73 research outputs found

    A regular viewpoint on processes and algebra

    Get PDF
    While different algebraic structures have been proposed for the treatment of concurrency, finding solutions for equations over these structures needs to be worked on further. This article is a survey of process algebra from a very narrow viewpoint, that of finite automata and regular languages. What have automata theorists learnt from process algebra about finite state concurrency? The title is stolen from [31]. There is a recent survey article [7] on finite state processes which deals extensively with rational expressions. The aim of the present article is different. How do standard notions such as Petri nets, Mazurkiewicz trace languages and Zielonka automata fare in the world of process algebra? This article has no original results, and the attempt is to raise questions rather than answer them

    String Diagrammatic Trace Theory

    Full text link
    We extend the theory of formal languages in monoidal categories to the multi-sorted, symmetric case, and show how this theory permits a graphical treatment of topics in concurrency. In particular, we show that Mazurkiewicz trace languages are precisely symmetric monoidal languages over monoidal distributed alphabets. We introduce symmetric monoidal automata, which define the class of regular symmetric monoidal languages. Furthermore, we prove that Zielonka's asynchronous automata coincide with symmetric monoidal automata over monoidal distributed alphabets. Finally, we apply the string diagrams for symmetric premonoidal categories to derive serializations of traces.Comment: Paper accepted for MFCS 202

    String Diagrammatic Trace Theory

    Get PDF

    Acta Cybernetica : Volume 17. Number 4.

    Get PDF

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Closure Properties of Synchronized Relations

    Get PDF
    A standard approach to define k-ary word relations over a finite alphabet A is through k-tape finite state automata that recognize regular languages L over {1, ..., k} x A, where (i,a) is interpreted as reading letter a from tape i. Accordingly, a word w in L denotes the tuple (u_1, ..., u_k) in (A^*)^k in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of rational relations, enforcing restrictions on the reading regime from the tapes, which we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language L onto {1, ..., k}. In this way, for each regular language C subseteq {1, ..., k}^*, one obtains a class Rel({C}) of relations. Synchronous, Recognizable, and Length-preserving rational relations are all examples of classes that can be defined in this way. We study basic properties of these classes of relations, in terms of closure under intersection, complement, concatenation, Kleene star and projection. We characterize the classes with each closure property. For the binary case (k=2) this yields effective procedures

    Weighted automata and multi-valued logics over arbitrary bounded lattices

    Get PDF
    AbstractWe show that L-weighted automata, L-rational series, and L-valued monadic second order logic have the same expressive power, for any bounded lattice L and for finite and infinite words. We also prove that aperiodicity, star-freeness, and L-valued first-order and LTL-definability coincide. This extends classical results of Kleene, Büchi–Elgot–Trakhtenbrot, and others to arbitrary bounded lattices, without any distributivity assumption that is fundamental in the theory of weighted automata over semirings. In fact, we obtain these results for large classes of strong bimonoids which properly contain all bounded lattices

    Walking automata in free inverse monoids

    Get PDF
    International audienceWalking automata, be they running over words, trees or even graphs, possibly extended with pebbles that can be dropped and lifted on vertices, have long been defined and studied in Computer Science. However, questions concerning walking automata are surprisingly complex to solve. In this paper, we study a generic notion of walking automata over graphs whose semantics naturally lays within inverse semigroup theory. Then, from the simplest notion of walking automata on birooted trees, that is, elements of free inverse monoids, to the more general cases of walking automata on birooted finite subgraphs of Cayley's graphs of groups, that is, elements of free E-unitary inverse monoids, we provide a robust algebraic framework in which various classes of recognizable or regular languages of birooted graphs can uniformly be defined and related one with the other

    A Kleene Theorem for Higher-Dimensional Automata

    Get PDF
    We prove a Kleene theorem for higher-dimensional automata (HDAs). It states that the languages they recognise are precisely the rational subsumption-closed sets of interval pomsets. The rational operations include a gluing composition, for which we equip pomsets with interfaces. For our proof, we introduce HDAs with interfaces as presheaves over labelled precube categories and use tools inspired by algebraic topology, such as cylinders and (co)fibrations. HDAs are a general model of non-interleaving concurrency, which subsumes many other models in this field. Interval orders are used as models for concurrent or distributed systems where events extend in time. Our tools and techniques may therefore yield templates for Kleene theorems in various models and applications
    • …
    corecore