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Abstract
A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the
drawing crosses an even number of times. The Z2-genus of a graph G is the minimum g such
that G has an independently even drawing on the orientable surface of genus g. An unpublished
result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus
contains as a minor a projective t× t grid or one of the following so-called t-Kuratowski graphs:
K3,t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the Z2-genus of
graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that
the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed
by Schaefer and Štefankovič, and giving an approximate version of the Hanani–Tutte theorem
on orientable surfaces.
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1 Introduction

The genus g(G) of a graph G is the minimum g such that G has an embedding on the
orientable surface Mg of genus g. We say that two edges in a graph are independent (also
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40:2 The Z2-Genus of Kuratowski Minors

nonadjacent) if they do not share a vertex. The Z2-genus g0(G) of a graph G is the minimum
g such that G has a drawing on Mg with every pair of independent edges crossing an even
number of times. Clearly, every graph G satisfies g0(G) ≤ g(G).

The Hanani–Tutte theorem [13, 24] states that g0(G) = 0 implies g(G) = 0. The theorem
is usually stated in the following form, with the optional adjective “strong”.

I Theorem 1 (The (strong) Hanani–Tutte theorem [13, 24]). A graph is planar if it can be
drawn in the plane so that no pair of independent edges crosses an odd number of times.

Theorem 1 gives an interesting algebraic characterization of planar graphs that can be
used to construct a simple polynomial algorithm for planarity testing [21].

Pelsmajer, Schaefer and Stasi [17] extended the strong Hanani–Tutte theorem to the
projective plane, using the list of minimal forbidden minors. Colin de Verdière et al. [7]
recently provided an alternative proof, which does not rely on the list of forbidden minors.

I Theorem 2 (The (strong) Hanani–Tutte theorem on the projective plane [7, 17]). If a graph
G has a drawing on the projective plane such that every pair of independent edges crosses an
even number of times, then G has an embedding on the projective plane.

Whether the strong Hanani–Tutte theorem can be extended to some other surface than
the plane or the projective plane has been an open problem. Schaefer and Štefankovič [22]
conjectured that g0(G) = g(G) for every graph G and showed that a minimal counterexample
to the extension of the strong Hanani–theorem on any surface must be 2-connected. Recently,
a counterexample has been found on the orientable surface of genus 4 [11].

I Theorem 3 ([11]). There is a graph G with g(G) = 5 and g0(G) ≤ 4. Consequently, for
every positive integer k there is a graph G with g(G) = 5k and g0(G) ≤ 4k.

Schaefer and Štefankovič [22] also posed the following natural question.

I Problem 1 ([22]). Is there a function f such that g(G) ≤ f(g0(G)) for every graph G?

We give a positive answer to Problem 1 for several families of graphs, which we conjectured
to be “unavoidable” as minors in graphs of large genus. Recently we have found that a similar
Ramsey-type statement is a folklore unpublished result in the graph-minors community.
Together, these results would imply a positive solution to Problem 1 for all graphs. We state
the results in detail in Sections 3 and 4 after giving necessary definitions in Section 2.

2 Preliminaries

2.1 Graphs on surfaces
We refer to the monograph by Mohar and Thomassen [16] for a detailed introduction into
surfaces and graph embeddings. By a surface we mean a connected compact 2-dimensional
topological manifold. Every surface is either orientable (has two sides) or nonorientable (has
only one side). Every orientable surface S is obtained from the sphere by attaching g ≥ 0
handles, and this number g is called the genus of S. Similarly, every nonorientable surface S
is obtained from the sphere by attaching g ≥ 1 crosscaps, and this number g is called the
(nonorientable) genus of S. The simplest orientable surfaces are the sphere (with genus 0)
and the torus (with genus 1). The simplest nonorientable surfaces are the projective plane
(with genus 1) and the Klein bottle (with genus 2). We denote the orientable surface of genus
g by Mg, and the nonorientable surface of genus g by Ng.
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Let G = (V,E) be a graph or a multigraph with no loops, and let S be a surface. A
drawing of G on S is a representation of G where every vertex is represented by a unique
point in S and every edge e joining vertices u and v is represented by a simple curve in
S joining the two points that represent u and v. If it leads to no confusion, we do not
distinguish between a vertex or an edge and its representation in the drawing and we use the
words “vertex” and “edge” in both contexts. We assume that in a drawing no edge passes
through a vertex, no two edges touch, every edge has only finitely many intersection points
with other edges and no three edges cross at the same inner point. In particular, every
common point of two edges is either their common endpoint or a crossing.

A drawing of G on S is an embedding if no two edges cross. A face of an embedding of
G on S is a connected component of the topological space obtained from S by removing
all the edges and vertices of G. A 2-cell embedding is an embedding whose each face is
homeomorphic to an open disc. The facewidth (also called representativity) fw(E) of an
embedding E on a surface S of positive genus is the smallest nonnegative integer k such that
there is a closed noncontractible curve in S intersecting E in k vertices.

The rotation of a vertex v in a drawing of G on an orientable surface is the clockwise
cyclic order of the edges incident to v. We will represent the rotation of v by the cyclic order
of the other endpoints of the edges incident to v. The rotation system of a drawing is the set
of rotations of all vertices.

The Euler characteristic of a surface S of genus g, denoted by χ(S), is defined as
χ(S) = 2− 2g if S is orientable, and χ(S) = 2− g if S is nonorientable. Equivalently, if v, e
and f denote the numbers of vertices, edges and faces, respectively, of a 2-cell embedding of
a graph on S, then χ(S) = v − e+ f . The Euler genus eg(S) of S is defined as 2− χ(S). In
other words, the Euler genus of S is equal to the genus of S if S is nonorientable, and to
twice the genus of S if S is orientable.

An edge in a drawing is even if it crosses every other edge an even number of times. A
drawing of a graph is even if all its edges are even. A drawing of a graph is independently
even if every pair of independent edges in the drawing crosses an even number of times. In
the literature, the notion of Z2-embedding is used to denote both an even drawing [5] and an
independently even drawing [22].

The genus g(G) and the Z2-genus g0(G) of a graph G have been defined in the introduction,
as parameters related to drawings on orientable surfaces. The following two “Euler” analogues
involve drawings on both orientable and nonorientable surfaces. The Euler genus eg(G) of G
is the minimum g such that G has an embedding on a surface of Euler genus g. The Euler
Z2-genus eg0(G) of G is the minimum g such that G has an independently even drawing on
a surface of Euler genus g.

The embedding scheme of a drawing D on a surface S consists of the rotation system
and a signature +1 or −1 assigned to every edge, representing the parity of the number of
crosscaps the edge is passing through. If S is orientable, the embedding scheme can be given
just by the rotation system. The following weak analogue of the Hanani–Tutte theorem
was proved by Cairns and Nikolayevsky [5] for orientable surfaces and then extended by
Pelsmajer, Schaefer and Štefankovič [18] to nonorientable surfaces.

I Theorem 4 (The weak Hanani–Tutte theorem on surfaces [5, Lemma 3], [18, Theorem 3.2]).
If a graph G has an even drawing D on a surface S, then G has an embedding on S that
preserves the embedding scheme of D.

A simple closed curve γ in a surface S is 1-sided if it has a small neighborhood homeo-
morphic to the Möbius strip, and 2-sided if it has a small neighborhood homeomorphic to

SoCG 2018



40:4 The Z2-Genus of Kuratowski Minors

Figure 1 Left: a projective 5 × 5 grid. Right: a projective 5-wall.

the cylinder. We say that γ is separating in S if the complement S \ γ has two components,
and nonseparating if S \ γ is connected. Note that on an orientable surface every simple
closed curve is 2-sided, and every 1-sided simple closed curve (on a nonorientable surface) is
nonseparating.

2.2 Special graphs
2.2.1 Projective grids and walls
For a positive integer n we denote the set {1, . . . , n} by [n]. Let r, s ≥ 3. The projective r× s
grid is the graph with vertex set [r]× [s] and edge set

{{(i, j), (i′, j′)}; |i− i′|+ |j − j′| = 1} ∪ {{(i, 1), (r + 1− i, s)}; i ∈ [r]}.

In other words, the projective r × s grid is obtained from the planar r × (s + 1) grid by
identifying pairs of opposite vertices and edges in its leftmost and rightmost column. See
Figure 1, left. The projective t × t grid has an embedding on the projective plane with
facewidth t. By the result of Robertson and Vitray [20], [16, p. 171], the embedding is unique
if t ≥ 4. Hence, for t ≥ 4 the genus of the projective t× t grid is equal to bt/2c by the result
of Fiedler, Huneke, Richter and Robertson [10], [16, Theorem 5.8.1].

Since grids have vertices of degree 4, it is more convenient for us to consider their
subgraphs of maximum degree 3, called walls. For an odd t ≥ 3, a projective t-wall is
obtained from the projective t× (2t− 1) grid by removing edges {(i, 2j), (i+ 1, 2j)} for i odd
and 1 ≤ j ≤ t− 1, and edges {(i, 2j − 1), (i+ 1, 2j − 1)} for i even and 1 ≤ j ≤ t. Similarly,
for an even t ≥ 4, a projective t-wall is obtained from the projective t× 2t grid by removing
edges {(i, 2j), (i+ 1, 2j)} for i odd and 1 ≤ j ≤ t, and edges {(i, 2j − 1), (i+ 1, 2j − 1)} for
i even and 1 ≤ j ≤ t. The projective t-wall has maximum degree 3 and can be embedded
on the projective plane as a “twisted wall” with inner faces bounded by 6-cycles forming
the “bricks”, and with the “outer” face bounded by a (4t− 2)-cycle for t odd and a 4t-cycle
for t even. See Figure 1, right. This embedding has facewidth t and so again, for t ≥ 4 the
projective t-wall has genus bt/2c. It is easy to see that the projective 3-wall has genus 1 since
it contains a subdivision of K3,3 and embeds on the torus.

2.2.2 Kuratowski graphs
A graph is called a t-Kuratowski graph [23] if it is one of the following:
(a) K3,t,
(b) a disjoint union of t copies of K5,
(c) a disjoint union of t copies of K3,3,
(d) a graph obtained from t copies of K5 by identifying one vertex from each copy to a single

common vertex,
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a) b) c) d) e)

f) g) h)

Figure 2 The eight 3-Kuratowski graphs.

(e) a graph obtained from t copies of K3,3 by identifying one vertex from each copy to a
single common vertex,

(f) a graph obtained from t copies of K5 by identifying a pair of vertices from each copy to
a common pair of vertices,

(g) a graph obtained from t copies of K3,3 by identifying a pair of adjacent vertices from
each copy to a common pair of vertices,

(h) a graph obtained from t copies of K3,3 by identifying a pair of nonadjacent vertices from
each copy to a common pair of vertices.

See Figure 2 for an illustration.
The genus of each of the t-Kuratowski graphs is known precisely. The genus of K3,t is

d(t− 2)/4e [4, 19], which coincides with the lower bound from Euler’s formula. The genus of
t copies of K5 or K3,3 sharing a vertex is t by the additivity of genus over blocks [1]. Finally,
from a general formula by Decker, Glover and Huneke [9] it follows that the genus of t copies
of K5 or K3,3 sharing a pair of adjacent or nonadjacent vertices is dt/2e if t > 1: cases f)
and g) follow from their proof of Corollary 0.2, case h) follows from their Corollary 2.4 after
realizing that µ(K3,3) = 3 if x, y are nonadjacent in K3,3.

3 Ramsey-type results

The following Ramsey-type statement for graphs of large Euler genus is a folklore unpublished
result.

I Claim 5 (Robertson–Seymour [2, 23], unpublished). There is a function g such that for
every t ≥ 3, every graph of Euler genus g(t) contains a t-Kuratowski graph as a minor.

For 7-connected graphs, Claim 5 follows from the result of Böhme, Kawarabayashi,
Maharry and Mohar [2], stating that for every positive integer t, every sufficiently large
7-connected graph contains K3,t as a minor. Böhme et al. [3] later generalized this to graphs
of larger connectivity and Ka,t minors for every fixed a > 3.

Richter and Salazar [6] proved a similar statement for graph-like continua.
We obtain an analogous Ramsey-type statement for graphs of large genus as an almost

direct consequence of Claim 5.

I Theorem 6. Claim 5 implies that there is a function h such that for every t ≥ 3, every
graph of genus h(t) contains, as a minor, a t-Kuratowski graph or the projective t-wall.

We give a detailed proof of Theorem 6 in the full version of this paper [12].

SoCG 2018
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4 Our results

As our main result we complete a proof that the Z2-genus of each t-Kuratowski graph and
the projective t-wall grows to infinity with t; in fact, the Z2-genus of each of these graphs is
equal to their genus. Schaefer and Štefankovič [22] proved this for those t-Kuratowski graphs
that consist of t copies of K5 or K3,3 sharing at most one vertex. For the projective t-wall,
the result follows directly from the weak Hanani–Tutte theorem on orientable surfaces [5,
Lemma 3]: indeed, all vertices of the projective t-wall have degree at most 3, therefore pairs
of adjacent edges crossing oddly in an independently even drawing can be redrawn in a small
neighborhood of their common vertex so that they cross evenly, and the weak Hanani–Tutte
theorem can be applied. Thus, the remaining cases are t-Kuratowski graphs of type a), f), g)
and h).

I Theorem 7. For every t ≥ 3, the Z2-genus of each t-Kuratowski graph of type a), f), g)
and h) is equal to its genus. In particular,
(a) g0(K3,t) ≥ d(t− 2)/4e, and
(b) if G consists of t copies of K5 or K3,3 sharing a pair of adjacent or nonadjacent vertices,

then g0(G) ≥ dt/2e.

Combining Theorem 7 with the result of Schaefer and Štefankovič [22] and the simple
argument for the projective t-wall we obtain the following result.

I Corollary 8. For every t ≥ 3, the Z2-genus of each t-Kuratowski graph and the projective
t-wall is equal to its genus.

Combining Corollary 8 with Theorem 6 we get the following implication.

I Corollary 9. Claim 5 implies a positive answer to Problem 1.

5 Lower bounds on the Z2-genus

In this section we prove Theorem 7 for the t-Kuratowski graphs of type a), f), g) and h).
The fact that the Z2-genus of K3,t or the other t-Kuratowski graphs is unbounded when

t goes to infinity is not obvious at first sight. The traditional lower bound on the genus of
K3,t relies on Euler’s formula and the notion of a face. However, there is no analogue of a
“face” in an independently even drawing, and the rotations of vertices no longer “matter”.
We thus need different tools to compute the Z2-genus.

5.1 Z2-homology of curves
We refer to Hatcher’s textbook [14] for an excellent general introduction to homology theory.
Unfortunately, we were unable to find a more compact treatment of the homology theory
for curves on surfaces in the literature, thus we sketch here the main aspects that are most
important for us.

We will use the Z2-homology of closed curves on surfaces. That is, for a given surface S,
we are interested in its first homology group with coefficients in Z2, denoted by H1(S;Z2). It
is well-known that for each g ≥ 0, the first homology group H1(Mg;Z2) of Mg is isomorphic
to Z2g

2 [14, Example 2A.2. and Corollary 3A.6.(b)]. This fact was crucial in establishing the
weak Hanani–Tutte theorem on Mg [5, Lemma 3].

To every closed curve γ in Mg one can assign its homology class [γ] ∈ H1(S;Z2), and
this assignment is invariant under continuous deformation (homotopy). In particular, the
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homology class of each contractible curve is 0. More generally, the homology class of each
separating curve in Mg is 0 as well. Moreover, if γ is obtained by a composition of γ1 and
γ2, the homology classes satisfy [γ] = [γ1] + [γ2]. The assignment of homology classes to
closed curves is naturally extended to formal integer combinations of the closed curves, called
cycles, and so [γ] can be considered as a set of cycles. Since we are interested in homology
with coefficients in Z2, it is sufficient to consider cycles with coefficients in Z2, which may
also be regarded as finite sets of closed curves.

If γ1 and γ2 are cycles in Mg that cross in finitely many points and have no other points
in common, we denote by cr(γ1, γ2) the number of their common crossings. We use the
following well-known fact, which may be seen as a consequence of the Jordan curve theorem.

I Fact 10. Let γ′1 ∈ [γ1] and γ′2 ∈ [γ2] be a pair of cycles in Mg such that the intersection
number cr(γ′1, γ′2) is defined and is finite. Then

cr(γ′1, γ′2) ≡ cr(γ1, γ2) (mod 2).

Fact 10 allows us to define a group homomorphism (which is also a bilinear form)

ΩMg : H1(Mg;Z2)×H1(Mg;Z2)→ Z2

such that

ΩMg ([γ1], [γ2]) = cr(γ1, γ2) mod 2

whenever cr(γ1, γ2) is defined and is finite. Cairns and Nikolayevsky [5] call ΩMg the
intersection form on Mg. Clearly, ΩMg

is symmetric and ΩMg
([γ], [γ]) = 0 for every cycle

γ, since simple closed curves in Mg are 2-sided, and every closed curve with finitely many
self-intersections is a composition of finitely many simple closed curves.

We have the following simple observation about intersections of disjoint cycles in inde-
pendently even drawings.

I Observation 11 ([22, Lemma 1]). Let D be an independently even drawing of a graph G
on Mg. Let C1 and C2 be vertex-disjoint cycles in G, and let γ1 and γ2 be the closed curves
representing C1 and C2, respectively, in D. Then cr(γ1, γ2) ≡ 0 (mod 2), which implies that
ΩMg ([γ1], [γ2]) = 0.

5.2 Combinatorial representation of the Z2-homology of drawings
Schaefer and Štefankovič [22] used the following combinatorial representation of drawings
of graphs on Mg. First, every drawing of a graph on Mg can be considered as a drawing
on the nonorientable surface N2g+1, since Mg minus a point is homeomorphic to an open
subset of N2g+1. The surface N2g+1 minus a point can be represented combinatorially as
the plane with 2g + 1 crosscaps. A crosscap at a point x is a combinatorial representation
of a Möbius strip whose boundary is identified with the boundary of a small circular hole
centered in x. Informally, the main “objective” of a crosscap is to allow a set of curves
intersect transversally at x without counting it as a crossing.

Every closed curve γ drawn in the plane with 2g + 1 crosscaps is assigned a vector
yγ ∈ {0, 1}2g+1 such that (yγ)i = 1 if and only if γ passes an odd number of times through
the ith crosscap. When γ comes from a drawing on Mg, then yγ has an even number
of coordinates equal to 1. The vectors yγ represent the elements of the homology group
H1(Mg;Z2), and the value of the intersection form ΩMg

([γ], [γ′]) is equal to the scalar product

SoCG 2018
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e f

Figure 3 An embedding of K3,3 on the torus represented as a drawing in the plane with three
crosscaps. The nonzero vectors assigned to the edges are ye = (1, 1, 0) and yf = (0, 1, 1).

y>γ yγ′ over Z2. Analogously, we assign a vector ye to every curve e representing an edge in a
drawing of a graph in this model. See Figure 3.

We use the following two lemmata by Schaefer and Štefankovič [22].

I Lemma 12 ([22, Lemma 5]). Let G be a graph that has an independently even drawing D
on Mg and let F be a forest in G. Then G has a drawing E in the plane with 2g+ 1 crosscaps
such that
(1) every pair of independent edges has an even number of common crossings outside the

crosscaps, and
(2) every edge f of F passes through each crosscap an even number of times; that is, yf = 0.
Moreover, E can be obtained from D by a sequence of continuous deformations of edges and
neighborhoods of vertices, so the homology classes of all cycles are preserved between the two
drawings.

I Lemma 13 ([22, Lemma 3]). Let G be a graph that has a drawing in the plane with 2g + 1
crosscaps with every pair of independent edges having an even number of common crossings
outside the crosscaps. Let d be the dimension of the vector space generated by the set {ye;
e ∈ E(G)}. Then G has an independently even drawing on Mbd/2c.

Lemma 12 and Lemma 13 imply the following corollary generalizing the strong Hanani–
Tutte theorem. The proof appears in the full version of this paper.

I Corollary 14. Let G be a connected graph with an independently even drawing on Mg

such that each cycle in the drawing is homologically zero (that is, the homology class of the
corresponding closed curve is 0). Then G is planar.

Corollary 14 can be further strengthened using Lemma 12 as follows.

I Lemma 15. Let G be a connected graph with an independently even drawing D on
Mg. Let F be a spanning tree of G. If G is nonplanar, then there are independent edges
e, f ∈ E(G) \E(F ) such that the closed curves γe and γf representing the fundamental cycles
of e and f , respectively, satisfy ΩMg ([γe], [γf ]) = 1.

Proof. Let E be a drawing of G from Lemma 12. By the strong Hanani–Tutte theorem, there
are two independent edges e and f in G that cross an odd number of times in E . Moreover,
conditions 1) and 2) of Lemma 12 imply that none of the edges e and f is in F and so e
and f cross an odd number of times in the crosscaps. This means that y>e yf = 1, which is
equivalent to ΩMg ([γe], [γf ]) = 1. J

5.3 Proof of Theorem 7a)
We will show three lower bounds on g0(K3,t), in the order of increasing strength and
complexity of their proof.
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We will adopt the following notation for the vertices of K3,t. The vertices of degree t
forming one part of the bipartition are denoted by a, b, c, and the remaining vertices by
u0, u1, . . . , ut−1. Let U = {u0, u1, . . . , ut−1}. For each i ∈ [t− 1], let Ci be the cycle auibu0
and C ′i the cycle auicu0.

The first lower bound, g0(K3,t) ≥ Ω(log log log t), follows from Ramsey’s theorem and the
weak Hanani–Tutte theorem on surfaces. The proof appears in the full version of this paper.

The second lower bound is based on the pigeonhole principle and Corollary 14 from the
previous subsection.

I Proposition 16. We have g0(K3,t) ≥ Ω(log t).

Proof. Let D be an independently even drawing of K3,t on Mg. By the pigeonhole principle,
there is a subset Ib ⊆ [t− 1] of size at least (t− 1)/22g such that all the cycles Ci with i ∈ Ib
have the same homology class in D. Analogously, there is a subset Ic ⊆ Ib of size at least
|Ib|/22g such that all the cycles C ′i with i ∈ Ic have the same homology class in D. Suppose
that t ≥ 2 · 16g + 2. Then |Ib| ≥ 2 · 4g + 1 and |Ic| ≥ 3. Let i, j, k ∈ Ic be three distinct
integers. We now consider the subgraph H of K3,t induced by the vertices a, b, c, ui, uj , uk,
isomorphic to K3,3, and show that all its cycles are homologically zero. Indeed, the cycle
space of H is generated by the four cycles auibuj , auibuk, auicuj and auicuk, and each
of them is the sum (mod 2) of two cycles of the same homology class: auibuj = Ci + Cj ,
auibuk = Ci + Ck, auicuj = C ′i + C ′j and auicuk = C ′i + C ′k. Corollary 14 now implies that
H is planar, but this is a contradiction. Therefore t ≤ 2 · 16g + 1. J

To prove the lower bound in Theorem 7a), we use the same general idea as in the previous
proof. However, we will need a more precise lemma about drawings of K3,3, strengthening
Corollary 14 and Lemma 15. We also replace the pigeonhole principle with a linear-algebraic
trick.

I Lemma 17. Let D be an independently even drawing of K3,3 on Mg. For i ∈ {1, 2}, let
γi and γ′i be the closed curves representing the cycles Ci and C ′i, respectively, in D. The
intersection numbers of their homology classes satisfy

ΩMg
([γ1], [γ′2]) + ΩMg

([γ′1], [γ2]) = 1.

Lemma 17 is a consequence of Corollary 23. In the full version of this paper we include a
direct proof using a different method.

I Proposition 18. We have g0(K3,t) ≥ d(t− 2)/4e.

Proof. Let D be an independently even drawing of K3,t on Mg. For every i ∈ [t − 1], let
γi and γ′i be the closed curves representing the cycles Ci and C ′i, respectively, in D. For
every i, j ∈ [t− 1], i < j, we apply Lemma 17 to the drawing of K3,3 induced by the vertices
a, b, c, u0, ui, uj in D. Let A be the (t− 1)× (t− 1) matrix with entries

Ai,j = ΩMg
([γi], [γ′j ]).

Lemma 17 implies that Ai,j +Aj,i = 1 whenever i 6= j; in other words, A is a tournament
matrix [8]. Repeating the argument by de Caen [8], it follows that A+A>, with the addition
mod 2, is the matrix with zeros on the diagonal and 1-entries elsewhere. This implies that
the rank of A over Z2 is at least (t − 2)/2. Hence, the rank of ΩMg is at least (t − 2)/2,
which implies 2g ≥ (t− 2)/2. J
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Figure 4 2-amalgamations of two Kuratowski xy-wings. The spanning tree T is drawn bold.

5.4 Proof of Theorem 7b)
Before proving Theorem 7b) we first show an asymptotic Ω(log t) lower bound on the Z2-genus
for a more general class of graphs that includes the t-Kuratowski graphs of types f), g) and
h).

Let H be a 2-connected graph and let x, y be two nonadjacent vertices of H. Let t be a
positive integer. The 2-amalgamation of t copies of H (with respect to x and y), denoted by
qx,ytH, is the graph obtained from t disjoint copies of H by gluing all t copies of x into a
single vertex and gluing all t copies of y into a single vertex. The two vertices obtained by
gluing are again denoted by x and y.

An xy-wing is a 2-connected graph H with two nonadjacent vertices x and y such that
the subgraph H − x− y is connected, and the graph obtained from H by adding the edge
xy is nonplanar. Clearly, the graphs K5 − e and K3,3 − e, where e = xy, are xy-wings, and
similarly K3,3, with nonadjacent vertices x and y, is an xy-wing. The t-Kuratowski graphs
of types f) and g) are obtained from qx,yt(K5 − e) and qx,yt(K3,3 − e), respectively, by
adding the edge xy, whereas the t-Kuratowski graph of type h) is exactly the 2-amalgamation
qx,yt(K3,3). See Figure 4 for an illustration of 2-amalgamations of two xy-wings.

Let H be an xy-wing. We will use the following notation. Let w be a vertex of H adjacent
to y and let F ′ be a spanning tree of H −x− y. Let F be a spanning tree of H − y extending
F ′. In the 2-amalgamation qx,ytH we distinguish the ith copy of H, its vertices, edges, and
subgraphs, by the superscript i ∈ {0, 1, . . . , t−1}. In particular, for every i ∈ {0, 1, . . . , t−1},
Hi is an induced subgraph of qx,ytH, F i is a spanning tree of Hi − y and x is a leaf of F i.
For a given t, let

T = yw0 +
t−1⋃
i=0

Fi

be a spanning tree of qx,ytH. For every edge e ∈ E(qx,ytH)\E(T ), let Ce be the fundamental
cycle of e with respect to T ; that is, the unique cycle in T + e.

Enumerate the edges of E(H) \ E(F ) incident to x as e1, . . . , ek, the edges of E(H) \
E(F ) \ {yw} incident to y as f1, . . . , fl, and the edges of E(H − x− y) \E(F ) as g1, . . . , gm.
Let h be the edge yw. Thus, for every i ∈ [t − 1], we have E(Hi) \ E(T ) = {ei1, . . . , eik} ∪
{f i1, . . . , f il } ∪ {gi1, . . . , gim} ∪ {hi}.

If C and C ′ are cycles in qx,ytH, we denote by C + C ′ the element of the cycle space
of qx,ytH obtained by adding C and C ′ mod 2. We also regard C + C ′ as a subgraph of
qx,ytH with no isolated vertices. Note that if C and C ′ are fundamental cycles sharing at
least one edge then C + C ′ is again a cycle.

I Observation 19. Let i ∈ [t− 1].
(a) For every j ∈ [k], the cycle Cei

j
is a subgraph of Hi − y.
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(b) For every j ∈ [l], the cycle Cfi
j

+ Chi is a subgraph of Hi − x.
(c) For every j ∈ [m], the cycle Cgi

j
is a subgraph of Hi − x− y.

The cycles Cei
j
with j ∈ [k], Cfi

j
+ Chi with j ∈ [l], and Cgi

j
with j ∈ [m] generate the cycle

space of Hi; in particular, they are the fundamental cycles of Hi with respect to the spanning
tree F i + ywi. J

I Corollary 20. Let i, i′ ∈ [t− 1] be distinct indices. Then the following pairs of cycles are
vertex-disjoint, for all possible pairs of indices j, j′:
(a) Cei

j
and Cfi′

j′
+ Chi′ ,

(b) Cfi
j

+ Chi and Cgi′
j′
,

(c) Cei
j
and Cgi′

j′
,

(d) Cgi
j
and Cgi′

j′
.

Our first lower bound on the Z2-genus of 2-amalgamations of xy-wings is similar to
Proposition 16, and combines the pigeonhole principle and Corollary 14.

I Proposition 21. Let H be an xy-wing. Then g0(qx,ytH) ≥ Ω(log t).

Proof. Let D be an independently even drawing of qx,ytH on Mg. For every i ∈ [t− 1] and
e ∈ E(H) \ E(F ), let γ(ei) be the closed curve representing Cei in D.

The homology class [γ(ei)] has one of 22g possible values in H1(Mg;Z2). Thus, if
t ≥ 22g(k+l+m+1) + 2, then there are distinct indices i, i′ ∈ [t − 1] such that for every
e ∈ E(H) \ E(F ) we have [γ(ei)] = [γ(ei′)]. Combining this with Observation 11 and
Corollary 20, for all possible pairs of indices j, j′ we have

ΩMg ([γ(eij)], [γ(f ij′)] + [γ(hi)]) = ΩMg ([γ(eij)], [γ(f i
′

j′ )] + [γ(hi
′
)]) = 0, (1)

ΩMg ([γ(f ij)] + [γ(hi)], [γ(gij′)]) = ΩMg ([γ(f ij)] + [γ(hi)], [γ(gi
′

j′)]) = 0, (2)

ΩMg ([γ(eij)], [γ(gij′)]) = ΩMg ([γ(eij)], [γ(gi
′

j′)]) = 0, (3)

ΩMg ([γ(gij)], [γ(gij′)]) = ΩMg ([γ(gij)], [γ(gi
′

j′)]) = 0. (4)

Let Hi,i′ be the union of the graph Hi with the unique xy-path P i′ in F i′ + ywi
′ . Since

H is an xy-wing, the graph Hi,i′ is nonplanar. The graph F i,i′ = F i ∪ P i′ is a spanning tree
of Hi,i′ , and E(Hi,i′) \ E(F i,i′) = E(Hi) \ E(T ).

The fundamental cycle C ′hi of hi in Hi,i′ with respect to F i,i′ is equal to Chi + Chi′ .
Since [γ(hi)] = [γ(hi′)], the cycle C ′hi is homologically zero.

For every j ∈ [k], the fundamental cycle of eij in Hi,i′ with respect to F i,i′ is Cei
j
and its

homology class in D is [γ(eij)].
For every j ∈ [l], the fundamental cycle of f ij in Hi,i′ with respect to F i,i′ is Cfi

j
+ Chi′

and its homology class is [γ(f ij′)] + [γ(hi′)] = [γ(f ij′)] + [γ(hi)].
For every j ∈ [m], the fundamental cycle of gij in Hi,i′ with respect to F i,i′ is Cgi

j
and its

homology class in D is [γ(gij)].
By (1)–(4), for every pair of independent edges in E(Hi,i′)\E(F i,i′), the homology classes

of their fundamental cycles are orthogonal with respect to ΩMg
. This is a contradiction with

Lemma 15 applied to Hi,i′ and the spanning tree F i,i′ . Therefore, t ≤ 22g(k+l+m+1) + 1. J

To prove the lower bound in Theorem 7b), we follow the idea of the previous proof and
again replace the pigeonhole principle with a linear-algebraic argument. We will also need a
stronger variant of the Hanani–Tutte theorem and Lemma 15 for the graphs K5 and K3,3.

SoCG 2018
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I Lemma 22 (Kleitman [15]). In every drawing of K5 and K3,3 in the plane the total number
of pairs of independent edges crossing an odd number of times is odd.

I Corollary 23. Let G = K5 or G = K3,3. Let F be a forest in G. Let E be a drawing of
G from Lemma 12. Then there are an odd number of pairs of independent edges e, f in
E(G) \ E(F ) such that y>e yf = 1. J

The following simple fact is a key ingredient in the proof of Lemma 22.

I Observation 24. The graph obtained from each of K5 and K3,3 by removing an arbitrary
pair of adjacent vertices is a cycle; in particular, all of its vertices have an even degree. J

An xy-wing H is called a Kuratowski xy-wing if H is one of the graphs K5 − e where
e = xy, K3,3 − e where e = xy, or K3,3; see Figure 4. Observation 24 implies the following
important property of Kuratowski xy-wings.

I Observation 25. Let H be a Kuratowski xy-wing and let u be a vertex adjacent to x in H.
Then H − x− u is a cycle; in particular, y is incident to exactly two edges in H − x− u. J

In the following key lemma we keep using the notation for the 2-amalgamation qx,ytH
established earlier in this subsection.

I Lemma 26. Let t ≥ 2, let H be a Kuratowski xy-wing and let D be an independently even
drawing of qx,ytH on Mg. Then for every i ∈ [0, t− 1] the graph Hi has two cycles Ci1 and
Ci2 such that

(Ci1 is a subgraph of Hi − x and Ci2 is a subgraph of Hi − y) or Ci2 is a subgraph of
Hi − x− y, and
the closed curves γi1 and γi2 representing Ci1 and Ci2, respectively, in D satisfy ΩMg

([γi1],
[γi2]) = 1.

Proof. For every i ∈ [t − 1], let Hi,0 be the union of the graph Hi with the unique
xy-path P 0 in F 0 + yw0. The graph F i,0 = F i ∪ P 0 is a spanning tree of Hi,0, and
E(Hi,0) \ E(F i,0) = E(Hi) \ E(T ).

Let E be a drawing of G from Lemma 12. If H = K3,3, we apply Corollary 23 to G = Hi

and F = F i. If H = K5 − e or H = K3,3 − e where e = xy, we apply Corollary 23 to
G = Hi + e, F = F i + e, and the drawing of Hi + e where e is drawn along the path P 0 in
E (with self-crossings removed if necessary). In each of the three cases at least one of the
following alternatives occurs:
(1) y>

ei
j
ygi

j′
= 1 for some j ∈ [k] and j′ ∈ [m],

(2) y>
fi

j
ygi

j′
= 1 for some j ∈ [l] and j′ ∈ [m],

(3) y>hiygi
j′

= 1 for some j′ ∈ [m],
(4) y>

gi
j′
ygi

j′′
= 1 for some j′, j′′ ∈ [m],

(5) y>
ei

j
(yfi

j′
+ yfi

j′′
) = 1 for some j ∈ [k] and j′, j′′ ∈ [l],

(6) y>
ei

j
(yfi

j′
+ yhi) = 1 for some j ∈ [k] and j′ ∈ [l].

Here we used Observation 25 for each j ∈ [k] to pair the edges of E(Hi) \E(T ) incident with
y and independent from eij . We note that in each of the six alternatives the edges on the left
side of the scalar product can be required to be independent from the edges on the right
side; however, we do not use this fact in further arguments.

To finish the proof of the lemma for i ∈ [t− 1], we use Observation 19 together with the
additional fact that for every j′, j′′ ∈ [l], the cycle Cfi

j′
+ Cfi

j′′
is a subgraph of Hi − x. In
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particular, in case 1) we choose Ci1 = Cgi
j′

and Ci2 = Cei
j
, in case 2) we choose Ci1 = Cfi

j
and

Ci2 = Cgi
j′
, in case 3) we choose Ci1 = Chi and Ci2 = Cgi

j′
, in case 4) we choose Ci1 = Cgi

j′
and

Ci2 = Cgi
j′′
, in case 5) we choose Ci1 = Cfi

j′
+ Cfi

j′′
and Ci2 = Cei

j
, and in case 6) we choose

Ci1 = Cfi
j′

+ Chi and Ci2 = Cei
j
.

Finally, by exchanging the roles of H1 and H0 in qx,ytH in the proof, we also obtain
cycles C0

1 and C0
2 with the required properties. J

We are now ready to finish the proof of Theorem 7b).

I Proposition 27. Let t ≥ 2 and let H be a Kuratowski xy-wing. Then g0(qx,ytH) ≥ dt/2e.

Proof. Let D be an independently even drawing of qx,ytH on Mg. For every i ∈ [0, t− 1],
let Ci1 and Ci2 be the cycles from Lemma 26 and let γi1 and γi2, respectively, be the closed
curves representing them in D.

Without loss of generality, we assume that there is an s ∈ [0, t− 1] such that
for every i ∈ [0, s], Ci1 is a subgraph of Hi − x and Ci2 is a subgraph of Hi − y, and
for every i ∈ [s+ 1, t− 1], the cycle Ci2 is a subgraph of Hi − x− y.

It follows that for distinct i, i′ ∈ [0, t], the cycles Ci1 and Ci′2 are vertex-disjoint whenever
i, i′ ∈ [0, s], i, i′ ∈ [s+ 1, t− 1], or i ≤ s < i′.

Let A be the t× t matrix with entries

Ai,i′ = ΩMg
([γi1], [γi

′

2 ]).

By Lemma 26, Observation 11 and the previous discussion, the matrix A has 1-entries on
the diagonal and 0-entries above the diagonal. Thus, the rank of A over Z2 is t. Hence, the
rank of ΩMg is at least t, which implies 2g ≥ t. J
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