359 research outputs found

    The Z2\mathbb{Z}_2-genus of Kuratowski minors

    Full text link
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2\mathbb{Z}_2-genus of a graph GG is the minimum gg such that GG has an independently even drawing on the orientable surface of genus gg. An unpublished result by Robertson and Seymour implies that for every tt, every graph of sufficiently large genus contains as a minor a projective t×tt\times t grid or one of the following so-called tt-Kuratowski graphs: K3,tK_{3,t}, or tt copies of K5K_5 or K3,3K_{3,3} sharing at most 22 common vertices. We show that the Z2\mathbb{Z}_2-genus of graphs in these families is unbounded in tt; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2\mathbb{Z}_2-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2\mathbb{Z}_2-genus of graphs.Comment: 23 pages, 7 figures; a few references added and correcte

    The obstructions for toroidal graphs with no K3,3K_{3,3}'s

    Full text link
    Forbidden minors and subdivisions for toroidal graphs are numerous. We consider the toroidal graphs with no K3,3K_{3,3}-subdivisions that coincide with the toroidal graphs with no K3,3K_{3,3}-minors. These graphs admit a unique decomposition into planar components and have short lists of obstructions. We provide the complete lists of four forbidden minors and eleven forbidden subdivisions for the toroidal graphs with no K3,3K_{3,3}'s and prove that the lists are sufficient.Comment: 10 pages, 7 figures, revised version with additional detail

    The Z_2-Genus of Kuratowski Minors

    Get PDF
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t x t grid or one of the following so-called t-Kuratowski graphs: K_{3,t}, or t copies of K_5 or K_{3,3} sharing at most 2 common vertices. We show that the Z_2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z_2-genus, solving a problem posed by Schaefer and Stefankovic, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces

    Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4

    Full text link
    We find a graph of genus 55 and its drawing on the orientable surface of genus 44 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani-Tutte theorem cannot be extended to the orientable surface of genus 44. As a base step in the construction we use a counterexample to an extension of the unified Hanani-Tutte theorem on the torus.Comment: 12 pages, 4 figures; minor revision, new section on open problem

    Combinatorics of embeddings

    Full text link
    We offer the following explanation of the statement of the Kuratowski graph planarity criterion and of 6/7 of the statement of the Robertson-Seymour-Thomas intrinsic linking criterion. Let us call a cell complex 'dichotomial' if to every cell there corresponds a unique cell with the complementary set of vertices. Then every dichotomial cell complex is PL homeomorphic to a sphere; there exist precisely two 3-dimensional dichotomial cell complexes, and their 1-skeleta are K_5 and K_{3,3}; and precisely six 4-dimensional ones, and their 1-skeleta all but one graphs of the Petersen family. In higher dimensions n>2, we observe that in order to characterize those compact n-polyhedra that embed in S^{2n} in terms of finitely many "prohibited minors", it suffices to establish finiteness of the list of all (n-1)-connected n-dimensional finite cell complexes that do not embed in S^{2n} yet all their proper subcomplexes and proper cell-like combinatorial quotients embed there. Our main result is that this list contains the n-skeleta of (2n+1)-dimensional dichotomial cell complexes. The 2-skeleta of 5-dimensional dichotomial cell complexes include (apart from the three joins of the i-skeleta of (2i+2)-simplices) at least ten non-simplicial complexes.Comment: 49 pages, 1 figure. Minor improvements in v2 (subsection 4.C on transforms of dichotomial spheres reworked to include more details; subsection 2.D "Algorithmic issues" added, etc

    Dynamics of Hilbert nonexpansive maps

    Full text link
    In his work on the foundations of geometry, Hilbert observed that a formula which appeared in works by Beltrami, Cayley, and Klein, gives rise to a complete metric on any bounded convex domain. Some decades later, Garrett Birkhoff and Hans Samelson noted that this metric has interesting applications, when considering certain maps of convex cones that contract the metric. Such situations have since arisen in many contexts, pure and applied, and could be called nonlinear Perron-Frobenius theory. This note centers around one dynamical aspect of this theory.Comment: 10 pages. To appear in the Handbook of Hilbert Geometr
    corecore