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Abstract Walking automata, be they running over words, trees or even
graphs, possibly extended with pebbles that can be dropped and lifted on
vertices, have long been defined and studied in Computer Science. How-
ever, questions concerning walking automata are surprisingly complex to
solve. In this paper, we study a generic notion of walking automata over
graphs whose semantics naturally lays within inverse semigroup theory.
Then, from the simplest notion of walking automata on birooted trees,
that is, elements of free inverse monoids, to the more general cases of
walking automata on birooted finite subgraphs of Cayley’s graphs of
groups, that is, elements of free E-unitary inverse monoids, we provide
a robust algebraic framework in which various classes of recognizable
or regular languages of birooted graphs can uniformly be defined and
related one with the other.

1 Introduction

General context. Walking automata, be they running over words, trees or
even graphs, possibly extended with pebbles, have long been defined and stud-
ied in Computer Science[7,8]. For instance, tree walking automata with pebbles
have been an important subject of study the last decades since they are natural
abstract models of machine for XML query languages such as XPATH, or XML
transformation languages such as XSL [6].

Although based on well studied computation models: finite state machines or
pushdown automata, questions about walking automata are often surprisingly
complex to solve and, to a lesser extent, quite dependent on such or such details
in automata’s definition.

For instance, in the case of tree languages, bounding the number of pebbles
an automaton leads to defining classes of recognizable languages. Various logical
characterizations of these classes have been obtained [8] and difficult separation
results have also been proved [2,3,1]. However, for separation results, proof ar-
guments apply to the case of pebbles that are marked and visible [2,3], leaving
open the cases of unmarked and/or invisible pebbles.

Even though walking automata are sequential machines much like string
automata, the classical algebraic tools that have been developed to study word
automata are not easily applicable to tree walking automata. Despite numerous



results, little is known about the underlying mathematical framework, say in
algebra, that walking automata may induce.

Contribution of the paper. In this paper, we initiate the development of an
algebraic framework, within inverse semigroup theory, for walking automata. We
provide a generic notion of automata walking on edge-labeled graphs. They act as
some kind of observers of their input graphs much in the same way observational
semantics has been defined in concurrency theory by Hennessy and Milner [17].

Unlike most classical definitions, we do not require walking automata to start
and end in the same vertex, neither do we require the complete traversal of input
structures. Moreover, the capacity given to a walking automaton to check or not
the absence of an (incoming or outgoing) edge labeled by a given letter induces
two possible semantics for walking automata, much in the same way there are
various observational semantics in [17], with or without observable failures.

The languages recognized by our walking automata are languages of birooted
graphs, that is, graphs extended with an input root: the vertex where the run
starts, and an output root: the vertex where the run ends. These languages
are shown to be closed under root preserving graph morphisms (Lemma 12).
Moreover, the sequential composition of partial runs of walking automata is
shown to induce a composition of the traversed birooted graphs, yielding an
inverse monoid structure (see Remark 3 and Theorem 22).

Then we prove (Theorem 16) that, in many cases, the stronger semantics
(with observable reading failures) can be uniformly encoded in the weaker se-
mantics (with unobservable reading failures).

As particular cases, walking automata in Cayley’s graphs of finitely generated
groups are considered in Section 4. The recognized languages are subsets of
monoids known as freest E-unitary inverse monoids [15,16]. Then, based on
the underlying monoid structure, an extension of regular expressions is defined
and shown (Theorem 25) to characterize the classes of recognizable languages
induced by limiting numbers of allowed pebbles.

2 Graphs

It is very likely that most concepts and properties detailed here have already
appeared in the literature. However, for the sake of completeness we provide our
own presentation.

Graphs and morphisms. Let A = {a, b, c, · · · } be a finite alphabet. A (rela-
tional) graph on the edge alphabet A is a pair G = 〈V,E〉 with a set of vertex V
and sets of a-labeled (directed) edges E(a) ⊆ V ×V for all a ∈ A. A graph mor-
phism, or simply morphism, from G1 = 〈V1, E1〉 to G2 = 〈V2, E2〉 is a mapping
f : V1 → V2 such that f(E1(a)) ⊆ E2(a), for every a ∈ A. Such a morphism is
denoted by f : G1 → G2.
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Walking paths. Let Ā = {ā, b̄, c̄, · · · } be a copy of the alphabet A. Let (A+Ā)∗
be the free monoid generated by A+ Ā with the unit (empty word) denoted by
1 and the concatenation of two words u, v ∈ (A+ Ā)∗ simply denoted by uv.

A (back and forth) walking path on the graph G from a vertex x to a vertex
y is an alternating sequence of vertices of V and letters of A+ Ā of the form

π = x0z1x1z2x2 · · ·xn−1znxn

such that x = x0, y = xn and, for every 1 ≤ i ≤ n, we have (xi−1, xi) ∈ E(zi)
where, for every a ∈ A, the relation E(ā) denotes the inverse relation E−1(a) =
{(x, y) ∈ V × V : (y, x) ∈ E(a)}. The vertex x is the source of such a path. It
is denoted by sr(π). The vertex y is the target of such a path. It is denoted by
tg(π).

In such path, a letter a ∈ A models a forward traversal of an a-labeled edge
and a letter ā ∈ Ā models a backward traversal of an a-labeled edge. The inverse
path π−1 of the path π is defined by

π−1 = xnz
−1
n−1xn−1 · · ·x2z

−1
1 x1z

−1
0 x0

with (a)−1 = ā and (ā)−1 = a for every a ∈ A. We easily observe that π−1 is
indeed a walking path in the graph G from xn to x0.

As a particular case, the graph G is bideterministic when for every z ∈ A+Ā,
for every (p, q), (p′, q′) ∈ E(z), if p = p′ then q = q′. In this case, every path π as
above, emanating from a given vertex x, is completely determined by its source
x and the path label λ(π) = z1z2 · · · zn ∈ (A+ Ā)∗ obtained from π by deleting
all vertices.

Path-induced birooted subgraph. Let π = x0z1x1z2x2 · · ·xn−1znxn be a path
on the graph G. The subgraph G|π of graph G induced by the path π is defined
by G|π = 〈V |π,E|π〉 with the set of vertices V |π = {x0, x1, · · · , xn} and, for
every a ∈ A, the set of a-labeled edges (E|π)(a) defined as the set of pairs
(x, y) ∈ V ′×V ′ such that either xay or yāx occurs as a subsequence in the path
π. Then, the following lemma is immediate.

Lemma 1. The graph G|π induced by the path π is finite and the inclusion
mapping ι : V |π → V that maps every vertex to itself is a one-to-one morphism,
i.e. graph G|π is a finite subgraph of graph G.

Definition 2 (Birooted induced subgraphs). Let π be a path of G. The
triple θG(π) = (G|π, sr(π), tg(π)) defined by distinguishing the source and the
target of the path π in the subgraph G|π, is called the birooted subgraph of G
induced by the path π.

Remark 3. It is an easy observation that the trivial birooted subgraph product
θG(π1) ·θG(π2) defined to be the graph (G|π1∪G|π2, sr(π1), tg(π2)) (with union
defined over subsets of vertices and edges) when tg(π1) = sr(π2) and 0 otherwise
(with 0 an additional zero element) yields an inverse semigroup: for every element
x there is a unique element x−1 such that xx−1x = x and x−1xx−1 = x−1.
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Indeed, we have 0−1 = 0 and θG(π)−1 = θG(π−1), and, additionally, it can be
shown that the non zero idempotent elements exactly correspond to the birooted
graphs induced by cyclic paths.

The much more interesting case when the birooted subgraphs are invariant
under translation (in Cayley’s graphs) is detailed in Section 4 below.

Vertex-labeled graphs. So far, the graphs we consider have no vertex label.
The following definition and lemma shows that this fact does not reduce the
generality of our language theoretical study.

Definition 4 (Induced vertex label). The vertex label of a vertex x ∈ V in
a graph G = 〈V,E〉 is defined to be the set λV (x) = {a ∈ A : (x, x) ∈ E(a)}.

The following lemma, whose proof is immediate, emphasizes the relevance of this
notion.
Lemma 5. Let G = 〈V,E〉 be a graph on the edge alphabet A. Let g : V → P(B)
be a vertex labeling function with some new alphabet B disjoint from A. Let
〈G, g〉 be the resulting vertex-labeled graph and let ϕ(〈G, g〉) = 〈V ′, E′〉 be the
edge-labeled graph defined by V ′ = V , by E′(a) = E(a) for every a ∈ A, and
E′(b) = {(x, x) ∈ V ′ × V ′ : b ∈ g(v)} for every b ∈ B.

Then, the vertex identity mapping from V into V ′ is a one-to-one and onto
graph morphism from G into ϕ(〈G, g〉). Moreover, ϕ is a one-to-one mapping
from the class of graphs with A-labeled edge and P(B)-labeled vertices into
the class of (A ∪ B)-labeled edges such that, given the vertex labeling
λ′V : V ′ → P(A + B) as defined above, then, for every v ∈ V ′ = V , we have
g(v) = λ′V (v) ∩B.
In other words, graphs with vertex labels are easily encoded into graphs without
vertex labels. Moreover, in the case both A and B are finite, such a mapping
induces a fairly simple MSO-transduction (see [4] Chap. 7). It follows that ev-
ery MSO-definable language of graphs with A-labeled edges and P(B)-labeled
vertices can be encoded into an MSO-definable language of graphs with A ∪B-
labeled edges. Since graphs with unlabeled vertices are particular case of graphs
with labeled vertices this really says that, up to MSO definable languages, study-
ing languages of edge-labeled graphs or languages of edge-and-vertex-labeled
graphs is essentially the same.

3 Walking on graphs

In this paper, a walking automata is sort of a graph observer that traverses the
input graph possibly dropping and lifting (in the reverse order) some pebbles.
Since walking automata cannot jump between disconnected graphs, all graphs
considered from this point are assumed to be connected via walking paths.

Definition 6 (Walking automata with pebbles). A walking automata with
pebbles on the alphabet A is a tuple A = 〈Q, I, T, δ,∆〉 with set of states Q,
initial states I ⊆ Q, terminal states T ⊆ Q, edge transitions δ(z) ⊆ Q × Q for
every z ∈ A+Ā, and pebble transitions∆((r, s)) ⊆ Q×Q for every (r, s) ∈ Q×Q.
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Informally, from a given vertex, the automaton can traverse forward any
outgoing a-labeled edge (reading a) or it can traverse backward any incoming a-
labeled edge (reading ā). In both cases, the automaton state is updated according
to the first-order transition function δ applied to the traversed edge label a or
ā. Additionally, the automaton may drop a pebble on that vertex, interrupting
the current run and starting a new subrun. It may also lift a pebble, ending
the current subrun and resuming the former run. When ending a subrun, the
automaton state is updated according to the second-order transition function ∆
applied to the pair of states resulting from the start state and the stop state of
the subrun.

Definition 7 (Automaton configuration). Let A = 〈Q, I, T, δ,∆〉 be a walk-
ing automaton. Let G = 〈V,E〉 be a graph on the alphabet A. An automaton
configuration Γ ∈ (Q×Q× V )+ is a non-empty stack of (dot separated) triples
over Q×Q× V .

In a stack of the form Γ.(p, q, x) with p, q ∈ Q and x ∈ V , the triple (p, q, x)
describes the current run configuration: from state p, the automaton A walked
to the current vertex x reaching current state q. The additional stack Γ , possibly
empty, contains the configurations of formerly interrupted runs.

As formalized in the next definition, when dropping a pebble on a vertex x,
the automaton interrupts the current run, pushes its configuration (p1, q1, x) on
the stack, and starts a subrun in a configuration (p2, p2, x).

On the contrary, when lifting a pebble from a vertex x, the automaton ter-
minates a subrun in a configuration (p1, q1, x), pops the saved configuration
(p2, s, x), and resumes the former run in an updated configuration (p2, q2, x),
chosen according to the (second-order) transition condition (s, q2) ∈ ∆((p1, q1)).

Definition 8 (Automaton transition and run). On a graph G = 〈V,E〉, a
transition step from a configuration Γ1.(p1, q1, x) to a configuration Γ2.(p2, q2, y)
reading z ∈ {1} ∪A∪ Ā is defined according to one of the following three cases:

(1) edge traversal: z ∈ A∪Ā, Γ1 = Γ2, p1 = p2, (q1, q2) ∈ δ(z) and (x, y) ∈ E(z),
(2) pebble drop: z = 1, y = x, Γ2 = Γ1 · (p1, q1, x) and q2 = p2,
(3) pebble lift: z = 1, y = x, Γ1 = Γ2 · (p2, s, x) and (s, q2) ∈ ∆((p1, q1)).

Such a transition step is denoted by Γ1.(p1, q1, x) `z Γ2.(p2, q2, y).
An run of the automaton A on the graph G from a vertex x to a vertex y is

then defined as a sequence of transition steps

ρ = Γ0.(p0, q0, x0) `z1 Γ1.(p1, q1, x1) · · · `zn
Γn · (pn, qn, xn)

with x0 = x and xn = y, also denoted by ρ = Γ0 · (p0, q0, x0) `∗u Γn · (pn, qn, xn)
with u = z1z2 · · · zn. The path π(ρ) induced by run ρ is defined by

π(ρ) = x0z1x1z2x2 · · ·xn−1znxn

Such a run ρ is an accepting run from x to y when Γ0 is the empty stack with
p0 = q0 ∈ I (the first configuration is initial), and Γn is the empty stack with
pn ∈ I and qn ∈ T (the last configuration is terminal).
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Given an integer k ≥ 0, the run ρ is k-accepting run when it is accepting and
|Γi| ≤ k for every 0 ≤ i ≤ n, where |Γi| is the length of the sequence Γi. For
notational purpose, an accepting run with no bound on the number of allowed
pebbles is also called an ∞-accepting run.

Example 9. An example of run is depicted Figure 1 where configuration stacks
are depicted vertically.

(p0, p0, x0) (p0, p1, x1) (p0, p2, x1) (p0, p3, x2)

(q0, q0, x1) (q0, q1, x1)

u1

u2

u3

drop lift

(Γ0) (Γ1) (Γ2) (Γ3)

Figure1. A run Γ0 `∗u1
Γ1 `∗u2

Γ2 `∗u3
Γ3.

In this run, when no other pebble but the one depicted above is used, then
first order transition conditions imply that (p0, p1) ∈ δ(u1), (q0, q1) ∈ δ(u2) and
(p′1, p2) ∈ δ(u3), with an obvious extension of δ to (A + Ā)∗, and second order
transition conditions imply that (p1, p

′
1) ∈ ∆((q0, q1)).

Definition 10 (Recognized languages). Given a class of graphs G (possi-
bly omitted when clear from the context), the language recognized (resp. k-
recognized) by the automaton A in the class of graph G is the set L∞G (A) (resp.
LkG(A)) of birooted graphs (G, x, y) with G ∈ G and x, y two vertices of G, such
that there is an accepting run (resp. a k-accepting run) of the automaton A over
G from x to y.

Remark 11. The walking automata defined here are walking automata with
unmarked and invisible pebbles in the sense of [6]. However, generalizing Pécuchet’s
study of two-way automata on strings [18] (see also [11,5]), we do not require
that accepting runs starts and ends in the same vertex of the input structures.
Moreover, our definition also differs from the definition proposed in [6,1] in the
sense that, a priori, the absence of edges cannot be detected by the automata
and the walking automaton is not required to traverse the entire structure. The
consequences of these facts are discussed below.

Lemma 12. Let A be a walking automaton on the alphabet A. Let G1 = 〈V1, E1〉
and G2 = 〈V2, E2〉 be two graphs on the same alphabet. Assume that there is a
graph morphism f : G1 → G2. Then, for every 0 ≤ k ≤ ∞ and x, y ∈ V1,
if (G1, x, y) ∈ Lk(A) then (G2, f(x), f(y)) ∈ Lk(A).

In general, the converse does not hold. However, as detailed below, the converse
holds in the case the graph G1 is the subgraph of G2 induced by an accepting
run.

Definition 13 (Graphs induced by a run). Let ρ : Γ1 ` Γ2 be a run in a
graph G from x to y. The graph induced by a run ρ is defined to be the subgraph
Gρ = G|π(ρ) induced by the path π(ρ) traversed by A in G.
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Then we have:

Lemma 14. Let G be a graph such that (G, x, y) ∈ Lk(A) via an accepting run
ρ. Let Gρ be the graph induced by the run ρ. Then (Gρ, x, y) ∈ Lk(A).

The more classical notion of accepting runs defined by complete traversals of the
input structure can be related with ours as follows.

Definition 15 (Strict recognizability). A birooted graph (G, x, y) is strictly
recognized (resp. strictly k-recognized) by an automaton A when there is an
accepting (resp. k-accepting) run ρ of A over G from x to y such that (Gρ, x, y)
and (G, x, y) are isomorphic.

As an immediate corollary of Lemma 1, Lemma 12 and Lemma 14, we thus have:

Theorem 16. Let A be a walking automaton. For every k ≥ 0, let LkS(A) be
the class of birooted graphs strictly k-recognized by A and let Lk(A) the class
of birooted graphs k-recognized by A. Then Lk(A) is the morphism closure of
the language LkS(A), that is, (G, x, y) ∈ Lk(A) if, and only if, there exists
(G′, x′, y′) ∈ LkS(A) and a graph morphism f : G′ → G such that f(x′) = x
and f(y′) = y.

In particular, when the birooted structures cannot be related by morphisms (as
with end markers in two-way word automata [5]), studying strict recognizability
just amounts to study recognizability.

4 Walking in Cayley’s graphs of groups

So far, we have not much used the fact that walking automata recognize sets
of birooted graphs. When the underlying graph G is the Cayley’s graph of a
(presented) group, then the (isomorphic classes of) finite birooted subgraphs
induced by paths form a inverse monoid (see [15] for more details and also [16]
for a general presentation). Based on the underlying monoid structure, various
classes of languages can then be defined and characterized by means of certain
restriction of walking automata.

Definition 17 (The Cayley graph of a presented group). Let G be a
group generated by A ⊆ G and let ϕ : (A + Ā)∗ → G be the corresponding
inverse-preserving monoid morphism1. Then, the Cayley graph of the presented
group G is defined to be the graph CG = 〈V,E〉 with vertex set defined by V = G
and, for every a ∈ A, edge set defined by E(a) = {(x, y) ∈ V ×V : x ·ϕ(a) = y}.

For convenience, we extend the edge relation function E to (A + Ā)∗ by
taking E(u) = {(x, y) ∈ G × G : x · ϕ(u) = y}. As a particular case, since ϕ
is inverse-preserving and G is a group, we indeed have E(ā) = E(a)−1 which is
consistent with our previous extension of the edge relations.
1 The group G is presented by the morphism ϕ.
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Remark 18. Clearly, the Cayley graph CG of the groupG is a (possibly infinite)
bideterministic graph as well as its (finite) birooted subgraphs. Depending on
the chosen group, various interesting examples can be defined (see [16]).

For instance, taking the free group FG(A) we have birooted trees. Taking the
group defined from A = {a, b, c, d} by cc = 1, dd = 1 and cd = 0, we obtain
vertex-labeled birooted trees with edges labeled by a or b and, following Remark 5,
vertices labeled over P({c, d}). Thanks to the axiom cd = 0, only the birooted
graph encoding zero has a vertex labeled by both c and d. The language theory
of these vertex-labeled birooted graphs has been studied in [10,14].

Another example, taking the group defined from A = {a, b, c, d} by ab = ba,
cc = 1 and dd = 1 and cd = 0, we obtain vertex-labeled birooted grids with (say)
horizontal edges labeled by a, vertical edges labeled by b, and, similarly, vertices
labeled over P({c, d}).

In other words, this group-theoretic based approach to graphs leads to a vast
variety of classes of birooted graphs.

Definition 19 (Induced graphs revisited). Let G be a group presented by
a morphism ϕ, and let CG be its Cayley graph. For every u ∈ (A + Ā)∗, let
CG|u be the graph induced by u defined by CG|u = 〈V,E〉 with set of vertices
V = ϕ(Pref (u)) where Pref (u) = {v ∈ (A + Ā)∗ : ∃w ∈ (A + Ā)∗, u = vw}
is the set of word prefixes of u, and sets of edges E(a) defined as the union of
{(ϕ(v1), ϕ(v2)) ∈ V × V : v1a = v2} and {(ϕ(v2), ϕ(v1)) ∈ V × V : v1a

−1 = v2}.

The next lemma, whose proof is immediate, relates our two definitions of induced
subgraphs.
Lemma 20. Let π be a path in CG. Let λ(π) ∈ (A + Ā)∗ be the word of
(A+ Ā)∗ obtained from π by deleting all vertices. The birooted subgraph θCG

(π)
induced by the path π isn the graph CG is isomorphic to the birooted graph
(CG|λ(π), 1, ϕ(u)).
This leads us to the following definition:
Definition 21 (Birooted subgraphs and their product). A birooted finite
subgraph of the Cayley graph CG of the presented group G is a quadruple
B = (V,E, 1, x) where V ⊆ G is a finite subset of G such that 1, x ∈ V ,
E(a) ⊆ {(x, y) ∈ V × V : x · ϕ(a) = y} for every a ∈ A, and such that, the
resulting subgraph 〈V,E〉 is connected. The set of such finite birooted subgraphs
of CG is denoted by BSG(G). Then, the product of two birooted finite subgraphs
B1 = (V1, E1, 1, x1) and B2 = (V2, E2, 1, x2) is defined by

B1 ·B2 = (V1 ∪ x1 · V2, E, 1, x1 · x2) with E(a) = E1(a) ∪ x1 · E2(a)

with the notation x1 · E2(a) = {(x, y) ∈ (x1 · V2, x1 · V2) : (x, y) ∈ E2(a)} for
every a ∈ A.

Theorem 22 (Margolis,Meakin [15]). The set BSG(G) with birooted graph
product is an inverse monoid. The mapping θG : (A+ Ā)∗ → BSG(G) is an onto
monoid morphism, and, for every u ∈ (A + Ā)∗, we have θG(u)−1 = θG(u−1)
and θG(u) is idempotent if and only if ϕ(u) = 1.
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Remark 23. In [15], it is proved that BSG(G) is the freest inverse monoid
generated by A whose group image is the group G. This result is much stronger
than Theorem 22.

A subset X ⊆ BSG(CG) of the monoid BSG(G) is called a G-language.
Following our previous definitions, given 0 ≤ k ≤ ∞, the G-language X is k-
recognized (resp. strictly k-recognized) by a walking automaton A when
X = Lk(A)∩BSG(CG) (resp. X = LkS(A)∩BSG(CG)). Then, let k-PWA (resp.
k-PWAS) be the class of G-languages k-recognized (resp. strictly k-recognized)
by a finite state walking automaton.

We aim at providing a Kleene-like characterization of these classes of lan-
guages by means of regular expressions. For such a purpose, the following oper-
ations are defined over G-languages:

(1) sum : X1 +X2 = X1 ∪X2,
(2) product: X1 ·X2 = {x1 · x1 ∈ BSG(G) : x1 ∈ X,x2 ∈ X},
(3) star: X∗ =

⋃
Xn,

(4) inverse: X−1 = {x−1 ∈ BSG(G) : x ∈ X},
(5) idempotent projection: XE = {x ∈ X : xx = x},

for all languages X,X1, X2 ⊆ BSG(G).
A k-regular expression is defined to be any finite expression built over the

alphabet A∪ Ā∪{1}, combined with sum, product, star and idempotent restric-
tion operators such that the nesting depth of idempotent projection is at most
k. A language X ⊆ BSG(G) is a k-regular language when it can be defined by
a k-regular expressions, mapping 1 to θG(1) and every letter z ∈ A + Ā to its
birooted image θG(z) ∈ BSG(G).

The class of k-regular languages is denoted by k-REG. The class of lan-
guages recognizable by finite monoids M and morphisms from BSG(G) onto M
is denoted by REC . Observe that, by definition, the usual class REG of lan-
guages definable by finite Kleene regular expressions equals 0-REG. Last, for
every class of languages X, let X↓ be the class of closure of the languages of X
under root-preserving graph morphisms within BSG(G).

Remark 24. Observe that the notion of k-recognizability is not necessarily pre-
served under (inverse) monoid morphisms. Indeed, given an inverse monoid mor-
phism ϕ : M → N , we certainly have ϕ(XE) ⊆ ϕ(X)E for every X ⊆M . How-
ever, the reverse inclusion may be false as illustrated by the expression abāb̄.
Indeed, it induces a non-idempotent birooted tree in the free inverse semigroup
but a cycle in any E-unitary inverse semigroup induced by a group in over which
the equation ab = ba is satisfied.

Theorem 25 (Hierarchy). For every presented group G generated by A, the
following equalities and inequalities holds. In this figure, strict inequalities ⊂ are
only known to hold in the free inverse monoid, that is, when G = FG(A): the
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free group generated by A. They have to be read non-strict in all other cases.

0-PWAS ⊂ 1-PWAS ⊆ · · · k-PWAS · · · ⊆ ω-PWAS

= = =

REC ⊂ 0-REG ⊂ 1-REG ⊆ · · · k-REG · · · ⊆
⋃
k k-REG

⊂ ⊂ ⊂

0-REG↓ ⊂ 1-REG↓ ⊆ · · · k-REG↓ · · · ⊆
⋃
k k-REG↓

= = =

0-PWA ⊂ 1-PWA ⊆ · · · k-PWA · · · ⊆ ω-PWA

Proof. Each horizontal inclusion follows from the definition. The separation result
REC ⊂ 0-REG is known over languages of birooted trees [19]. The separation
0-PWAS ⊂ 1-PWAS follows from the language example of idempotent birooted
trees that cannot, by a simple pumping argument, be recognized by an automa-
ton without pebble but that can easily be recognized with a single pebble (see
below).

The first row of (vertical) equalities follows from Lemma 26, proven below.
Over birooted trees, that is, in the case G = FG(A), these equalities imply the
separation result 0-REG ⊂ 1-REG. Indeed, over birooted trees the language
of idempotent trees is recognizable by a one-pebble automaton while a simple
argument shows that is cannot be recognized without pebble.

The second row of (vertical) inclusions follows from the known fact [20] (see
also [13]) that, for all birooted graphs x, y ∈ BSG(G), there is a root-preserving
graph morphism f : y → x if and only if x ≤ y in the natural order defined by
x ≤ y when x = e · y for some idempotent element e.

It follows that, we have X↓ = E(BSG(G)) ·X for all language X ⊆ BSG(G),
and the language (BSG(G))E of all idempotent elements of BSG(G) belongs to
1-REG as shown by the one-state automaton A = 〈{p, q}, {p}, {q}, δ,∆〉 with
δ(z) = {(p, p)} for every z ∈ A+ Ā and ∆((r, s)) = {(p, q)} when r = s = p and
∆((r, s)) = ∅ otherwise. The fact these inclusions are strict follows, for language
of birooted trees, from the fact that the language {θG(a)} is not closed under
morphisms since it is not closed under natural order.

The last row of (vertical) equalities follows from the first row of vertical
equalities and Theorem 16. 2

Lemma 26. For every ≥ 0, we have k-PWAS = k-REG.

Proof (sketch of). Direct inclusion (⊆). Let A = 〈Q, I, F, δ,∆〉 be a finite-state
walking automaton. For every pair of states p, q ∈ Q, let LkS(p, q) ⊆ BSG(G)
be the class of languages strictly k-recognized by the automaton A from an
initial configuration of the form (p, p, x) to a terminal configuration of the form
(p, q, y) for some vertices x, y. Let EkS(p, q) be restriction of that language to
the case x = y, or, equivalently, EkS(p, q) = (LkS(p, q))E . Then, much like in
the proof of Kleene’s theorem for regular languages of strings, by mimicking
walking automata transition rules, we can define a system of equations relating
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the languages LkS(p, q) and EkS(p, q) which resolution yields the expected regular
expressions.

Reverse inclusion (⊇). This can be proved by induction on the syntactic com-
plexity of regular expressions. More precisely, we first prove that the singleton
languages {θG(1)} and {θG(z)} for every z ∈ A+ Ā, are strictly 0-recognizable
by finite automata. Then, it suffices to show that the class of languages strictly
k-recognized by finite walking automata is closed under sum, product and star,
and that, if X is strictly k-recognized by a finite walking automaton, then XE

is (k + 1)-recognized by a finite walking automaton.
It must be noticed that the existence of second order transitions makes these

constructions slightly more complex than in the case of string languages. In
particular, building an automaton A∗ such that LkS(A∗) = (LkS(A))∗ is done
from k + 1 copies of the automaton A. Indeed, this allows to count in any state
the number of pebbles that have been dropped and to ensure, between two runs
of the automaton A simulated in the automaton A∗, that all pebbles have been
lifted. 2

5 Conclusion
We have defined walking automata on graphs. By allowing automata to start
and stop in arbitrary graph vertices, we have defined the language recognized by
a walking automaton in terms of birooted graphs that form inverse semigroups.

Although we do not require walking automata to perform complete traversal
of their input structures, thanks to the preorder relation induced by root pre-
serving graph homomorphisms, we eventually provide a correspondence between
our notion of recognizability and the more classical one.

In the particular case of Cayley’s graphs of groups, we obtain a rather rich
array of classes of recognizable languages of birooted graphs, and a notion of k-
regular expressions that characterizes the number of allowed pebbles in accepting
runs (Theorem 25). How these induced hierarchies of languages of trees or graphs
may be related is left as an intriguing open problem.

We conjecture that the hierarchy induced by the number of pebbles is strict
for languages of birooted trees. The strictness of the hierarchies for languages
of birooted graphs induced by other groups than the free group is also an open
problem. Ideally, the algebraic framework proposed here may provide simpler
arguments than in [3] for solving these questions.

It has already been observed that an adequate algebraic theory for inverse
monoid morphisms can be developed by means of certain kind of premorphisms
instead of morphisms [9,10,12,14]. As a matter of fact, transition monoids of
walking automata induce a different type of premorphisms that could also be
investigated as new language recognizers.
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