2,500 research outputs found

    Learning quadrangulated patches for 3D shape parameterization and completion

    Full text link
    We propose a novel 3D shape parameterization by surface patches, that are oriented by 3D mesh quadrangulation of the shape. By encoding 3D surface detail on local patches, we learn a patch dictionary that identifies principal surface features of the shape. Unlike previous methods, we are able to encode surface patches of variable size as determined by the user. We propose novel methods for dictionary learning and patch reconstruction based on the query of a noisy input patch with holes. We evaluate the patch dictionary towards various applications in 3D shape inpainting, denoising and compression. Our method is able to predict missing vertices and inpaint moderately sized holes. We demonstrate a complete pipeline for reconstructing the 3D mesh from the patch encoding. We validate our shape parameterization and reconstruction methods on both synthetic shapes and real world scans. We show that our patch dictionary performs successful shape completion of complicated surface textures.Comment: To be presented at International Conference on 3D Vision 2017, 201

    Introduction to Persistent Homology

    Get PDF
    This video presents an introduction to persistent homology, aimed at a viewer who has mathematical aptitude but not necessarily knowledge of algebraic topology. Persistent homology is an algebraic method of discerning the topological features of complex data, which in recent years has found applications in fields such as image processing and biological systems. Using smooth animations, the video conveys the intuition behind persistent homology, while giving a taste of its key properties, applications, and mathematical underpinnings

    Nudged Elastic Band in Topological Data Analysis

    Full text link
    We use the nudged elastic band method from computational chemistry to analyze high-dimensional data. Our approach is inspired by Morse theory, and as output we produce an increasing sequence of small cell complexes modeling the dense regions of the data. We test the method on data sets arising in social networks and in image processing. Furthermore, we apply the method to identify new topological structure in a data set of optical flow patches
    corecore