27 research outputs found

    Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation

    Full text link
    Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and clinical drive for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage.Comment: 32 pages, 16 figures. Homepage: https://atm22.grand-challenge.org/. Submitte

    Human treelike tubular structure segmentation: A comprehensive review and future perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed

    Differentiable Topology-Preserved Distance Transform for Pulmonary Airway Segmentation

    Full text link
    Detailed pulmonary airway segmentation is a clinically important task for endobronchial intervention and treatment of peripheral located lung cancer lesions. Convolutional Neural Networks (CNNs) are promising tools for medical image analysis but have been performing poorly for cases when existing a significant imbalanced feature distribution, which is true for the airway data as the trachea and principal bronchi dominate most of the voxels whereas the lobar bronchi and distal segmental bronchi occupy a small proportion. In this paper, we propose a Differentiable Topology-Preserved Distance Transform (DTPDT) framework to improve the performance of airway segmentation. A Topology-Preserved Surrogate (TPS) learning strategy is first proposed to balance the training progress within-class distribution. Furthermore, a Convolutional Distance Transform (CDT) is designed to identify the breakage phenomenon with superior sensitivity and minimize the variation of the distance map between the predictionand ground-truth. The proposed method is validated with the publically available reference airway segmentation datasets. The detected rate of branch and length on public EXACT'09 and BAS datasets are 82.1%/79.6% and 96.5%/91.5% respectively, demonstrating the reliability and efficiency of the method in terms of improving the topology completeness of the segmentation performance while maintaining the overall topology accuracy.Comment: 10 page

    Extended Quantitative Computed Tomography Analysis of Lung Structure and Function

    Get PDF
    Computed tomography (CT) imaging and quantitative CT (QCT) analysis for the study of lung health and disease have been rapidly advanced during the past decades, along with the employment of CT-based computational fluid dynamics (CFD) and machine learning approaches. The work presented in this thesis was devoted to extending the QCT analysis framework from three different perspectives.First, to extend the advanced QCT analysis to more data with undesirably protocolized CT scans, we developed a new deep learning-based automated segmentation of pulmonary lobes, in- corporating z-axis information into the conventional UNet segmentation. The proposed deep learn- ing segmentation, named ZUNet, was successfully applied for QCT analysis of silicosis patients with thick (5 or 10 mm) slices, which used to be excluded in QCT analysis since three-dimensional (3D) volumetric segmentation of the lungs and lobes were hardly successful or not automated. ZUNet outperformed UNet in lobe segmentation of human lungs. In addition, we extended the application of the QCT framework, combining CFD simulations for the entire subjects of the QCT analysis. One-dimensional (1D) CFD simulations of tidal breath- ing have been added to the inspiratory-expiratory CT image matching analysis of 66 asthma pa- tients (M:F=23:43, age=64.4±10.7) for pre- and post-bronchodilator comparison. We aimed to characterize comprehensive airway and lung structure and function relationship in the entire group response and patient-specific response to the bronchodilator. Along with the evidence of large air- way dilatation in the entire asthmatics, the CFD analysis revealed that improvements in regional flow rate fraction, particularly in the right lower lobe (RLL), airway pressure drop, airway resis- tance, and workload of breathing were significantly associated with the degree of large airway dilatation. Finally, we extended the approach using machine learning analysis to integrate numerous QCT variables with clinical features and additional information such as environmental exposure. In pursuit of investigating the effects of particulate matter (PM) exposure on human lung struc- ture and function alteration, principal component analysis (PCA) and k-means clustering iden- tified low, mid, and high exposure groups from directly measured air pollution exposure data of 270 healthy (age=68±10, M:F=15:51), asthma (age=60±12, M:F=39:56), chronic obstructive pulmonary disease (COPD) (age=69±7, M:F=66:10), and idiopathic pulmonary fibrosis (IPF) (age=72±7, M:F=43:10) subjects. Based on the exposure clusters, the RLL segmental airway narrowing was observed in the high exposure group. Various associations were found between the exposure data and about 200 multiscale lung features, from quantitative inspiratory and ex- piratory CT image matching and 1D CFD tidal breathing simulations. To highlight, small PM increases small airway disease in asthma. PM at all sizes decreases inspiratory low attenuation area in COPD and diseases luminal diameter of the RLL segmental airways in IPF

    AeroPath: An airway segmentation benchmark dataset with challenging pathology

    Full text link
    To improve the prognosis of patients suffering from pulmonary diseases, such as lung cancer, early diagnosis and treatment are crucial. The analysis of CT images is invaluable for diagnosis, whereas high quality segmentation of the airway tree are required for intervention planning and live guidance during bronchoscopy. Recently, the Multi-domain Airway Tree Modeling (ATM'22) challenge released a large dataset, both enabling training of deep-learning based models and bringing substantial improvement of the state-of-the-art for the airway segmentation task. However, the ATM'22 dataset includes few patients with severe pathologies affecting the airway tree anatomy. In this study, we introduce a new public benchmark dataset (AeroPath), consisting of 27 CT images from patients with pathologies ranging from emphysema to large tumors, with corresponding trachea and bronchi annotations. Second, we present a multiscale fusion design for automatic airway segmentation. Models were trained on the ATM'22 dataset, tested on the AeroPath dataset, and further evaluated against competitive open-source methods. The same performance metrics as used in the ATM'22 challenge were used to benchmark the different considered approaches. Lastly, an open web application is developed, to easily test the proposed model on new data. The results demonstrated that our proposed architecture predicted topologically correct segmentations for all the patients included in the AeroPath dataset. The proposed method is robust and able to handle various anomalies, down to at least the fifth airway generation. In addition, the AeroPath dataset, featuring patients with challenging pathologies, will contribute to development of new state-of-the-art methods. The AeroPath dataset and the web application are made openly available.Comment: 13 pages, 5 figures, submitted to Scientific Report

    Vessel-CAPTCHA: An efficient learning framework for vessel annotation and segmentation

    Get PDF
    Deep learning techniques for 3D brain vessel image segmentation have not been as successful as in the segmentation of other organs and tissues. This can be explained by two factors. First, deep learning techniques tend to show poor performances at the segmentation of relatively small objects compared to the size of the full image. Second, due to the complexity of vascular trees and the small size of vessels, it is challenging to obtain the amount of annotated training data typically needed by deep learning methods. To address these problems, we propose a novel annotation-efficient deep learning vessel segmentation framework. The framework avoids pixel-wise annotations, only requiring weak patch-level labels to discriminate between vessel and non-vessel 2D patches in the training set, in a setup similar to the CAPTCHAs used to differentiate humans from bots in web applications. The user-provided weak annotations are used for two tasks: (1) to synthesize pixel-wise pseudo-labels for vessels and background in each patch, which are used to train a segmentation network, and (2) to train a classifier network. The classifier network allows to generate additional weak patch labels, further reducing the annotation burden, and it acts as a second opinion for poor quality images. We use this framework for the segmentation of the cerebrovascular tree in Time-of-Flight angiography (TOF) and Susceptibility-Weighted Images (SWI). The results show that the framework achieves state-of-the-art accuracy, while reducing the annotation time by 77% w.r.t. learning-based segmentation methods using pixel-wise labels for training
    corecore