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Abstract 14 

Genome-wide association studies (GWAS) aim to identify genetic markers strongly associated with 15 

quantitative traits by utilizing linkage disequilibrium (LD) between candidate genes and markers. 16 

However, because of LD between nearby genetic markers, the standard GWAS approaches 17 

typically detect a number of correlated SNPs covering long genomic regions, making corrections 18 

for multiple testing overly conservative. Additionally, the high dimensionality of modern GWAS 19 

data poses considerable challenges for GWAS procedures such as permutation tests, which are 20 

computationally intensive. We propose a cluster-based GWAS approach that first divides the 21 

genome into many large non-overlapping windows, and uses linkage disequilibrium network 22 

analysis in combination with principal component (PC) analysis as dimensional reduction tools to 23 

summarize the SNP data to independent PCs within clusters of loci connected by high LD. We then 24 

introduce single- and multi-locus models that can efficiently conduct the association tests on such 25 

high dimensional data. The methods can be adapted to different model structures, and used to 26 

analyse samples collected from the wild or from bi-parental F2 populations, which are commonly 27 

used in ecological genetics mapping studies. We demonstrate the performance of our approaches 28 

with two publicly available data sets from a plant (Arabidopsis thaliana) and a fish (Pungitius 29 

pungitius), as well as with simulated data.  30 
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Introduction 31 

A central problem in quantitative genetics is to understand the relationship between genotypes and 32 

quantitative traits. A Genome-wide association study (GWAS; Balding 2006; Korte and Farlow 33 

2013) is a population-based approach to identify a set of candidate loci associated with complex 34 

traits from a genome-wide set of genetic variants. Another closely related approach is quantitative 35 

trait locus (QTL) mapping (Mackay et al. 2009), which utilizes experimental crosses or pedigree 36 

data. The major difference between the GWAS and QTL approaches is that the former utilizes 37 

historical recombination events, whereas the latter relies on recent recombination events to detect 38 

association / linkage between genetic markers and phenotypes. Nevertheless, both approaches tend 39 

to use similar types of statistical methods, such as linear regression, to identify phenotype-genotype 40 

associations (Ernst and Steibel 2013). Therefore, although the main focus of this methodological 41 

paper is on statistical analysis of GWAS data, we will also demonstrate how the developed 42 

approach can be utilized with QTL mapping data.  43 

 The most widely used statistical approaches for GWAS belong to two classes: single-locus 44 

and multi-locus mapping methods (Yi et al. 2015). Single-locus methods utilize a marginal linear 45 

regression approach to map a quantitative trait to a single SNP at a time. In contrast, multi-locus 46 

approaches jointly estimate the effects of multiple SNPs on the trait. For both methods, hypothesis 47 

testing can be conducted to judge whether the SNPs are significantly associated with the trait, 48 

followed by correction for multiple testing to reduce the risk of calling false positive variants.   49 

 Next generation sequencing techniques have provided a cost-effective access to large 50 

genomic data sets, such as high-resolution SNP panels. The accessibility of such panels in GWAS 51 

and QTL studies provides an opportunity to fine-map the casual loci underlying phenotypes but 52 

such high dimensional data sets also pose great challenges. First, in many ecological GWAS and 53 

QTL-mapping studies, sample sizes are often limited to few hundreds of individuals due to logistic 54 

or budgetary limitations. However, the number of SNPs in these studies may reach hundreds of 55 

thousands or even several million, creating what statisticians know as a ‘p much larger than n’ 56 
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problem (i.e. number of SNPs is much larger than the number of individuals; Hastie et al. 2009). 57 

Second, another feature of large genomic data sets is that SNPs which are physically close to each 58 

other are often in linkage disequilibrium (i.e. correlated). This high dimensionality and correlation 59 

structure of population genomic data sets pose difficulties for both single- and multi-locus mapping 60 

approaches to identify QTL (Xu 2013a). First, single-locus mapping approaches rely on multiple-61 

testing corrections to reduce the rate of false positives. The most conventional and widely used 62 

approach is the Bonferroni correction (Dudbridge and Koeleman 2004), which works best when the 63 

multiple hypothesis tests are independent from each other. Thus, the Bonferroni correction typically 64 

becomes overly conservative when the tests are positively correlated, which is likely to be the case 65 

when LD is prevalent in the data.  66 

 Since a group of SNPs in high LD explain similar amounts of genetic variation in a given 67 

trait, it is reasonable to apply a dimensional reduction procedure before GWAS to exclude the 68 

redundant information from the data, and also to reduce the computational cost. Distance thinning 69 

(Danecek et al. 2011) is probably the most intuitive way for LD reduction, by simply extracting a 70 

subset of “unlinked” SNPs located within equal physical distance to each other. However, this 71 

approach does not account for the fact that the degree of LD among the loci can be unequal across 72 

the genome. A genome may consist of long LD blocks with hundreds of highly correlated SNPs, or 73 

it may contain singletons that are effectively unlinked even to nearby SNPs. In addition, unless 74 

recombination is entirely restricted between adjacent loci (e.g. due to an inversion) LD patterns 75 

across short physical distances are typically mosaic-like with potentially several distinct sets of loci 76 

connected by high LD overlapping in the genome (Daily et al. 2001; Zhang et al. 2002; Fig. 1). To 77 

account for this, some GWAS software, such as PLINK (Purcell et al. 2007), has implemented a LD 78 

pruning approach which first divides the genome into many (equal sized) windows, and then uses 79 

statistics to identify a few unlinked “tag” SNPs representative for the given window. These “tag” 80 

SNPs will then be used in the GWAS analyses. However, potentially much more information could 81 
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be gained if groups of SNPs in high LD were analyzed jointly by either single- or multi-locus 82 

mapping approaches. 83 

 An alternative window-based approach aggregates information from multiple correlated 84 

SNPs and uses a few uncorrelated summary statistics to replace the original data (Ge et al. 2016). A 85 

benefit of this summary statistics-based approach is that it can reduce noise in the data due to 86 

sequencing errors (Beissinger et al. 2015). Xu (2013a) introduced this kind of window-based 87 

approach for QTL mapping. First, the chromosome was divided into many artificial (selected by the 88 

users) or natural windows (selected on the basis of breakpoints in the linkage map). Second, a 89 

numerical integration approach was used to aggregate the SNP data in every window, which 90 

revealed that this approach is equivalent to calculating the mean genotype value of multiple SNPs.  91 

Xu’s (2013a) approach is related to the ‘burden test’ initially proposed in human genetics 92 

(Morgenthaler and Thilly 2007) to test a group of SNPs as a biological meaningful unit, such as a 93 

gene or a biochemical pathway. Within a functional unit, the SNPs were often summarized by 94 

dimensional reduction (Hibar et al. 2011) or smoothing techniques (Fan et al. 2013). For example, 95 

Hibar et al. (2011) proposed to use principal component analysis (PCA) for compressing SNP data 96 

prior to GWAS. The PCA is able to represent the original SNP data set with a set of independent 97 

principal components (i.e. orthogonal axes which explain the largest proportion of variation in the 98 

data). The chief benefit from the burden test-based approach is that it can maintain large amounts of 99 

the information in the data, while still effectively reducing the dimensionality. However, the burden 100 

test relies on prior knowledge of genome annotations, which may not be available for many species, 101 

especially for non-model organisms from the wild. 102 

 Recently, Kemppainen et al. (2015) proposed to use network analytical tools (LD network 103 

analysis: LDna) to study genome wide LD-patterns in population genomic data sets. This 104 

unsupervised method effectively partitions genomic data into sets of loci that have similar 105 

phylogenetic signals irrespective of their physical position in the genome. As such, the LDna 106 
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approach could provide a useful tool for flexible dimensionality reduction in gene mapping 107 

approaches utilizing large genomic datasets. 108 

 The aim of this paper is introduce and test the performance of a novel cluster-based 109 

association mapping approach attempting to solve, or at least reduce, some of the problems faced by 110 

existing mapping approaches. This approach uses LD network clustering (‘LDn-clustering’) and PC 111 

regression as dimensionality reduction tools enhance computational efficiency of QTL detection. 112 

The first step of this approach involves an extension of the LDna approach (Kemppainen et al. 2015) 113 

and uses linkage disequilibrium network analysis for grouping loci connected by high LD in non-114 

overlapping windows (i.e. small subsets of loci at time) along chromosomes. This LDn-clustering 115 

can define distinct sets loci connected by high LD even when the groups of loci are interspersed 116 

and/or physically overlapping along chromosomes (Fig. 1). The second step of the novel approach 117 

involves adoption of Hibar et al.’s (2011) strategy to use PCA as a method for dimensionality 118 

reduction in each cluster of loci connected by high LD (‘LD-clusters). 119 

 An additional novel methodological contribution of this work is that the single locus-based 120 

linear regression approach of Hibar et al. (2011) was generalized to a single- and multi-locus linear 121 

mixed model (LMM) context with the possibility to include a random effect to control for spurious 122 

effects of population structure. Consequently, the method is suitable for analyzing data sets with 123 

hidden family and population structure, including data collected from the wild. We illustrate the 124 

utility of the novel approach using two publicly available data sets: 278 nine-spined sticklebacks 125 

(Pungitius pungitus) genotyped for 74 078 SNPs (Yang et al. 2016; Li et al. 2017; Rastas et al. 126 

2017), and 337 thale cresses (Arabidopsis thaliana) genotyped for 200 121 SNPs (Atwell et al. 127 

2010; Baxter et al. 2010) as well as simulated data. 128 

  129 

Materials and Methods 130 

Single-locus models for association mapping 131 
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Suppose we have a sample of individuals collected from a general population. A quantitative trait 132 

with phenotypic observations is denoted as yi (i=1,…,n; n = total number of individuals), and bi-133 

allele SNP genotypes are denoted as xij (j=1,…,p; p is the number of SNPs). A simple linear 134 

regression model for detecting an association between the phenotype and each single SNP is 135 

defined as 136 

i.i.d.
2

0 , ~ N(0, ),                                           (1)i ij j i i ey xβ β ε ε σ= + +  137 

where β0 is the population mean, and βj is the marginal additive effect of the SNP j. The SNP data 138 

are typically coded as 1, 0 and -1 for three possible genotypes AA, AB and BB, respectively. When 139 

there are only two possible genotypes, as in the case of self-pollinating plants, the SNPs can be 140 

simply coded as 0 and 1. The residual error iε  independently follows a normal distribution with zero 141 

mean and variance 2
eσ .  142 

When the dominance effect is of interest, model (1) can be extended as 143 

i.i.d.
2

0 , ~ N(0, ),                                           (2)i ij j ij j i i ey x zβ β γ ε ε σ= + + +  144 

where zij is an indicator of the dominance, coded as 0, 1 and 0 for AA, AB and BB for the SNP j; γj 145 

is the dominance effect, and all other notations are the same as in (1).   146 

 To test if a SNP is significantly associated with a trait, one can test the null hypothesis: 147 

against the alternative hypothesis: . Standard procedures including t- and F-tests can 148 

be used (Kutner et al. 2004). Since many hypothesis tests are simultaneously conducted, it is 149 

important to adjust the p-values (i.e. adjust the significance threshold α) to control for false 150 

positives. Bonferroni correction (Shaffer 1995) – simply adjusting the significance threshold (α) by 151 

dividing it by the number of SNPs (p; i.e. α/p) – is a conventional and popular way to control the 152 

family wise error (FWER): the probability of having one incorrectly rejected null hypothesis among 153 

all the hypotheses (Efron 2010). The drawback of the Bonferroni correction is that the multiplicity 154 

adjustment procedure can be overly conservative, such that the test lacks the power to detect SNPs 155 

0jβ = 0jβ ≠
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truly associated with traits. This happens, for instance, when the p-values are positively correlated 156 

(Goeman and Solari 2014), as in the case when the tested SNPs are in strong LD. A solution to 157 

circumvent this problem is to use permutation tests to control for the FWER. Here the phenotype 158 

data is randomly re-shuffled thousands of times, and the association analysis is conducted 159 

repeatedly on each re-shuffled data set. In this way, the empirical distribution of the test statistics 160 

can be obtained, and the adjusted p-values can be calculated based on these distributions to control 161 

the multiplicity (Westfall and Young 1993). The main benefit of a permutation test is that it can 162 

effectively account for the correlation structure among the multiple tests (Efron 2010), and yields 163 

less conservative thresholds and more power to detect true positive SNPs. However, the 164 

permutation approach is very time consuming for large GWAS data sets. Because of this, 165 

Bonferroni correction remains one of the most commonly used multiple testing approaches in 166 

GWAS studies (e.g. Goeman and Solari 2014; Segura et al. 2012; Husby et al. 2015).  167 

 168 

Linear mixed models for controlling population structure  169 

When there is hidden population and/or family structure in the data that may affect the association 170 

mapping, a linear mixed model can be applied to control for it: 171 

i.i.d.
2

0 , ~ N(0, ),                                           (3)i ij j i i i ey x uβ β ε ε σ= + + +  172 

where the random effect ui is specified as 2
1[ ,..., ] MVN(0, )n gu u σ=u A  with known n×n sized 173 

relationship matrix A and unknown variance 2
gσ . The random effect u accounts for relatedness 174 

among the individuals, and it can help to reduce spurious effects caused by the population and/or 175 

family structure (Yu et al. 2006). The relationship (kinship) matrix A can be estimated from 176 

molecular marker information as (van Raden 2008):  177 

1

( 2 )( 2 )1 ,                                                  (4)
2 (1 )

p
ij j kj j

ik
j j j

x p x p
A

p p p=

− −
=

−∑  178 

 179 
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where pj is the minor allele frequency of the SNP j (j=1,…,p), xij and xkj are the genotype values of 180 

individuals i and k (i, k=1,…,n) at the SNP j. Alternatively, one may also estimate the relationship 181 

matrix from the known pedigree of the individuals.  182 

 Restricted maximum likelihood (REML) based programs such as EMMA (Kang et al. 183 

2008) and EMMAX (Kang et al. 2010) have been widely used to evaluate the regression parameters 184 

and variance components as described by Equation (3). The EMMA approach refers to a 185 

computational procedure which uses REML to estimate the variance components repeatedly for 186 

each SNP. In contrast, EMMAX estimates the variance components once based on an intercept 187 

model, and then fixes them to evaluate the effect and statistical significance of the SNPs. 188 

Consequently, the EMMAX approach is much faster and simpler to use on large data sets, and both 189 

simulation and empirical studies have shown that the EMMAX approach can have the same 190 

statistical power and ability to control for false positives than the more precise EMMA method 191 

(Kang et al. 2010). Therefore, we will consider EMMAX as the default method for mixed model 192 

analysis in this work.  193 

 In a linear mixed model, the hypothesis testing can be conducted using t- or F-tests in a 194 

similar way as in the case of standard linear regression. Bonferroni correction can also be 195 

straightforwardly used for multiple testing. However, the permutation test procedure used for 196 

standard linear model (1) is not applicable for the mixed model. The reason is that the standard 197 

permutation test randomly reshuffles phenotypes, which is equivalent to sampling phenotype data 198 

from a uniform distribution, and this implementation will remove any among-individual correlation 199 

from the data. Clearly, this violates the assumption of dependency structure among individuals in 200 

the mixed model, and might yield spurious statistical results (Joo et al. 2016). A correct way to 201 

conduct permutation tests on the basis of the mixed model would be to draw a sufficient number of 202 

independent samples from a multivariate normal distribution 2 2ˆ ˆMVN( , )g eσ σ+0 A I , and then use 203 

EMMAX to calculate the test statistics on each sample (Joo et al. 2016). However, as in the case of 204 
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standard linear regression, the permutation procedure will consume a considerable amount of 205 

computational time.  206 

 207 

Single-locus models for four-way crosses 208 

The linear models described by equations (1), (2) and (3) are standard choices for association 209 

analyses performed with bi-allele SNPs. In some circumstances, such as in the case of a four-way 210 

cross (Xu 1996), F1 offspring of a hybrid cross generated from two heterozygous parents (Van 211 

Ooijen 2009), and in the case of an outbred F2 design (Xu 2013b), there might be up to four 212 

possible alleles, A1, A2, B1 and B2 originating from two different breeds: dam and sire (A1 and A2 213 

from the dam, and B1, B2 from the sire). In such a case, the QTL model can be specified as 214 

i.i.d.
2

0 , ~ N(0, ),                                           (5)i dij dj sij sj ij j i i ey x x zβ β β γ ε ε σ= + + + +  215 

where βdj is the substitution effect of alleles A1 and A2 of the dam at the locus j (j=1,…,p), βsj is the 216 

substitution effect of B1 and B2, and γj is the dominance effect, and the coding system for [x1ij, x2ij, 217 

x3ij] can be specified in the following matrix (Xu 2013b): 218 

1 1

1 2

2 1

2 2

 for genotype A B ,1 1 1
for  A B ,1 1 1
for  A B ,1 1 1
for  A B .1 1 1

+ + +
+ − −
− + −
− − +

 219 

Note that the standard association mapping model in (2) is a special case of (5) where one cannot 220 

separate the allele A1 from A2 (or B1 from B2), and hence, βj=αj. In this sense, the model (5) has 221 

the benefit that it yields extra information about the sources of the observed QTL effects. However, 222 

the model (5) requires the knowledge of parental phasing, which is difficult to acquire in practice. 223 

Therefore, its application has been limited to certain experimental crosses (Xu 2013b).   224 

 225 

Multi-locus model and LASSO 226 

The single-locus mixed model (3) can easily be extended to a multiple regression problem by 227 

including all SNPs in the data in the same model: 228 
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i.i.d.
2

0
1

, ~ N(0, ),                                           (6)
p

i ij j i i i e
j

y x uβ β ε ε σ
=

= + + +∑  229 

Here the effect size βj of the jth SNP is conditional on the effects of all other SNPs, which is 230 

different from the marginal effect size estimated by equation (3). Note that other kinds of single 231 

locus linear models as defined by Equations (2), (3) and (5), can be extended to a multi-locus 232 

context in a similar fashion by adding all the covariates (SNPs) into the same model. 233 

 When the number of SNPs p is larger than the number of individuals n, simultaneous 234 

estimation of the effects of multiple SNPs is intractable with the standard maximum likelihood. 235 

However, penalized regression, known as mixed LASSO (Wang et al. 2011), can handle this kind 236 

of high dimensional problem: 237 

1

1

1 ( ) ( ) ,                                 (7)
2min

p
T

j
jn

λ β−

=

− − + ∑
β

y Xβ K y Xβ  238 

 where y is a vector of the phenotype data yi, X is the design matrix of genotypes xij, and β is the 239 

vector of the SNP effects βj, and 2 2
g eσ σ= +K A I . The penalized term 

1

p

j
j

λ β
=

∑  (λ>0) shrinks the 240 

regression coefficient towards zero, keeping only a small number of SNPs with large effects in the 241 

model, excluding the likely irrelevant ones. As in the single locus model case, an EMMAX style 242 

algorithm (Kang et al. 2010) can be applied to first obtain REML estimates of the variance 243 

components as 2ˆgσ  and 2ˆeσ  based on an intercept model, and then fix the matrix to be 244 

2 2ˆ ˆ ˆg eσ σ= +K A I  in (7). Let 1/2−=y K y  and 2MVN( , )gσ0 A , and the Equation (7) becomes equivalent 245 

to  246 

1

1 ( ) ( ) ,                                 (8)
2min

p
T

j
jn

λ β
=

− − + ∑
β

y Xβ y Xβ    247 

which is the standard LASSO problem (Tibshirani 1996). An efficient coordinate descent algorithm 248 

(e.g. Friedman et al. 2010) can be applied to solve (8).    249 

Several high dimension inference approaches have been proposed to conduct multiple testing on the 250 

basis of the LASSO estimates. Stability selection (Meinshausen and Bühlmann 2010) is a sampling-251 
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based approach similar to bootstrapping. In every run, it randomly sub-samples half of the 252 

individuals from the whole dataset, and performs LASSO regression on this partial data to select a 253 

set of SNPs. By repeating this procedure thousands of times, the selection probabilities of the SNPs 254 

are calculated, and a significance threshold can be derived to control for the multiplicity from the 255 

perspective of both false discovery rate and family-wise error. The benefits of stability selection 256 

over other approaches such as the de-biased LASSO method (Javanmard and Montanari 2014; Li et 257 

al. 2017) is that it can be efficiently used also on very large data sets. Therefore, in the following, 258 

we use the stability selection to compare the SNP- and Cluster-based approaches for multi-locus 259 

association testing.  260 

 261 

Linkage disequilibrium network clustering  262 

Association testing of groups of linked SNPs, rather than individual SNPs, starts with division of 263 

SNP data into units according to physical or linkage map information. We consider a simple 264 

window approach in which each chromosome is divided into many non-overlapping regions with 265 

roughly equal sized genomic segments. Window breakpoints are placed where LD (as estimated by 266 

r2; function ‘snpgdsLDMat’; R-package: ‘SNPRelate’; Zheng et al. 2012) between adjacent SNPs is 267 

less than a threshold value (LD1) for ten consecutive SNPs in a row i.e. these regions mark putative 268 

recombination hot spots. When LD breaks down gradually along chromosomes, this result in ‘long 269 

and elongated clusters’, where LD between physically adjacent loci is high but the first locus in 270 

such clusters will not be in high LD (correlated) with the last locus (Fig. S1a, Supporting 271 

Information). Therefore, a complete linkage hierarchical clustering tree (using 1-r2 as the distance 272 

measure; function ‘hclust’ in R-package ‘stats’; R, core team) is constructed within each window, 273 

where clusters are extracted when the minimum LD between any pair of loci in the cluster is ≥ LD1. 274 

This breaks up ‘long and elongated’ clusters to ‘spherical’ clusters where all loci are interconnected 275 

by high LD (Fig. S1a, Supporting Information, see also documentation for R-function ‘hclust’). 276 

Such clusters can thus potentially be considered as independent units in a GWAS. For loci in 277 
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clusters where median r2 (between all pairwise loci within the cluster) is nevertheless > LD2, a 278 

second clustering step is performed. This time, the minimum r2 between any pair of loci in the 279 

cluster is required to be ≥ LD2. All loci not part of clusters meeting this requirement are considered 280 

independently in a subsequent GWAS (‘singleton-clusters’). This produces few but highly 281 

interconnected clusters (or individual SNPs), where all multi-locus clusters are compact and 282 

spherical (Fig. S2, Supporting Information) with median r2 above LD2, (each containing a unique 283 

set of highly correlated SNPs), and all singleton-clusters are not in high LD with any adjacent SNPs 284 

within its window (Fig. S1a, Supporting Information). 285 

 For loci in each LD-cluster, we then apply a principal component analysis (PCA; Patterson 286 

et al. 2006), and extract the first few principal components (PCs) that captured the largest portion of 287 

variation (PCs explaining at least a threshold value, PC, of the total genetic variation in each LD-288 

cluster) in the original data, and replace the original SNP data in the QTL model with these PCs 289 

(except for singleton-clusters which remain at their original state). With high threshold values for 290 

LD (producing many clusters with high LD), we expect most of the genetic variation to be 291 

explained by the first PC. However, when LD threshold values are low (producing fewer clusters 292 

with lower mean LD and with higher numbers of loci in each), the PCA step ensures that most of 293 

the genetic variation from each LD-cluster is still captured. The window-based regression model 294 

(also known as a “principal component regression”, e.g. Hastie et al. 2009) can be formally defined 295 

as: 296 

i.i.d.
2

0
1

, ~ N(0, ),                                           (9)
km

i il l i i i e
l

y W uθ θ ε ε σ
=

= + + +∑  297 

and 298 

i.i.d.
2

0
1 1

, ~ N(0, ),                                           (10)
kmM

i il lk i i i e
k l

y W uθ θ ε ε σ
= =

= + + +∑∑  299 

as single and multi-locus models, respectively. The notation Wil (l=1,…,mk) represents the PCs in 300 

the kth window (k=1,…,M; M is the total number of the windows), θ0 is the intercept, and θlk is the 301 
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regression parameter of the given PC, ui is the random effect defined in the same way as in (3) and 302 

the kinship matrix is calculated as in (4) using the original SNP data.  303 

 The same type of single-locus mixed model (or mixed LASSO) estimation procedure 304 

introduced above can be applied to solve Equations (9) and (10). Since in each window the multiple 305 

PCs represents a group of correlated SNPs likely to explain similar kinds of phenotypic variation, 306 

these PCs in the same window can be tested together instead of being tested individually. In this 307 

way, the total number of hypothesis tests is significantly reduced compared to the standard 308 

association mapping. In the single-locus mapping, the group testing is conducted with an F-test to 309 

compare a null intercept model with model (9) separately for every genomic region. In the multi-310 

locus mapping, the stability selection can also be extended to calculate the selection probabilities of 311 

a group of variables. More technical details can be found in Appendix S1 (Supporting Information).    312 

 313 

Arabidopsis thaliana data set 314 

The A. thaliana GWAS data set originates from Baxter et al. (2010), who used it to identify genetic 315 

variants associated with leaf sodium accumulation. A total of 337 individuals were genotyped using 316 

an Affymetrix SNP array to generate around 250 000 SNPs as described in Atwell et al. (2010). 317 

After removing SNPs with a minor allele frequency < 0.05 done by using our own R script, 200 121 318 

SNPs distributed over five chromosomes of 18-30 Mb in length remained to be used here. We used 319 

two sets of threshold values for LD-clustering: low, with LD1=0.1 and LD2=0.3 and high, with 320 

LD1=0.3 and LD2=0.5. The threshold value for the subsequent PC regression step was kept at 80% 321 

for both sets of analyses. To reduce the computational burden of LDn-clustering, based on putative 322 

recombination hot spots (see above) window break points were chosen such that window size was 323 

approximately 1000 SNPs, and pairwise r2 values were only calculated within a window size of 100 324 

SNPs (as LDna requires a pairwise a matrix of all r2-values for each window the remaining values 325 

were set to 0). 326 

  327 
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Pungitus pungitus data set 328 

The P. pungitus F2 inter-population cross data of 283 individuals was originally generated by 329 

crossing a female from the Baltic Sea (Helsinki; 60°13’N, 25°11’E) and a male from a northeastern 330 

Finnish pond (Rytilampi; 66°23’N, 29°19’E). Detailed information about the origin, maintenance, 331 

genotyping and phenotyping of the crosses can be found from earlier publications (e.g. Laine et al. 332 

2013; Yang et al. 2016; Li et al. 2017).  333 

 The RAD sequencing data used by Yang et al. (2016) and Li et al. (2017) were also used 334 

in this work, but the linkage mapping was re-conducted using the latest development of the 335 

LepMAP software: Lep-MAP3 (LM3; Rastas, 2017). A notable benefit of LM3 is its efficiency in 336 

inferring the parental/grandparental phase based on the dense SNP data, and this generates an 337 

opportunity to utilize the four-way cross QTL mapping (5). The input data was obtained by using 338 

the LM3 pipeline, first mapping individual fastq files to the genome using bwa mem (Li, 2013) 339 

followed by SAMtools mpileup (Li et al., 2009), and then running LM3 scripts pileupParser.awk 340 

and pileup2posterior.awk using the default parameters. 341 

 The mapping was done following the basic LM3 pipeline: First, ParentCall2 was used on 342 

the data of offspring, parents and grandparents. Then Filtering2 module was used with 343 

dataTolerance=0.001, filtering out markers segregating in a more distorted fashion than what would 344 

be expected by 1:1000 odds by chance. After this, SeparateChromosomes2 was run on the filtered 345 

data with lodLimit=75, followed by JoinSingles2All with lodLimit=60 and lodDifference=10 346 

yielding 21 linkage groups with a total of over 89 000 markers assigned to these groups. 347 

 Finally, the markers were ordered within each linkage group with OrderMarkers2 module 348 

with default parameters. OrderMarkers2 was run twice on each chromosome using 349 

informativeMask=13 and informativeMask=23, removing either markers only informative in the 350 

mother or father, respectively. This created two maps for each chromosome, one having more 351 

maternal markers and the other having more paternal markers, both having on average 2/3 markers 352 

in common. The justification for constructing two maps is to remove the effect of markers 353 
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informative only in one parent, as markers informative in different parents are not informative when 354 

compared against each other. 355 

 The phased data used for QTL analysis was the output from OrderMarkers2 with 356 

parameter outputPhasedData=1. The phases were converted into grandparental phase by first 357 

evaluating the final marker orders with option grandparentalPhase=1 and then matching the 358 

(parental) phased data with the grandparental one using phasematch.awk script of LM3. Thus, the 359 

parental phases were inverted, when needed, to obtain the grandparental phases for all markers. The 360 

only manual step involved removing clear errors from map-ends based on scatter plots of physical 361 

and map positions (Chakravarti 1991). 362 

 Ultimately, 278 individuals (5 individuals were found to be duplicated in the original data 363 

sets, and were therefore removed) genotyped for 74 078 SNPs distributed over 21 chromosomes 364 

with 66-111 cM (corresponding to 15-41 Mb in the physical map) length were used in the study. 365 

We used the combined map of the males and females to estimate r2 for the LDn-clustering with a 366 

threshold value of 0.7 for both LD1 and LD2. The threshold value for PC regression was set to 80%. 367 

Furthermore, we considered each chromosome as a window, and due to the much higher overall LD 368 

in this data set than in the A. thaliana data (Fig. S3, Supporting Information) we used all pairwise 369 

r2-values within 2kb windows. For illustrative purposes, we focused on one particular quantitative 370 

trait: total lateral plate number analyzed earlier by Yang et al. (2016).  371 

 372 

Simulation study - subsets of data 373 

To investigate the effect of threshold values (LD1, LD2 and PC) used for LDn-clustering on the 374 

power to detect significant QTL by GWAS, we simulated a region containing 300 polymorphic 375 

SNPs regions corresponding to 50 SNPs down- and up-stream of the most significant SNP in the 376 

Arabidopsis data set (corresponding to a 122 kb region spanning bps 6373268-6495751 on Chr4; 377 

see Results) with four combinations of threshold values (0.1;0.3;0.8,  0.3;0.5;0.8,  0.1;0.1;0.8 and  378 

0.1;0.1;0.9, with values separated by ‘;’ representing LD1, LD2 and PC thresholds, respectively). 379 
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However, for these simulations any random set of 300 consecutive polymorphic SNPs would have 380 

sufficed. Two of the first combinations were the same as those used for the original data set and in 381 

the two latter, LD2 was further reduced to 0.2 but with two different PC-thresholds: 0.8 and 0.9. 382 

This was done to investigate how over-merging LD clusters (when LD thresholds are low) 383 

potentially can be compensated by extracting more PCs during the PC regression step. For each data 384 

set a phenotype was generated on the basis of the multiple-locus model in Equation (6). The effect 385 

size of five QTL were independently simulated from a normal distribution N(0,1). The random 386 

effect u is simulated from a multivariate normal distribution 2MVN( , )gσ0 A , with 2 10gσ = , and the 387 

residual error is simulated from a normal distribution N(0,1) with narrow sense heritability, h2,  388 

between 0.2 and 0.3. The five QTL were either randomly chosen among the 300 SNPs (random) or 389 

within a window of 50 bps (clustered). As the main aim of these simulations was to compare the 390 

power to detect significant QTL with the SNP- and LD-cluster based approaches in a small data set, 391 

the data set size and generation of phenotypic values were not aimed to necessarily be biologically 392 

realistic. Analyses were performed on 1000 sets of simulated phenotypic values for the four 393 

threshold settings as well as for a data set where each SNP was analysed independently (‘no 394 

clustering’). EMMAX was used for the GWAS analyses as described above. Statistical power was 395 

estimated as the proportion of significant QTL among all 5×1000 causal SNPs in the simulated data 396 

sets, after Bonferroni correction for multiple testing (performed separately for each simulated data 397 

set). Confidence intervals for the proportion of significant QTL was estimated as the 95% quantiles 398 

from 1000 bootstrap replicates. False negative rates for LDn-clustered data sets were well below 399 

0.05% for all threshold settings and were thus not considered further here. False negative rates for 400 

the no clustering data sets were not considered either as we would have needed to take into account 401 

that non-causal loci can be significant also due to LD, and thus defining false negatives would have 402 

been somewhat arbitrary. 403 

 For the P. pungitus genome we focused on a single chromosome (chromosome I) using 404 

the same clustering approach as for the full data set and compared it to a data set where each SNP 405 
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was analysed independently (using all 4344 SNPs from chromosome I). We simulated phenotypes 406 

based on a single QTL with h2 of 0.1, 0.025 or 0.05 and estimated statistical power as the 407 

proportion of data sets (n=1000) where the QTL was significant after Bonferroni correction for 408 

multiple testing. With the high power of QTL mapping in experimental crosses, such low 409 

heritabilites were necessary to discriminate between the SNP- and cluster-based methods with 410 

respect to the power to detect QTL. Bootstrap confidence intervals were estimated as above. For the 411 

above two simulations we also recorded the time to perform the EMMAX GWAS analyses on a 64-412 

bit Windows 7 desktop computer with a 3.4-GHz Intel (i7) CPU and 32.0 GB of RAM. 413 

 414 

Simulation study - genome wide data 415 

The purpose of this simulation study was to evaluate and compare the performance of single- and 416 

multi-locus approaches combined with SNP or LD-cluster based genome-wide data. The simulation 417 

was based on the full genotype data set of A. thaliana. The LDn-clustering was conducted with the 418 

parameter LD1=0.3 and LD2=0.5 (high) to divide genome into 90496 LD-clusters, each considered 419 

as a locus. First, a single SNP not in high LD with any other loci (singleton-cluster) at the position 420 

6932kb of Chr 4 was chosen as a QTL (QTL1), and its effect size was simulated from N(35,1), a 421 

normal distribution of mean 35 and variance 1, with 20%-30% heritability. Second, a single QTL 422 

(QTL2) was selected from a LD-cluster containing 20 correlated SNPs (16543kb-16517kb from Chr 423 

4), and the effect size was simulated from N(20,1) explaining 20%-30% of the total phenotypic 424 

variation. Third, in an LD-cluster of 14 correlated SNPs (4663 kb-4658 kb) from Chr 2, five weak 425 

effect QTL (QTL3) were randomly chosen, and their effect sizes were simulated from a normal 426 

distribution N(5,1) with 5-10% heritability. This represents a scenario where adjacent QTL, in 427 

addition to being correlated, also individually explain some portion of the total phenotypic variation 428 

and is thus a more complex scenario compared to a single QTL correlated with nearby SNPs (QTL2)  429 

The random effect and residuals were simulated from MVN(0,100) and N(0,100), respectively for 430 
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50 replicate data sets with which the performance (proportion significant QTL and number of false 431 

positives) of SNP- and cluster-based single- and multi-locus methods were tested. 432 

 433 

Results 434 

LDn-clustering 435 

For the A. thaliana data set the low and high threshold settings for LDn-clustering (0.1;0.3;0.8 and 436 

0.3;0.5;0.8, respectively) reduced the number of independent tests in GWAS from 200,121 SNPs 437 

(original data set) to 57 148 and 90 496 clusters, respectively. Figure 1 shows examples of 438 

clustering solutions (upper panel) for low and high data sets; the heatmaps (lower panel) show that 439 

LDn-clustering can identify overlapping sets of loci in high LD when the LD pattern is highly 440 

mosaic-like. Figure S3a and b (Supporting Information), show examples of network representation 441 

of the clustering solutions for low and high data sets, respectively. The number of SNPs per cluster 442 

were Gamma distributed (Fig. S4, Supporting Information) with most clusters being singleton-443 

clusters (51% and 67%, for low and high data sets, respectively) and few clusters containing many 444 

SNPs (up to 71 for both low and high data sets). Figure S5 (Supporting Information) shows the 445 

relationship between the proportion of genetic variance explained in each cluster by the first (upper 446 

panel) and the second (lower panel) PCs. This demonstrates that the higher the median LD in a 447 

cluster the more the first PC explains of the total genotypic variation in that cluster.  448 

For the Arabidopsis data set, the first PC explained >80% of the variation in 73% and 97% 449 

of the clusters  (for low and high, respectively), thus only one PC was extracted from these. In no 450 

cluster was it necessary to extract more than two PCs to explain at least 80% of the total genetic 451 

variation in each cluster (Fig. S5, Supporting Information).  452 

 In the P. pungitus data, LDn-clustering reduced the number of tests in GWAS from 75 484 453 

to only 214. Because of the high LD in the experimental cross, the first PC from each cluster 454 

explained on average 97% of the genetic variation in each cluster (i.e. well above the PC threshold 455 

of 80%). LDn-clustering produced between eight and 14 clusters from the 21 chromosomes 456 
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(mean=10.8), with each cluster containing on average 353 SNPs (range 40-1 858, with an outlier of 457 

only six SNPs for an LD-cluster on chromosome 12; Fig. S5, Supporting Information). Examples of 458 

network representation of LDn-clustering for P. pungitus chromosomes are shown in Figure S3c 459 

and in Figure S6 (Supporting Information). 460 

 461 

Simulation study 462 

In the simulated data based on 300 SNPs from the A. thaliana data set, the number of clusters and 463 

PCs extracted by the four different threshold settings for LDn-clustering are summarized in Table 1. 464 

There was no effect of these threshold settings on the power to detect significant QTL (Fig. 2a) 465 

using a single-locus approach. However, there was a moderate improvement in computational time 466 

between clustered and non-clustered data. For example, GWAS for LDn-clustered data with 467 

threshold settings 0.1;0.3;0.8 was on average 1.9 times faster than for non-clustered data (Fig. 2b). 468 

In contrast, in the P. pungitus data, power to detect significant QTL with clustered data was 469 

considerably higher than in non-clustered data when heritabilities were very low (h2=0.01-0.025; 470 

Fig. 2c). In addition, for this F2-generation experimental cross, GWAS analyses were on average 28 471 

times faster in clustered data compared to non-clustered data (Fig. 2d). Note also that increasing the 472 

PC threshold from 0.8 to 0.9, increased the total number of PCs extracted from the data set (from 473 

130 to 140), but not the total number of LD-clusters (Table 1). 474 

 Three different QTL effects were simulated in the genome-wide A. thaliana SNP data set. 475 

All methods (single- and multi-locus approaches using SNP- and LD-cluster-based analyses) 476 

detected significant QTL in >98% of the simulated data sets when large-effect QTL were simulated 477 

either in a singleton-cluster (loci not in high LD with any adjacent loci; QTL1) or a multi-locus 478 

cluster (a set of correlated SNPs from an LD cluster; QTL2; Table 2). However, when five linked 479 

QTL with smaller effects were simulated within a multi-locus cluster (QTL3), the performance of 480 

GWAS was lower. Among the methods, the multi-locus approach combined with LDn-clustered 481 

data shows the highest power (46% of QTL detected), followed by GWAS on single-locus SNP 482 
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data (38% of QTL detected). The multi-locus method also illustrated better ability to control the 483 

number of false positives than the single-locus approach (Table 2).    484 

 485 

Analysis of leaf sodium accumulation in A. thaliana 486 

The standard SNP-based single-locus association mapping with Bonferroni correction identified 23 487 

significant SNPs, with 22 located in Chr4 (ranging from 6381929 bp to 7581539 bp in the A. 488 

thaliana genome), and a single SNP located in Chr3 (18095036 bp; Fig. 3a). The permutation test 489 

identified 28 SNPs located in the same genomic regions as the Bonferroni test (Fig. 3c). The multi-490 

locus approach identified only three significant SNPs in Chr4 (located at 6392280, 6418442 and 491 

6742032 bp, respectively; Fig. 3e), which are a subset of the SNPs detected by the single locus 492 

mapping. 493 

 The cluster-based single-locus mapping (data generated with the parameter LD1=0.3 and 494 

LD2=0.5) with Bonferroni and permutation tests detected four, six and 21 significant genomic 495 

regions in Chr4, respectively (Fig. 3b, d). The window-based multi-locus approach identified one 496 

region (6415034-6418442 bp) and two singleton QTL at 6392280 and 6455695 in the same 497 

chromosome (Fig. 3f). For all the methods, the signal with the highest statistical significance was 498 

detected at the SNP located at 6392280 bp of Chr 4.  499 

 500 

Analysis of P. pungitus data 501 

In the QTL analysis of the P. pungitus data, the SNP-based single-locus approach with Bonferroni 502 

correction did not identify any significant loci (Fig. 4a; Fig. S8a, Supporting Information). This was 503 

also the case in the multi-locus analysis (Fig. 4e; Fig. S8e, Supporting Information). In contrast, the 504 

permutation test based on the single-locus mapping identified multiple significant loci in three 505 

chromosomes (Chr 9, 20 and 21) when the allele substitution and dominance effects were tested in a 506 

group (Fig. 4c). In separate testing of the allele substitution effects, a number of loci in Chr 9, 20, 507 

and 21 were identified as having significant allele substitution effects from the grandfather, and Chr 508 
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3, 6 and 8 having significant allele substitution effects from the grandmother (Fig. 4c). In the 509 

previous study, Yang et al. (2016) detected only two QTL (in Chr. 20 and 21) using the MapQTL 510 

software (Van Ooijen 2009).  511 

 When the QTL analysis was used to test the allele substitution and dominance effects 512 

jointly in the same model using the LD-cluster-based approach, single-locus mapping with 513 

Bonferroni correction identified two significant regions in Chr 20 (28-40cM) and 21 (32-53cM), 514 

respectively (Fig. 4b). When the effects were tested separately, Chr 20 and 21 were detected for the 515 

grandfather alleles, and Chr 8 for the grandmother alleles (Fig. S8b, Supporting Information). 516 

Permutation tests identified significant regions in the same chromosomes as the Bonferroni tests, 517 

but the former detected more genomic regions in each chromosome (Fig. 4d & S8d, Supporting 518 

Information). Finally, the stability selection approach identified only a single significant region in 519 

Chr 8 (Fig. 4f & S8f, Supporting Information).    520 

 521 

Discussion 522 

We have proposed a cluster-based gene mapping approach for analyzing quantitative traits that can 523 

be used with both single-locus and penalized regression-based multi-locus methods to conduct 524 

association tests. This approach uses network analyses to group (potentially physically overlapping) 525 

loci in high LD into clusters within non-overlapping windows. This approach is very general: it can 526 

be applied to various gene mapping problems, including data collected from the wild with unknown 527 

population structure, as well as data from F2-generation experimental crosses (both inbred and 528 

outbred) by using slightly different model structures, but the same kind of parameter estimation and 529 

hypothesis testing methods. Even when only a draft genome is available, LDn-clustering could be 530 

performed separately for the available scaffolds.  531 

Previous window-based approaches using equal sized windows (Xu 2013a) have been 532 

criticized, because they may accidently divide a meaningful region into separate adjacent windows, 533 

potentially resulting in the loss of power in QTL detection (e.g. Beissinger et al. 2015). This is 534 
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solved in LDn-clustering by placing window-breakpoints in regions of low LD (lower than used for 535 

LD-clustering), which produces non-equal-sized windows. However, the main advantage of LDn-536 

clustering is in its ability to distinguish many overlapping sets of SNPs in high LD interspersed 537 

along a chromosomal region. Thus, it can handle LD patterns that are highly mosaic-like where it 538 

would not otherwise be possible to define non-overlapping haplotype blocks without also grouping 539 

SNPs that are not connected by high LD. LDn-clustering is robust against threshold settings for 540 

clustering because in the event of over-merging of LD-clusters (due to too low LD-thresholds), the 541 

subsequent PC regression step will still ensure that most of the genetic variation from each cluster is 542 

captured. The two steps in LDn-clustering (LDn-clustering and PC regression) perform in some 543 

respect similar tasks; median LD in a cluster is positively correlated with the amount of genetic 544 

variation explained by the first PC (Fig. S5, Supporting Information). Thus, where LD-clusters 545 

produce more than one PC (the first explaining less than the threshold value PC), increasing LD 546 

threshold-values for those clusters would produce sub-clusters where the first PC is likely to explain 547 

a higher proportion of the total genotypic variance. The low and high threshold settings for the A. 548 

thaliana data set exemplifies this: low settings produced fewer clusters with more PCs compared to 549 

the high setting (Fig S5, Supporting Information). Since in our GWAS approach each cluster 550 

constitutes an independent test (rather than each PC), using lower LD-threshold settings are in 551 

theory expected to produce a stronger association test. However, the conducted simulations (Fig. 2a) 552 

show that the power to detect significant QTL did not differ between any of the four LDn-clustering 553 

threshold settings (two with even lower LD2-threshold values compared to low), and hence, this 554 

effect is likely to be marginal. Nevertheless, it may be easier to interpret data using high LD-555 

threshold values, since in most cases, one PC is enough to explain most of the genetic variation in 556 

the resulting LD-clusters, yielding a reduced number of (more strongly correlated) SNPs for 557 

downstream analyses. 558 

 559 

The impact of LD on SNP-based gene mapping   560 
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The performance of conventional SNP-based single- and multi-locus approaches is influenced by 561 

the LD pattern of the data. In the case of the A. thaliana GWAS data set with a fast LD decay over 562 

the genome, the single-locus mapping with either Bonferroni or permutation tests identified a 563 

similar set of more than 20 SNPs in the same genomic regions in Chr 3 and Chr 4. In contrast, the 564 

LASSO based multi-locus approach only identified three SNPs in Chr4. One of them (Chr4: 565 

6392280) is located within the region of the gene AtHKT1_1: (Chr4:6391984–6395877), which has 566 

been shown to be functionally associated with sodium leaf accumulation in A. thaliana (Baxter et al. 567 

2010). This difference between single and multi-locus mapping results can be explained by the fact 568 

that the multi-locus method relies on conditional hypothesis testing. When the strength of the 569 

association for a single SNP is tested, all other correlated SNPs’ associations have already been 570 

accounted for. Therefore, the multi-locus test is stricter than the single-locus test.    571 

In the bi-parental P. pungitus data with high levels of LD extending considerable distances 572 

over the linkage map, the Bonferroni correction became too conservative to identify any significant 573 

SNPs. This was expected: Bonferroni becomes overly conservative when the multiple tests are 574 

positively correlated with each other (Goeman and Solari 2014). In contrast, the permutation test, 575 

which can effectively account for the correlation structure in the data, was still able to identify a 576 

number of significant loci with the significant allele assignable to one of the grandparents. That the 577 

detected QTL had allele substitution effects from the grandfather (originating from the pond 578 

population), but not from the grandmother, indicates that the grandparental genotypes were AB and 579 

AA, respectively, and the allele ‘B’ originating from the pond environment caused the phenotypic 580 

variation observed in the F2 generation. The four-way cross model applied here was able to detect 581 

more significant QTL for the focal trait than the MapQTL approach applied to the same data by 582 

Yang et al. (2016). In addition, the four-way cross model helps elucidate from which population the 583 

allele effects on the phenotypes originate from.  584 

The multi-locus mapping with the original SNP data also failed to identify any significant 585 

QTL in the P. pungitus SNP data. One possible explanation is that the widely used coordinate 586 
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descent algorithm used to solve the LASSO penalized regression may work poorly and converge 587 

extremely slowly for highly correlated data sets (Kim et al. 2016). Another possible reason is that 588 

the stability selection as a multiple testing approach involves a data sub-sampling step, which may 589 

result in reduced statistical power when the sample size is small. Regarding the hypothesis tests, a 590 

de-biased LASSO approach (Javanmard and Montanari 2014; Li et al. 2017) can be performed on 591 

the whole data set without any re-sampling of the data, and therefore might have better power to 592 

detect QTL. Unfortunately, we discovered that the de-biased LASSO could not be applied to this 593 

high dimensional data set with over 200 000 regression parameters due to its high computational 594 

cost. Nevertheless, as discussed below, the de-biased LASSO can easily be applied to the LDn-595 

clustered data set.  596 

 597 

Cluster-based gene mapping 598 

In general, the LD-cluster-based approach shows higher or equivalent ability to identify significant 599 

QTL than the more conventional methods in the A. thaliana and P. pungitus data sets, as well as in 600 

the simulated data. In the case of the A. thaliana data, the single locus approach (with both 601 

Bonferroni and permutation tests) identified 6-20 significant genomic regions (or singletons) in Chr 602 

4. Those regions overlapped with the region in which the 22 significant SNPs were detected by the 603 

individual SNP-based single-locus approach. The multi-locus cluster-based approach identified one 604 

significant region, and these findings were also similar to those obtained by using the SNP based 605 

approach. This suggest that the computationally efficient cluster-based approach has similar power 606 

as the SNP-based approaches to discover QTL in a data set with fast LD decay.   607 

In the simulated data (focusing on 300 polymorphic SNPs spanning 122 kb around the most 608 

significant QTL for sodium leaf accumulation) we saw no differences in the proportion of 609 

significant QTL between SNP-based gene mapping and cluster-based gene mapping. This was 610 

expected; due to the fast LD decay across A. thaliana chromosomes, the number of independent test 611 

in the GWAS was only reduced by a factor of 3.5 and 2.2, using the low and high threshold settings 612 
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for LDn-clustering, respectively. However, when we simulated multiple weak QTL in an LD-613 

cluster comprising 14 highly correlated SNPs (QTL3), using both single- and multi-locus methods, 614 

we saw the highest power in the LD-cluster-based multi-locus approach (46% of QTL detected) 615 

followed by the SNP-based single-locus (38% of QTL detected) and conventional multi-locus 616 

approach (22% of QTL detected). Hence, the cluster-based (multi-locus) approach seems to have an 617 

advantage over SNP-based approaches when multiple weak (independent) QTL are correlated 618 

within a small physical region in the genome. However, more extensive simulations are required to 619 

fully test this. 620 

In the P. pungitus QTL data set, the cluster-based single-locus approach also identified the 621 

same significant genomic regions as the individual SNP-based approach. However, in contrast to 622 

the SNP-based single locus analysis, even the conservative Bonferroni test appeared to have 623 

sufficient power to identify significant QTL in this data. The multi-locus approach with stability 624 

selection identified QTL only in a single chromosome, probably due to the use of sub-sampling in 625 

the hypothesis testing procedure. In fact, by switching the stability selection to de-biased LASSO 626 

(Fig. S7, Supporting Information), the multi-locus approach generally identified the same QTL as 627 

the single-locus approach. It is also worth noting that in the P. pungitus QTL data, each cluster 628 

consists of on average 336 SNPs (range 6-1858), which may include hundreds of genes according to 629 

the latest version of the nine-spined genome annotation (Varadharajan S., Nederbgragt L., 630 

Jacobssen K., Guo B., Löytynoja A., Rastas P. & Merilä J., unpublished data). Therefore, it might 631 

be difficult to locate the candidate genes in this data with any QTL method due to the very high LD 632 

in the data. More precise location of the QTL regions in this data would require fine-mapping with 633 

more individuals to increase resolution within identified candidate genomic regions. Alternatively, 634 

independent GWAS data or a multi-parental data set (e.g. Kover et al. 2009) with more 635 

recombination events and better resolution could be used.  636 

In the simulated data for P. pungitus, we saw a clear advantage of the cluster-based 637 

approach in detecting single QTL effects, in particular when heritabilities were low (0.01-0.025). 638 
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With higher heritability (0.05), both the SNP-based and the cluster-based methods recovered close 639 

to 100% of simulated QTL. Possibly other, simpler, LD reduction methods (see introduction) would 640 

also work well for this data set. However, with LDn-clustering, one is guaranteed to not 641 

accidentally lose any vital genetic information by e.g. naively subsampling the data set at equal 642 

distances across the genome, while simultaneously having control over how strongly correlated 643 

SNPs are required to be in each cluster (LD-threshold: LD2). In addition, by plotting LD networks 644 

from experimental crosses, potentially interesting cases involving micro-chromosomes or mapping 645 

errors can be detected (Fig. S6, Supporting Information). 646 

 Finally, from the computational point of view, the cluster-based approach appears to have 647 

a distinct advantage over mapping with individual SNPs. For instance, in the case of the A. thaliana 648 

data, the original SNP data of over 200 000 SNPs (or alleles) can be summarized with only 90 000 649 

PCs in a high LD data set. This leads to a substantial reduction of the computational complexity. 650 

For example, conducting a permutation test on the A. thaliana data set takes about seven days by 651 

using 5 000 replications on a 64-bit Windows 7 desktop computer with a 3.4-GHz Intel (i7) CPU 652 

and 32.0 GB of RAM (note that computational time estimates for all the methods were implemented 653 

on a single core). Using the same set up, the cluster-based permutation test takes only 6-7 hours. 654 

The stability selection took about three hours on the A. thaliana data set and only 30 minutes on the 655 

P. pungitus data set. The de-biased LASSO approach consumed about 30 days for the clustered data 656 

set, and might take several months for the full SNP data. The cluster-based approach can also be 657 

used for other computationally intensive GWAS models such as the Bayesian LASSO (Li et al. 658 

2011; Pasanen et al. 2015) and Elastic net (Huang et al. 2015) to improve their computational 659 

efficiency. The LDn-clustering algorithm took <20 min for the A. thaliana data set and <10 min for 660 

the P. pungitus data set, and can be parallelised over many computer clusters (each 661 

window/chromosome can be processed independently) for use in whole genome data sets where this 662 

kind of dimensionality reduction is likely to be most beneficial. 663 

 664 
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Concluding remarks and future directions 665 

In conclusion, we have introduced and tested the performance of a cluster-based association 666 

mapping approach that appears to be able to solve, or at least reduce, some of the problems faced by 667 

existing mapping approaches. Given the high dimensionality of modern GWAS data sets, the 668 

proposed cluster-based gene mapping approach that uses LDn-clustering and PC regression as a 669 

dimensionality reduction tool should prove useful for computationally efficient QTL detection in a 670 

variety of data and model structures. Our analyses of two empirical data sets and simulated data 671 

suggest that the cluster-based association approach has three major benefits over other types of 672 

association analyses. First, it provides a significant reduction of the dimensionality of the data, 673 

therefore also in the amount of computational time. Second, the new approach appears to be more 674 

efficient in detecting QTL due to less conservative correction for multiple statistical tests. Third, the 675 

usage of independent principal components (instead of highly correlated SNPs) likely increases the 676 

numerical stability of the computation, especially in the case of the multi-locus approach. The 677 

benefits of LDn-clustering are likely to be most useful for data sets from species with small 678 

effective population sizes (LD decays slowly with physical distance) and/or large numbers of 679 

genetic markers, including whole genome data. However, more detailed simulations are needed to 680 

fully understand the pros and cons of cluster-based association mapping approaches for the 681 

multitude of different single- and multi-locus approaches that are currently available. 682 

An interesting direction for future research would be to extend the current cluster-based 683 

association approach for analysing gene-gene and gene-environment interactions (Yi 2015). In the 684 

standard association model, inclusion of these interaction terms significantly increases the 685 

dimensionality of the data (e.g. for 200 000 SNPs, there are about 2 000 billion pairwise G×G 686 

interaction terms). Since the computational requirement of such models is currently not possible to 687 

meet, a cluster-based approach able to reduce the data dimensionality could provide a solution and 688 

make analyses of such interactions possible.  689 

 690 
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Figure legends 862 

Figure 1. LDn-clustering. Shown is an example of how LDn-clustering can account for the mosaic-863 

like pattern of LD in population genomic data by grouping loci (within windows) based on LD 864 

regardless of their physical position in the genome. Each LD-cluster has a unique colour 865 

combination [colours between (a) and (b) do not necessarily match] and line height along the y-axis 866 

(upper panel). In each LD-cluster the minimum LD between all loci in the cluster is above (a) 0.1 or 867 

(b) 0.3 and the median LD among all pairwise LD values in each LD-cluster is above (a) 0.3 or (b) 868 

0.5. Loci not connected to any other SNPs by these thresholds are considered as independent 869 

(singleton-clusters). There are 15 and 25 unique LD-clusters in (a) and (b), respectively. Positions 870 

of the vertical lines (along the x-axis) match the positions of loci in the lower LD heatmap figure. 871 

The figure is based on 63 consecutive SNPs from A. thaliana data set Chr 4 (starting from SNP-872 

position 6237655). 873 

 874 

Figure 2. Results from simulated study with subsets of data. Panel (a) shows mean number of 875 

significant QTL (five in each simulated data set), for four different threshold settings for LDn-876 

clustering  (values in the legend separated by ‘;’ represent threshold values LD1, LD2 and PC, 877 

respectively) when QTL are randomly sampled among all SNPs (Random), or from 50 consecutive 878 

SNPs (Clustered) along the chromosome (h2 = 0.2 - 0.3). Panel (b) shows the time taken to conduct 879 

GWAS on clustered (yellow) and non-clustered data (grey) for the A. thaliana simulated data. Panel 880 

(c) shows the proportion of significant QTL from P. pungitus linkage group 1 (one QTL in each 881 

data set) for different heritabilities when GWAS was performed on all 4344 SNPs (Clustering=No) 882 

or when GWAS was performed on 12 clusters produced by LDn-clustering (Clustered=Yes). Panel 883 

(d) show the time taken to conduct GWAS on clustered (yellow) and non-clustered data (grey) for 884 

the P. pungitus simulated data. Data are based on 1000 simulated sets of phenotypic values, and 885 

error bars in (a) and (c) represent 95% bootstrap confidence intervals (1000 bootstrap replicates). 886 

 887 
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Figure 3. Genome-wide association mapping of the A. thaliana data. Results of SNP- and LD-888 

cluster-based GWA analyses are shown on the left (a, c, e) and right (b, d, f) panels, respectively. In 889 

(a) and (b), dots (blue or green coloured) indicate p-values from the association test calculated by 890 

single-locus mapping, and the red line represents the significance threshold (0.05) adjusted by the 891 

Bonferroni correction. In (c) and (d), dots represent the adjusted p-values from the permutation test 892 

in single-locus mapping, and red lines the significance threshold (0.05). In (e) and (f), dots present 893 

the selection probability calculated by the multi-locus stability selection method, and the red line 894 

represents the corresponding significance threshold (guaranteeing the expected number of false 895 

positives to be < 1).   896 

 897 

Figure 4. Quantitative trait locus mapping of the P. pungitus data. Results of SNP- and cluster-898 

based QTL analysis are shown on the left (a, c, e) and right (b, d, f) panels, respectively. The allele 899 

substitution effects of two founders and the dominance effects are tested jointly in the same model. 900 

In (a) and (b), dots (blue or green coloured) represent the p-values from the association test 901 

calculated by single -locus mapping, and the red curve the significance threshold after Bonferroni 902 

correction. In (c) and (d), dots represent the adjusted p-values (0.05) calculated by the permutation 903 

test in single-locus mapping, and red lines the significance threshold (0.05). In (e) and (f), dots 904 

present the selection probability calculated by the multi-locus stability selection method, and the red 905 

line the corresponding significance threshold (guaranteeing the expected number of false positives 906 

to be < 1).    907 



 38 

Figures 908 

Figure 1.  909 



 39 

 910 

911 
Figure 2.  912 

 913 

 914 

 915 

 916 

  917 

 918 

 919 



 40 

920 
Figure 3921 



 41 

922 
Figure 4  923 



 42 

Tables 924 

Table 1. Summary of LDn-clustering settings and results from A. thaliana 300 SNP simulation 925 

study.           926 

Setting LD1 LD2 PC PCs Clusters      927 

1 0.1 0.3 0.8 143 111 928 

2 0.3 0.5 0.8 172 168 929 

3 0.1 0.2 0.8 130 85 930 

4 0.1 0.2 0.9 140 85      931 

LD1, LD2 and PC refer to LDn-clustering threshold values used. PCs and Clusters refer to the total 932 

number of PCs and Clusters, respectively, extracted from the data.   933 
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Table 2. The average performance of single- and multi-locus QTL-mapping methods with SNP or 934 

cluster based analyses in a simulation study of genome-wide A. thaliana data. Number of false 935 

positives refers to average number of false positive QTL detected in simulations. 936 

Simulated QTL Proportion of QTL detected by GWAS 

Single-locus Multi-locus 

SNP-based Cluster-based SNP-based Cluster-based 

QTL1 1 1 1 1 

QTL2 1 0.98 1 0.98 

QTL3  0.38 0.24 0.22 0.46 

No. of false positives 2.7 1.6 0.1 0.6 
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