1,912 research outputs found

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    2014 Abstracts Student Research Conference

    Get PDF

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Energy optimization for wireless sensor networks using hierarchical routing techniques

    Get PDF
    Philosophiae Doctor - PhDWireless sensor networks (WSNs) have become a popular research area that is widely gaining the attraction from both the research and the practitioner communities due to their wide area of applications. These applications include real-time sensing for audio delivery, imaging, video streaming, and remote monitoring with positive impact in many fields such as precision agriculture, ubiquitous healthcare, environment protection, smart cities and many other fields. While WSNs are aimed to constantly handle more intricate functions such as intelligent computation, automatic transmissions, and in-network processing, such capabilities are constrained by their limited processing capability and memory footprint as well as the need for the sensor batteries to be cautiously consumed in order to extend their lifetime. This thesis revisits the issue of the energy efficiency in sensor networks by proposing a novel clustering approach for routing the sensor readings in wireless sensor networks. The main contribution of this dissertation is to 1) propose corrective measures to the traditional energy model adopted in current sensor networks simulations that erroneously discount both the role played by each node, the sensor node capability and fabric and 2) apply these measures to a novel hierarchical routing architecture aiming at maximizing sensor networks lifetime. We propose three energy models for sensor network: a) a service-aware model that account for the specific role played by each node in a sensor network b) a sensor-aware model and c) load-balancing energy model that accounts for the sensor node fabric and its energy footprint. These two models are complemented by a load balancing model structured to balance energy consumption on the network of cluster heads that forms the backbone for any cluster-based hierarchical sensor network. We present two novel approaches for clustering the nodes of a hierarchical sensor network: a) a distanceaware clustering where nodes are clustered based on their distance and the residual energy and b) a service-aware clustering where the nodes of a sensor network are clustered according to their service offered to the network and their residual energy. These approaches are implemented into a family of routing protocols referred to as EOCIT (Energy Optimization using Clustering Techniques) which combines sensor node energy location and service awareness to achieve good network performance. Finally, building upon the Ant Colony Optimization System (ACS), Multipath Routing protocol based on Ant Colony Optimization approach for Wireless Sensor Networks (MRACO) is proposed as a novel multipath routing protocol that finds energy efficient routing paths for sensor readings dissemination from the cluster heads to the sink/base station of a hierarchical sensor network. Our simulation results reveal the relative efficiency of the newly proposed approaches compared to selected related routing protocols in terms of sensor network lifetime maximization

    The 1990 Johnson Space Center bibliography of scientific and technical papers

    Get PDF
    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals

    Energy efficient wireless sensor network topologies and routing for structural health monitoring.

    Get PDF
    The applicability of wireless sensor networks (WSNs) has dramatically increased from the era of smart farming and environmental monitoring to the recent commercially successful internet of things (IoT) applications. Simultaneously, diversity in WSN applications has led to the application of specific performance requirements, such as fault tolerance, reliability, robustness and survivability. One important application is structural health monitoring (SHM) in airplanes. Airborne Wireless Sensor Network (AWSN) have received considerable attention in recent times, owing to the many issues that are intrinsic to traditional wire-based airplane monitoring systems, such as complicated cable routing, long wiring, wiring degradation over time, installation overhead, etc. This project examines the SHM of aircraft wing and WSN design (ZigBee), and aspects such as node deployment and power efficient routing, vis-à-vis energy harvesting. Node deployment and power efficient routing protocol are related problems, and so this thesis proposes solutions using optimization techniques for Ant Colony Optimization (ACO), and power transmission profiling using Computer Simulation Technology software (CST). There are three wing models; namely NACA64A410 model, Empty NACA64A410 model for the Wing, and Empty Prismatic model of the wing was specified and simulated in CST software. A simulation was carried out between the frequencies of 100 MHz to 5 GHz, and identified significant variations in the Sij parameter between the frequency range 2.4GHz and 2.5GHz. Critical analysis of the obtained results revealed the presence of a significant impact from wing shape and the wing’s inner structure on possible radio wave propagation in the aircraft wing. The different material composition of aircraft wings was also examined to establish the influence of aircraft wing material on radio wave propagation in an aircraft wing. The three materials tested were Perfect Electrical Conductor (PEC), Aluminium, and Carbon Fibre Composites (CFCs). For power transmission profiling (Sij parameter), 130 nodes were deployed in regular and periodic compartments, created by ribs and spars, usually at vantage points and rib openings, so that a direct line of sight could be established. However, four sink nodes were also placed at the wing root, as presented in NC37 and NC38 simulations for aluminium and CFC wing models respectively. The evaluation of signal propagation in aluminium and CFC aircraft wing models revealed CFC wing models allow less transmission than aluminium wing models. A multiple Travelling Salesman (mTSP) problem was formulated and solved, using Ant Colony Optimization in MATLAB to identify optimal topology and optimal routes to support radio propagation in ZigBee networks. Then solving the mTSP problem for different regular deployments of nodes in the wing geometry, it was found that an edgewise communication route was the shortest route for a large number of nodes, wherein 4 fixed sink nodes were placed at the wing root. For a realistic wing model, the different possible configuration of ZigBee units were deduced using rational reasoning, based on results from empty wing models. Besides the determined S-parameter, aircraft wing materials and optimal nodes, the residual energy of each sensor node is also considered an essential criterion to improve the efficiency of ZigBee communications on the aircraft wing. Therefore, a novel hybrid protocol called the Energy-Opportunistic Weighted Minimum Energy (EOWEME) protocol can be formulated and implemented in MATLAB. The comparative results revealed the energy saving of EOWEME protocol is 20% higher compared to the Ad Hoc On-Demand Distance Vector (AODV) routing protocol. However, the need for further energy savings resulted in development of an improved EOWEME protocol when incorporating the clustering concept and the previously determined S-parameter, a number of nodes, and their radiation patterns. Critical evaluation of this improved EOWEME protocol showed a maximum of 10% higher energy savings than the previous EOWEME protocol. To summarize key insights and the results of this thesis, it is apparent that the thesis addresses SHM in aircraft wings, using WSNs from a holistic perspective with the following major contributions, • CST simulations identify power transfer (S-parameter) profiling in various wing models, with no internal structural elements to identify realistic wing with spars, and bars. With an average S-parameter of -107 dB at around 3 m, the communication or transmission range of 1 m was identified to minimize loss of transmitted power. A range less than 1m would cause issues such as interference, reflection etc. • Using a transmission range of 1 m, WSN nodes were assessed for shortest route commensurate with energy efficient packet transmission to sink node from the farthest node; i.e. near the wing tip. The shortest routes converged to travel along the length of the wing in the case of an empty wing model, however it was also observed in a realistic wing model, where internal structural elements constrained node deployment. An average distance of nearly 13 m required data transmitted from the farthest nodes to reach the sink nodes. Increasing the nodes however increased the distance required to up to 20 m in the case of 240 nodes. • A new routing protocol, EOWEME was formulated, showing 20% greater energy savings than AODV in the realistic wing model.PhD in Aerospac

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Integration of High Voltage AC/DC Grids into Modern Power Systems

    Get PDF
    Electric power transmission relies on AC and DC grids. The extensive integration of conventional and nonconventional energy sources and power converters into power grids has resulted in a demand for high voltage (HV), extra-high voltage (EHV), and ultra-high voltage (UHV) AC/DC transmission grids in modern power systems. To ensure the security, adequacy, and reliable operation of power systems, the practical aspects of interconnecting HV, EHV, and UHV AC/DC grids into the electric power systems, along with their economic and environmental impacts, should be considered. The stability analysis for the planning and operation of HV, EHV, and UHV AC/DC grids in power systems is regarded as another key issue in modern power systems. Moreover, interactions between power converters and other power electronics devices (e.g., FACTS devices) installed on the network are other aspects of power systems that must be addressed. This Special Issue aims to investigate the integration of HV, EHV, and UHV AC/DC grids into modern power systems by analyzing their control, operation, protection, dynamics, planning, reliability, and security, along with considering power quality improvement, market operations, power conversion, cybersecurity, supervisory and monitoring, diagnostics, and prognostics systems
    • …
    corecore