4,270 research outputs found

    Smart Intrusion Detection System for DMZ

    Get PDF
    Prediction of network attacks and machine understandable security vulnerabilities are complex tasks for current available Intrusion Detection System [IDS]. IDS software is important for an enterprise network. It logs security information occurred in the network. In addition, IDSs are useful in recognizing malicious hack attempts, and protecting it without the need for change to client‟s software. Several researches in the field of machine learning have been applied to make these IDSs better a d smarter. In our work, we propose approach for making IDSs more analytical, using semantic technology. We made a useful semantic connection between IDSs and National Vulnerability Databases [NVDs], to make the system semantically analyzed each attack logged, so it can perform prediction about incoming attacks or services that might be in danger. We built our ontology skeleton based on standard network security. Furthermore, we added useful classes and relations that are specific for DMZ network services. In addition, we made an option to mallow the user to update the ontology skeleton automatically according to the network needs. Our work is evaluated and validated using four different methods: we presented a prototype that works over the web. Also, we applied KDDCup99 dataset to the prototype. Furthermore,we modeled our system using queuing model, and simulated it using Anylogic simulator. Validating the system using KDDCup99 benchmark shows good results law false positive attacks prediction. Modeling the system in a queuing model allows us to predict the behavior of the system in a multi-users system for heavy network traffic

    9th SC@RUG 2012 proceedings:Student Colloquium 2011-2012

    Get PDF

    9th SC@RUG 2012 proceedings:Student Colloquium 2011-2012

    Get PDF

    A Dynamic Knowledge Management Framework for the High Value Manufacturing Industry

    Get PDF
    Dynamic Knowledge Management (KM) is a combination of cultural and technological factors, including the cultural factors of people and their motivations, technological factors of content and infrastructure and, where these both come together, interface factors. In this paper a Dynamic KM framework is described in the context of employees being motivated to create profit for their company through product development in high value manufacturing. It is reported how the framework was discussed during a meeting of the collaborating company’s (BAE Systems) project stakeholders. Participants agreed the framework would have most benefit at the start of the product lifecycle before key decisions were made. The framework has been designed to support organisational learning and to reward employees that improve the position of the company in the market place

    A Semantic-enabled Framework For Future Internet Of Things Applications

    Get PDF
    While the challenge of connecting Internet of Things (IoT) devices at the lowest layer has been widely studied, integrating and interoperating huge amounts of sensed data of heterogeneous IoT devices is becoming increasingly important because of the possibility of consuming such data in supporting many potential novel IoT applications. A common approach to processing and consuming IoT data is a centralized paradigm: sensor data is sent over the network to a comparatively powerful central server or a cloud service, where all processing takes place. However, this approach has some limitations as it requires devices to interact directly with a cloud which is not cost effective. First, it has high demands on the device's storage and computational capabilities. Second, as devices grow rapidly in a deployment area, sending all the data to a centralized cloud server requires high network bandwidth. Moreover, this often creates data privacy concerns as all raw data will be sent to a centralized place. To address the above limitations for building future Internet of Things applications, we present an early design of a novel framework that combines Internet of Things, Semantic Web, and Big Data concepts. We not only present the core components to build an IoT system, but also list existing alternatives with their merits. This framework aims to incorporate open standards to address the potential challenges in building future IoT applications. Therefore, our discussion revolves around open standards to build the framework, rather than proprietary standards
    corecore