilities for 12 traits across these QSLs. By correlating predicted marker effects with RALLY regression estimates, we show that alleles whose frequencies have increased over time are heavily biased toward conferring positive yield effect, but negative effects in flowering time, lodging, plant height and grain protein content. Altogether, our results (1) demonstrate the use of RALLY to identify selected genomic regions while controlling for drift, and (2) reveal key patterns in the historical selection in winter wheat and guide its future breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00122-022-04163-3

    Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data

    Full text link
    Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even data sets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper we re-examine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (6 CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1357 individuals in 124 pedigrees) takes less than 2 minutes and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 minutes and 1.5 GB of memory

    Sparse Probit Linear Mixed Model

    Full text link
    Linear Mixed Models (LMMs) are important tools in statistical genetics. When used for feature selection, they allow to find a sparse set of genetic traits that best predict a continuous phenotype of interest, while simultaneously correcting for various confounding factors such as age, ethnicity and population structure. Formulated as models for linear regression, LMMs have been restricted to continuous phenotypes. We introduce the Sparse Probit Linear Mixed Model (Probit-LMM), where we generalize the LMM modeling paradigm to binary phenotypes. As a technical challenge, the model no longer possesses a closed-form likelihood function. In this paper, we present a scalable approximate inference algorithm that lets us fit the model to high-dimensional data sets. We show on three real-world examples from different domains that in the setup of binary labels, our algorithm leads to better prediction accuracies and also selects features which show less correlation with the confounding factors.Comment: Published version, 21 pages, 6 figure

    A phylogenomic perspective on diversity, hybridization and evolutionary affinities in the stickleback genus Pungitius

    Get PDF
    Hybridization and convergent evolution are phenomena of broad interest in evolutionary biology, but their occurrence poses challenges for reconstructing evolutionary affinities among affected taxa. Sticklebacks in the genus Pungitius are a case in point: evolutionary relationships and taxonomic validity of different species and populations in this circumpolarly distributed species complex remain contentious due to convergent evolution of traits regarded as diagnostic in their taxonomy, and possibly also due to frequent hybridization among taxa. To clarify the evolutionary relationships among different Pungitius species and populations globally, as well as to study the prevalence and extent of introgression among recognized species, genomic data sets of both reference genome-anchored single nucleotide polymorphisms and de novo assembled RAD-tag loci were constructed with RAD-seq data. Both data sets yielded topologically identical and well-supported species trees. Incongruence between nuclear and mitochondrial DNA-based trees was found and suggested possibly frequent hybridization and mitogenome capture during the evolution of Pungitius sticklebacks. Further analyses revealed evidence for frequent nuclear genetic introgression among Pungitius species, although the estimated proportions of autosomal introgression were low. Apart from providing evidence for frequent hybridization, the results challenge earlier mitochondrial and morphology-based hypotheses regarding the number of species and their affinities in this genus: at least seven extant species can be recognized on the basis of genetic data. The results also shed new light on the biogeographical history of the Pungitius-complex, including suggestion of several trans-Arctic invasions of Europe from the Northern Pacific. The well-resolved phylogeny should facilitate the utility of this genus as a model system for future comparative evolutionary studies.Peer reviewe

    netgwas: An R Package for Network-Based Genome-Wide Association Studies

    Full text link
    Graphical models are powerful tools for modeling and making statistical inferences regarding complex associations among variables in multivariate data. In this paper we introduce the R package netgwas, which is designed based on undirected graphical models to accomplish three important and interrelated goals in genetics: constructing linkage map, reconstructing linkage disequilibrium (LD) networks from multi-loci genotype data, and detecting high-dimensional genotype-phenotype networks. The netgwas package deals with species with any chromosome copy number in a unified way, unlike other software. It implements recent improvements in both linkage map construction (Behrouzi and Wit, 2018), and reconstructing conditional independence network for non-Gaussian continuous data, discrete data, and mixed discrete-and-continuous data (Behrouzi and Wit, 2017). Such datasets routinely occur in genetics and genomics such as genotype data, and genotype-phenotype data. We demonstrate the value of our package functionality by applying it to various multivariate example datasets taken from the literature. We show, in particular, that our package allows a more realistic analysis of data, as it adjusts for the effect of all other variables while performing pairwise associations. This feature controls for spurious associations between variables that can arise from classical multiple testing approach. This paper includes a brief overview of the statistical methods which have been implemented in the package. The main body of the paper explains how to use the package. The package uses a parallelization strategy on multi-core processors to speed-up computations for large datasets. In addition, it contains several functions for simulation and visualization. The netgwas package is freely available at https://cran.r-project.org/web/packages/netgwasComment: 32 pages, 9 figures; due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil
    corecore