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1.1 Respiratory system

The respiratory system is the group of organs in mammals whose main function is to
facilitate oxygen uptake into the bloodstream, and discharge carbon dioxide from the
bloodstream into the atmosphere. The respiratory system consists of the upper and
lower airways. The nose and pharynx make up the upper airways, while the larynx,
trachea, bronchi and bronchioles make up the lower airways. The lungs also contain
numerous other structures such as blood vessels to achieve its normal function. The
lungs are the main and largest organ of the respiratory system, with a total volume
and weight in healthy adults of approximately 6 L and 1 kg [1], respectively. The
lungs and their anatomical parts are schematically shown in Figure 1.1.

The human body has a left and a right lung, located and protected inside the
thoracic cage. The left lung is smaller than the right lung, as it shares space with the
heart. The right lung has three lobes, while the left lung has two lobes. Each lobe is
subdivided into bronchopulmonary segments, which are sections supplied with air by
separate airways and blood vessels. The lung tissue is a soft spongy material named
lung parenchyma, which is composed of the alveolar sacs and connective tissue named
interstitium. The alveoli are tiny sacs that fill with air during inspiration, and it is
the place where the gas exchange takes place. There are roughly 500 million alveoli
in each lung of healthy adults [2]. At the end of inspiration, the lung parenchyma
consists of 80–90% air [3]. In the gas exchange process, the oxygen from the inflow
of air that fills the alveoli enters the bloodstream, and the carbon dioxide from the
bloodstream is released into the alveoli. Then, the resulting air rich in carbon dioxide
is discarded during expiration.

The airways or bronchi are tubular structures inside the lungs that conduct the
airflow from the larynx into the lungs and inside the alveoli. The airways form a
tree-like branching network, named the airway or bronchial tree, where large branches
subdivide (or bifurcate) progressively into smaller branches. The first and largest
branch is the trachea. This divides into the left and right main bronchi, which
supply air into the left and right lung separately. Both main bronchi divide into the
lobar (secondary) bronchi, which supply air into separate lung lobes. Then, each
lobar bronchus divides into the segmental (tertiary) bronchi, which supply air into
separate bronchopulmonary segments. Then, each segmental bronchus divides into
the subsegmental bronchi, progressively to branches of 4th, 5th and 6th generation
(with respect to the trachea of generation 0). From these bronchi further divisions
result in smaller branches called bronchioles. Bronchioles further subdivide many
times into branches of smaller and smaller size, until the terminal bronchioles connect
to the alveoli. The average number of divisions that airways of healthy adults undergo
between the trachea and the alveoli is 23 [4]. Adjacent to the bronchi, there are
pulmonary arteries that conduct the bloodstream to the alveoli for the gas exchange.
Moreover, there are pulmonary veins that transfer the oxygenated blood from the
alveoli to the heart. Both pulmonary arteries and veins also form tree-like branching
networks, where large vessels subdivide progressively into smaller vessels. The larger
vessels are named similarly to the adjacent bronchi, i.e., as lobar, segmental and
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subsegmental arteries and veins. Then, further subdivisions result in smaller vessels
called arterioles or venioles, which further bifurcate until the terminal capillaries that
connect to the alveoli.

Figure 1.1: Schematic view of the human respiratory system, with the anatom-
ical parts of the lungs. (Adapted from https://en.wikipedia.org/wiki/File:
Respiratory_system_complete_en.svg).

1.2 Lung and airway diseases

There are many diseases that affect the lungs and airway tissues and cause structural
abnormalities in these organs. Two important lung diseases relevant for the research

https://en.wikipedia.org/wiki/File:Respiratory_system_complete_en.svg
https://en.wikipedia.org/wiki/File:Respiratory_system_complete_en.svg
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presented in this thesis are chronic obstructive pulmonary disease (COPD) and cystic
fibrosis (CF). Moreover, a common and important airway condition that characterizes
many lung diseases, including COPD and CF, is bronchiectasis, which is also relevant
for this thesis.

Bronchiectasis [5, 6, 7] is defined as an abnormal and irreversible enlargement of
the airways and thickening of the bronchial wall. The widened airways are the result
of chronic inflammation, which weakens the muscle layer and cartilage in the bronchial
wall, reducing the airway ability to maintain their shape. The weakened and thickened
wall easily folds and airways can close during expiration, causing airflow obstruction.
Moreover, the dysfunctional wall reduces the airway ability to clear mucus secretions,
which is an important defense mechanism against bacteria, and makes airways more
vulnerable to infections. Airway infections can lead to more inflammation and in turn
more bronchiectasis, causing a vicious cycle [8]. Two characteristics of bronchiectatic
airways are 1) a diameter that is larger than that of the adjacent artery, and 2) a lack
of normal tapering, defined as the gradual reduction of the airway diameter along the
branch, or between the branches before and after bifurcation.

Chronic Obstructive Pulmonary Disease [7, 9, 10] is an overarching diagnosis
that comprises several chronic conditions causing an irreversible obstruction of the
airflow and destruction of the lung parenchyma. It is the third leading cause of
mortality worldwide [11]. COPD is caused by long-term exposure to toxic gases and
particles, such as smoking and to a lesser extent air pollution. COPD is characterized
by chronic airway inflammation, bronchiectasis and alveolar destruction, leading to
emphysema. Emphysema is defined as an abnormal and permanent enlargement of
the air spaces distal to the terminal bronchioles, caused by the weakening and collapse
of the alveolar wall. This results in a decrease in the alveolar and the capillary surface
area, which reduces the gas exchange. The alveolar destruction also causes a loss
of elastic recoil of the lung parenchyma, reducing the lungs ability to exhale. The
limited expiratory airflow is exacerbated by the early closure of thickened airways,
causing air trapping inside the lungs. Combined with the narrowing of airways due to
inflammation, this explains the overall airflow obstruction in COPD.

Cystic Fibrosis [7, 12, 13] is a severe genetic disease characterized by chronic
inflammation and infection of the lung and airways, starting from a young age.
Although CF affects many organs, lung disease is the major cause of morbidity and
mortality. The gene mutation in CF results in a dysfunctional protein (the cystic
fibrosis transmembrane conductance regulator or CFTR) that causes the buildup of
thick and sticky mucus secretions inside the airways. This excessive mucus facilitates
the presence of pathogens, which causes chronic airway infections. These infections
lead to airway inflammation and eventually bronchiectasis. The accumulation of
mucus is exacerbated by the reduced ability of bronchiectatic airways to clear mucus,
which increases the severity of the airway infections. Chronic infections in CF cause
progressive structural lung damage, eventually leading to respiratory failure. Another
result of the excessive and thick mucus is the formation of mucus plugs inside the
airways, which can obstruct especially the small ones.
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1.3 Imaging of the lungs

Medical imaging are technologies that allow radiologists to visualize the anatomical
structure of human organs for diagnostic purposes. Thoracic computed tomography
(CT) is a major imaging technique used to visualize the lungs, as it provides a detailed
3D view of the lung and airway tissues. Chest CT scans consist of a series of cross-
sectional images or “slices” of the human thorax, typically ranging between 100 and
600 slices, depending on the size of the scanned subject and the reconstruction protocol.
Each CT slice is the result from reconstructing multiple X-ray measurements taken
from different angles around the patient, and processing with image reconstruction
algorithms. An example of a 3D chest CT scan in different views is shown in Figure 1.2.
There is a large variability in the quality of CT scans, depending on the characteristics
of the scanner and on the scanning protocols, including 1) the CT resolution (or slice
thickness and in-slice voxel size), 2) the dose level and 3) the reconstruction kernel.
The dose level refers to the amount of ionizing radiation emitted to take the CT
scan, and generally higher dose results in less noisy images. However, CT scanning is
performed with the lowest dose needed to obtain diagnostic images, in order to limit
the exposure of harmful ionizing radiation to patients. The reconstruction kernel is a
parameter of the image reconstruction algorithm, and determines the sharpness of the
structures in the CT scan. There are various kernels available, ranging from “smooth”
to “sharp”, where generally sharper kernels result in better defined edges with less
blurring, but also more noise.

Other thoracic imaging techniques include conventional chest X-rays and magnetic
resonance imaging (MRI). Chest X-rays are the most commonly used images, and
give a 2D projection of the lungs from the front or side-ways of the human body. The
2D view results in many structures inside the lungs being superimposed, which makes
X-rays difficult to interpret and obscures the small airways and vessels. Due to this,
chest X-rays are mostly used to detect large or evident lung abnormalities. MRI scans
provide a detailed 3D view of the scanned organs and do not use ionizing radiation,
which makes them advantageous over CT scans. However, chest MRI scans have had
limited use for lung imaging. This is because 1) the lung parenchyma has poor signal
intensity on the MRI scan, since the lung is mainly composed of low-density air, and
2) motion artifacts caused by cardiac pulsation and respiration [14]. Due to this, MRI
scans for lungs still play a limited role in clinical care in most centers and are mainly
limited to vessel imaging and for research purposes.

1.4 Segmentation of airways

The segmentation of the bronchial tree from thoracic CT scans is a useful technique
to assess lung diseases that are characterized by structural changes of the airways.
By measuring the dimensions of individual airways, such as the diameter and wall
thickness, clinicians can accurately quantify the severity and extension of these lung
diseases on the CT scan. Moreover, it can provide clinically relevant information
about the heterogeneity of the disease. In contrast, other diagnosis techniques such
as spirometry only measures the consequence of the lung disease, i.e., the limitation
in airflow, and gives limited insight into the underlying causes. Spirometry has also
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Coronal Sagittal

Axial

Figure 1.2: Left: Drawing of a CT imaging system, with the CT fan beam applied
on the patient. (Sourced from https://en.wikipedia.org/wiki/File:Drawing_
of_CT_fan_beam_(left)_and_patient_in_a_CT_imaging_system.gif). Right:
Multiplanar view of a low-dose chest CT scan, in coronal, sagittal and axial planes.

limited reproducibility, as the test is difficult to perform correctly, especially for adult
or diseased patients.

On the CT scan, the airways appear as hollow tubular structures of many sizes
and orientations. The interior of airways (the lumen) has low signal intensity, as
it contains air. The airway wall is a thin tissue enclosing the lumen and has high
signal intensity. The surrounding background, the lung parenchyma, again has low
signal intensity, as it mostly consists of air. The larger bronchi are relatively easy
to visualize on the CT scan. However, the bronchioles are challenging to detect and
segment manually, with the smaller branches having a cross-sectional area of only
a few voxels and very thin walls, often below the scan resolution. An example of
the segmented bronchial tree from a chest CT scan is shown in Figure 1.3. The
smallest branches that are discernible on the CT scan of an adult subject are up to
the 16th generation and have a size of roughly 1–2 mm [15], depending on the body
size of the scanned subject. Commonly used low-dose CT scans have low resolution
and poor signal-to-noise ratio. This makes the structures inside the lungs appear
blurry, and especially the airways whose borders become non-clearly defined. This
is further aggravated by image artifacts such as motion effects. Moreover, airways
that are severely deformed as a result of severe lung diseases are more difficult to
segment. All this makes segmenting the bronchial tree manually from the CT scan
an extremely tedious and time-consuming task, taking many hours per scan [16, 17],
and susceptible to errors. Thus, an automatic method to segment the bronchial tree is
important to quantify airway abnormalities accurately and with little effort. However,
the design of a robust and accurate airway segmentation method is challenging, due
to 1) the complex 3D morphology of the airway tree and 2) the wide range of CT

https://en.wikipedia.org/wiki/File:Drawing_of_CT_fan_beam_(left)_and_patient_in_a_CT_imaging_system.gif
https://en.wikipedia.org/wiki/File:Drawing_of_CT_fan_beam_(left)_and_patient_in_a_CT_imaging_system.gif
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characteristics (resolution, dose setting, reconstruction kernel...) that largely influence
the performance of the method.

Figure 1.3: Left: Chest CT scan in axial plane overlaid with a segmentation of
the airways (in green). Right: 3D view of a segmentation of the full bronchial tree,
showing the wide variety of branches present in the tree.

1.5 Automated airway segmentation methods

Several methods have been proposed to perform airway segmentation from chest CT
scans. The vast majority of these methods have focused on the segmentation of the
airway lumen, while the segmentation of the airway wall has received less attention.
An overview of traditional airway segmentation methods is available in [3, 18], and
of more recent machine and deep learning based methods in [19]. The first airway
segmentation methods [16, 20] used the intensity-based 3D region growing algorithm,
relying on the high contrast between the airway lumen, of low intensity, and the airway
wall, of high intensity. Region growing is a simple segmentation method that, given
an initial seed on the image, selects the neighboring voxels that have an intensity
value within a range of user-defined thresholds. The process is iterated until no more
neighboring voxels are selected. Region growing can segment accurately the central
bronchi, but fails to capture the peripheral airways of smaller size. This mainly occurs
as the segmentation leaks into the lung parenchyma near airways with thin and blurred
borders, resulting in false positive branches. Moreover, in the presence of mucus plugs
in the airways, which have higher signal intensity than the airway lumen, the region
growing segmentation will stop prematurely and not detect the remaining branches
downstream.

Despite its limitations, intensity-based region growing is a simple algorithm and
many methods in the literature are based on it. They typically use region growing
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to segment the larger airways, followed by additional approaches to detect smaller
airways while preventing leakage [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].
Other methods use region growing to obtain an initial coarse (leaked) segmentation,
followed by an additional filtering approach to remove the false leaked branches [35, 36].
Depending on the nature of these additional operators, the methods can be grouped
into 3 categories: 1) morphological based methods, 2) template matching based
methods and 3) machine learning based methods. Morphological based methods [21,
22, 23, 24, 25] use morphological operations (dilation, erosion...) designed specifically
to detect airways. Template matching based methods [26, 27, 28, 30, 31, 37] use
predefined masks or templates, of 2D circular or 3D cylindrical shape and varying
sizes, orientations and intensity levels, and test the shape matching of the image data
with these masks to identify airways. Machine learning based methods [32, 33, 34,
35, 36] use classifiers that “learn” the underlying probability distribution or patterns
in the image that define the airways. These classifiers are optimized using a set of
predefined features, such as measures of airway shape, orientation and probability.
Additionally, some methods use further rules to detect airways by leveraging their
anatomical properties, such as being adjacent to an artery [16, 32]. In the airway
extraction challenge EXACT’09 [38], a total of 15 airway segmentation methods were
compiled and compared, out of which 11 were region growing based methods.

1.5.1 Deep learning segmentation methods
The state-of-the-art for many biomedical image segmentation tasks are based on deep
learning (DL), and in particular convolutional neural networks (CNN) [19, 39, 40].
For airway segmentation, several methods based on CNNs have been proposed since
recently [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

CNNs consist of a series of stacked layers that perform operations on pixel array
data, taking advantage of the spatial structure in an image. These layers extract
relevant image features in a hierarchical manner, with each layer extracting information
from the intermediate feature maps output by the preceding layer (or from the input
image data for the first layer), and thus deeper layers obtaining more complex and
higher-level features. The most characteristic operation of a CNN is convolution,
where a kernel of given size is applied on each pixel and its neighbors across the
entire input array (feature maps or input image) as a weighted sum of the involved
pixel values. Non-linear activation functions (e.g., rectified linear units or ReLU) are
typically applied on the convolution output to add non-linearity and enhance the
representational power of the CNN. Other characteristic operations of CNNs are 1)
pooling, where the number of pixels in the output array is reduced and typically the
number of per-pixel features is increased, 2) upsampling, which is the reverse operation
of pooling, and 3) dense connections. The output or final layer of the CNN performs
the decision making using the highest-level features from the last layer. Depending on
the task the CNN is built for, classification, regression or segmentation, the output is a
categorical label (e.g., healthy / diseased), a continuous variable, or a pixel map for the
target objects, respectively. The layers of a CNN form a set of trainable parameters,
i.e., the weights and biases that define the filters in convolutional layers and dense
connections in fully connected layers. In supervised learning, these parameters are
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optimized by a training algorithm and a cost function that quantifies the differences
between the CNN output and the ground truth, so that the parameters are iteratively
refined in directions that minimize the cost function.

The layers in CNNs are typically grouped in blocks composed of several stacked
convolutional layers (including non-linearity) followed by pooling. With this structure,
the CNN extracts features at different lower image resolutions, increasing its receptive
field of view from local to more global, and has a reduced number of trainable
parameters for the same field of view. In classification or regression CNNs, the latest
layers are typically fully connected across all the elements of the input and output
arrays. This CNN layout is shown schematically in Figure 1.4. For image segmentation,
an improved CNN architecture is the so-called U-Net [56], which is shown schematically
in Figure 1.5. This U-Net is composed of two mirror networks, an encoder and a
decoder, composed of several blocks of a few convolutional layers followed by pooling
or upsampling, respectively; together with skip connections between the encoding and
decoding paths at the same resolution. The function of the decoder is to augment
the lower-resolution / higher-order features extracted in the encoder with the higher-
resolution / lower-order features extracted in earlier layers, linked across the skip
connections. Thanks to its design, the U-Net can obtain a pixel segmentation map
of the target objects directly from an input image. Currently, the U-Net is the most
popular method for airway segmentation, with most U-Net-based approaches in the
literature being proposed only in the last few years, including our work in this thesis.

Figure 1.4: Schematics of a convolutional neural network for image classification.

The main advantage of CNNs over classical machine learning methods is that
feature extractors in the convolutional layers are learned automatically through data
and are end-to-end optimized. In contrast, classical machine learning relies on image
features that are predefined or “handcrafted” for a given task, which is complex to
do and the resulting features are less powerful than those from CNNs. On the other
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Figure 1.5: Schematics of the U-Net architecture for image segmentation.

hand, CNNs are more difficult to train than classical machine learning and require
larger training datasets with ground truth annotations, which are typically tedious to
obtain. In fact, it is only since recently that CNNs have become successful thanks to
the availability of 1) larger training datasets, 2) improved training algorithms for deep
networks, and 3) fast parallel computing in modern GPUs.

1.6 Automated airway measurement methods

Most methods in the literature to obtain airway measures start from a lumen segmen-
tation of the bronchial tree. For measures that require the dimensions of the bronchial
wall, the segmentation of the airway outer wall can be extracted from that of the
lumen [57, 58, 59, 60]. As a first step, the airway centerline tree is extracted from
the lumen segmentation [38], and single branches are detected as centerline segments
between two bifurcation points, or between a bifurcation and the end of terminal
branches. Then, several airway dimensions are extracted for every branch, such as the
diameters of the lumen and outer wall, the cross-sectional area and the wall thickness.
Due to the variation of the airway cross-sectional shape across a branch, these airway
dimensions are typically computed by averaging a set of local dimensions extracted at
regular intervals along the centerline [61, 62]. The branch generation is also extracted,
which can be defined as the number of branch bifurcations counted in the path linking
the given branch and the root of the airway tree, i.e., the trachea [63].

The extracted airway dimensions are used to compute airway biomarkers, such as
airway tapering (intra-branch and inter-branch), airway-artery ratio, wall-artery ratio,
wall area percentage and Pi10. These biomarkers are defined as follows:

1. Intra-branch tapering: the percentage reduction of the airway diameter (lumen
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or outer wall) per millimeter along the branch centerline.

2. Inter-branch tapering: the percentage ratio of the difference between the airway
diameter (lumen or outer wall) and that of the branch before bifurcation (parent),
to the diameter of the parent airway.

3. Airway-artery ratio: the ratio between the airway diameter (lumen or outer wall)
and the diameter of the adjacent artery.

4. Wall-artery ratio: the ratio of the difference between the airway outer wall and
lumen diameters, to the diameter of the adjacent artery.

5. Wall area percentage: the percentage ratio between the cross-sectional areas of
the airway wall and the whole airway.

6. Pi10 : the square root of the airway wall area estimated for a fictitious airway
with 10 mm of lumen diameter, obtained by projecting the set of extracted
dimensions using linear regression [64].

The airway intra-branch [65, 66, 67] and inter-branch [65] tapering has been used
to quantify bronchiectasis. The airway-artery and wall-artery ratios [17, 62, 68, 69,
70, 71] have been extensively used to quantify the bronchiectasis and airway wall
thickening due to CF lung disease. The airway wall thickness [61, 72], wall area
percentage [72] and Pi10 [59, 72, 73] have been used to quantify the airway narrowing
and wall thickening due to COPD. The airway tapering, wall thickness and wall area
percentage depend on the size of the airways, and therefore cannot be compared across
all airways in the lungs. Instead, these biomarkers are summarized and compared
per airway generation, since airways of the same generation have similar sizes and
characteristics. The Pi10 overcomes this limitation by using a projected wall area to a
fixed airway size. However, this biomarker does not quantify real individual branches.
The airway-artery and wall-artery ratios are less dependent on the airway size since
they use as normalization factor the diameter of the adjacent artery. This is because
an airway and its accompanying artery have similar sizes in healthy subjects [74].
However, these biomarkers require additionally the dimensions of the vascular tree in
the lungs, and to identify airway-artery pairs. To do this, a segmentation of the vessel
tree can be obtained [32] and airways and arteries can be paired based on similarity
in size, proximity and orientation [62].

1.7 Outline of this thesis

This thesis focuses on developing automatic image processing methods to segment the
bronchial tree from chest CT scans and to subsequently extract airway measures as
imaging biomarkers. The contributions and outline of this thesis are as follows:

1. Chapter 2 presents a fully automatic method to segment the bronchial tree,
based on the deep learning U-Net architecture. The method is validated on three
datasets, including challenging CT scans with airway abnormalities. The results
show that this method obtains high-quality and complete airway segmentations,
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and outperforms several other deep learning airway segmentation methods. This
method is implemented in an open-source software and made available in a
public repository.

2. Chapter 3 presents a novel method to correct errors in the initial segmentations
from a U-Net. This method uses synthetic labels augmented with realistic errors,
and is trained to correct these errors in the segmentation results. The method is
validated for the segmentation of lung airways and brain vessels. The results show
that this method can correct errors and obtain more complete segmentations.

3. Chapter 4 presents a novel segmentation method that combines the U-Net
with a graph neural network model. The graph model allows the network to
extract information from a larger region of the images, which can help improve
the segmentation decisions. The method is validated for airway segmentation.
The results show that this method can obtain slightly more complete airway
segmentations, with slightly more errors.

4. Chapter 5 presents an approach to efficiently generate ground truth airway
segmentations. This consists of manually correcting initial airway segmentations
obtained from a pre-trained U-Net. The approach is validated by correcting the
initial airway segmentations from a small dataset, and using these as ground
truth to retrain the U-Net. The results from the retrained model were more
accurate and complete than the initial segmentations.

5. Chapter 6 presents an automated pipeline to segment both the lumen and wall
surfaces of the bronchial tree. It combines a U-Net for airway extraction with an
optimal-surface graph-cut method that segments the lumen and wall around the
extracted airways. This approach is validated by measuring bronchial parameters
from the segmentations and assessing their repeatability. The results show that
the measurements were adequately reproducible.

6. Chapter 7 presents a study of the effect of CFTR modulator therapy on struc-
tural lung abnormalities in patients with cystic fibrosis lung disease. We used
three different CT analysis methods: a quantitative method based on the me-
dian of airway-artery ratio and airway tapering measures extracted over the
small airways, and two visual scoring systems, one quantitative and one semi-
quantitative. The results show that quantitative methods were more sensitive to
detect improvements in structural lung disease due to therapy.

7. Chapter 8 presents a quantitative CT analysis method to assess structural lung
abnormalities in patients with non-cystic fibrosis bronchiectasis, named BEST-
CT. We compared BEST-CT with two other methods: a quantitative method
based on the median of luminal intra-branch tapering measures extracted over
all the airways, and a semi-quantitative visual scoring system. The results show
that the BEST-CT method can capture the heterogeneity of bronchiectasis, and
correlates well with the other methods.

8. Chapter 9 provides a general discussion of the findings and achievements of the
research presented in this thesis, and gives possible directions for future research.
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Abstract

This chapter presents a fully automatic and end-to-end optimized
airway segmentation method for thoracic computed tomography (CT)
scans, based on the U-Net architecture. We use a simple and low-memory
3D U-Net as backbone, which allows the method to process large 3D
image patches, often comprising full lungs, in a single pass through
the network. This makes the method simple, robust and efficient. We
validated the proposed method on three datasets with very different
characteristics and various airway abnormalities: 1) a dataset of pediatric
patients including subjects with cystic fibrosis, 2) a subset of the Danish
Lung Cancer Screening Trial, including subjects with chronic obstructive
pulmonary disease, and 3) the EXACT’09 public dataset. We compared
our method with other state-of-the-art airway segmentation methods,
including relevant learning-based methods in the literature evaluated
on the EXACT’09 data. We show that our method can extract highly
complete airway trees with few false positive errors, on CT scans from
both healthy and diseased subjects, and also that the method generalizes
well across different datasets. On the EXACT’09 test set, our method
achieved the second highest sensitivity score among all methods that
reported good specificity.

Based on: A. Garcia-Uceda, R. Selvan, Z. Saghir, H. Tiddens, and M. de Bruijne, “Automatic
airway segmentation from computed tomography using robust and efficient 3-D convolutional neural
networks,” Scientific Reports, vol. 11, no. 1, p. 16 001, 2021. doi: 10.1038/s41598-021-95364-1

https://doi.org/10.1038/s41598-021-95364-1
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2.1 Introduction

Segmentation of the airway tree from thoracic computed tomography (CT) scans is a
useful procedure to assess pulmonary diseases characterized by structural abnormalities
of the airways, such as bronchiectasis (widening of the airways) and thickening of
the airway wall. To quantitatively assess these conditions on the CT scan, clinicians
are interested in having individual airway measurements, including airway diameter,
wall thickness and tapering [17, 65]. The bronchial tree is a complex 3D structure,
with many branches of varying sizes and different orientations. Segmenting airways by
manual or semi-automatic methods is extremely tedious and time-consuming, taking
more than 15 hours [17] per scan, manually, or up to 2.5 hours [75] per scan, semi-
automatically. Thus, a fully automatic airway segmentation method is important to
provide an accurate, effortless and free of user-bias segmentation of the airway tree
needed to quantify airway abnormalities.

In CT scans, airways appear as tubular structures with an interior of typically low
intensity (the lumen) enclosed by a structure of higher intensity (the airway wall).
Moreover, airways are surrounded by a background which can be of low intensity
(the lung parenchyma) or higher intensity (typically the vessels). The earliest airway
segmentation methods used the region growing algorithm [16, 20] to segment the
airway lumen, relying on the intensity difference between the airway lumen and wall.
Region growing can accurately capture the central bronchi, but has a tendency to
systematically fail at extracting the peripheral bronchi of smaller size, missing a large
portion of the airway tree. Also, when segmenting the smaller airways it often results
in segmentations leaking into the lung parenchyma. This is due to the reduced intensity
difference and reduced signal-to-noise ratio between the airway lumen and wall, caused
by partial volume effects near the smaller airways. Many airway segmentation methods
build upon the region growing algorithm, using this as an initial step to segment the
larger bronchi and then apply additional operators to detect smaller airways while
preventing leakage [24, 25, 30, 32, 33]. Extensions to region growing based methods
have been widely reviewed [3, 18]. In the airway extraction challenge EXACT’09 [38],
15 algorithms were evaluated and compared, out of which 11 were region growing
based methods. The results showed that all participating methods missed a significant
amount of the smaller branches, and many methods had a large number of false
positives errors.

Several airway segmentation methods use machine learning classifiers, either for
voxelwise airway classification [32, 34] or to remove false positive airway candidates from
a leaky baseline segmentation [35, 36]. These classifiers (k-nearest neighbors (kNN) [32],
AdaBoost [35], support vector machines [36] or random forest [34]) operate on a set of
predefined image features: multiscale Gaussian derivatives [32], multiscale Hessian-
based features [34, 35, 36] or image texture features with local binary patterns [34].
These methods can achieve more complete airway tree predictions than previous purely
intensity-based methods, with fewer false positives. However, they are highly dependent
on the image features used to train the classifier, and may be time-consuming to
apply due to the time needed to compute the image features [32, 34, 36]. Recently,
many state-of-the-art methods for medical image segmentation tasks have used deep
learning [40], and in particular convolutional neural networks (CNN) [76]. The
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main advantage of deep CNN methods over classical learning-based techniques is
that the extraction of relevant image features is done automatically from data in
an end-to-end optimized setting. Several CNN-based methods have been applied
for airway segmentation [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 77].
Charbonnier et al. [43] applied CNNs to detect and remove leakage voxels from a
leaked region growing based segmentation. Yun et al. [44] applied the so-called 2.5D
CNN, a pseudo 3D CNN which processes the three perpendicular 2D slices around
each voxel, to perform voxelwise airway classification. The methods [42, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 77] are based on the U-Net architecture [56]. This model
and its 3D extension [78, 79] are highly successful for medical image segmentation.
The main advantage of the U-Net over voxelwise CNN models is that it can process
entire images in one forward pass through its encoding / decoding structure, resulting
in a segmentation map directly. Jin et al. [45] and Meng et al. [46] applied the U-Net
on local volumes of interest around airways, being guided by the centerlines from a
baseline segmentation [45] or by tracking the airways extracted from the U-Net [46].
Garcia-Uceda et al. [77] applied the U-Net on large image patches extracted from the
3D CT scans, using various data augmentation techniques. Garcia-Uceda et al. [42]
proposed a joint approach combining both 3D U-Net and graph neural networks
(GNN) [80]. Qin et al. [47, 48] applied the U-Net for 26-fold prediction of the 26-
neighbor connectivities of airway voxels, and segments airways by grouping voxels with
at least one mutually predicted connectivity with a neighbor voxel. Zhao et al. [49]
combined both 2D and 3D U-Nets with linear programming-based tracking to link
disconnected components of the segmented airway tree. Wang et al. [50] used the U-Net
with spatial recurrent convolutional layers and a radial distance loss to better segment
tubular structures. Qin et al. [51, 52] extended the U-Net with feature recalibration
and attention distillation modules that leverage the knowledge from intermediate
feature maps of the network. Zheng et al. [53] proposed a “General Union” loss to
alleviate the intra-class imbalance between large and small airways. Zhou et al. [54]
extended the U-Net with a multi-scale feature aggregation module based on dilated
convolutions, to include more contextual information from a larger receptive field.
Nadeem et al. [55] used the U-Net followed by a freeze-and-grow propagation algorithm
to iteratively increase the completeness of the segmented airway tree.

In this work, we present a fully automatic and end-to-end optimized method to
perform airway segmentation from chest CT scans, based on the U-Net architecture. A
preliminary version of this work was presented in [77]. The proposed method processes
large 3D image patches, often covering an entire lung, in a single pass through the
network. We achieve this by using a simple U-Net backbone with low memory footprint,
and having efficient operations that feed image data to the network. This makes
our method simple, robust and efficient. We performed a thorough validation of the
proposed method on three datasets with very different characteristics, from subjects
including pediatric patients and adults and with diverse airway abnormalities, including
the EXACT’09 public dataset [38]. We compared the method with other state-of-
the-art segmentation methods tested on the same data. On the EXACT’09 data, we
compared with all the recent methods in the literature evaluated on these data, in
terms of the average performance measures reported by the EXACT’09 evaluation.
On the other datasets, we compared with the two methods previously evaluated on the
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same data [32, 33]. Moreover, we evaluated the accuracy of our method with respect
to the presence of lung disease and airway abnormalities in the CT scans from the
three datasets.

This chapter is organized as follows: in Section 2.2 we explain the proposed
methodology for airway segmentation, in Section 2.3 we present the data used for this
work, in Section 2.4 we explain the experiments performed to validate the method, in
Section 2.5 we present the results obtained, in Section 2.6 we discuss these results and
explain the advantages and limitations of the proposed method, and in Section 2.7 we
give the conclusions.

2.2 Methods

2.2.1 Network architecture
The network consists of an encoder (downsampling) path followed by a decoder
(upsampling) path, at different levels of resolution. Each level in the downsampling
or upsampling path is composed of two 3×3×3 convolutional layers, each followed
by a rectified linear (ReLU) activation, and a 2×2×2 pooling or upsampling layer,
respectively. After each pooling or upsampling layer, the number of feature channels
is doubled or halved, respectively. There are skip connections between opposing
convolutional layers prior to pooling and after upsampling, at the same resolution
level. The final layer is a 1×1×1 convolutional layer followed by a sigmoid activation
function. This network is schematically shown in Figure 2.1.

For analysis of 3D chest CT scans, we found that the main bottleneck is the memory
footprint of the network. To alleviate this, we use non-padded convolutions in the
first 3 resolution levels of the U-Net, where the outmost layers of voxels in the feature
maps are progressively removed after each convolution. We still use zero-padding in
the remaining levels after the third, to prevent an excessive reduction of the output
size of the network. This allows to reduce the memory footprint by approximately
30% compared to a model with zero-padding in all layers. Moreover, we do not use
dropout or batch normalization layers, as these require extra memory to store the
feature maps after the operation.

2.2.2 Training of networks
The network is trained in an end-to-end supervised fashion, using the CT scans as input
and evaluating the network output with respect to the ground truth, the reference
airway segmentations, using the soft Dice loss [81],

L = 1−
2
∑

x∈NL
p(x)g(x)∑

x∈NL
p(x) +

∑
x∈NL

g(x) 2.1

where p(x), g(x) are the predicted voxelwise airway probability maps and airway
ground truth, respectively. In the loss computation, the ground truth is masked to the
region of interest (ROI), the lungs, indicated by the sub-index L, so that only voxels
within this region contribute to the loss. This mask removes the trachea and part of
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the main bronchi from the ground truth, so that the training of the network focuses
on the smaller branches. The lung segmentation needed for this masking operation is
easily computed by a region growing method [32].

2.2.3 Implementation of networks
When building the U-Net, the degrees of freedom (or hyperparameters) that determine
the capacity of the network are 1) the number of resolution levels in the U-Net, 2) the
number of feature maps in the first layer, 3) the input image size, and 4) the training
batch size. We optimized these hyperparameters using subsets of training data from
the two datasets used in our experiments. We observed that the input image size was
the most important parameter, and that by using larger input patches we obtained
better results and faster convergence of the training and validation losses. With this,
we found an optimal U-Net of 5 levels, 16 feature maps in the first layer, input size of
252×252×252, and training batches containing only one image. This network can fit
in a GPU NVIDIA Quadro P6000 with 24 GB memory during training. This U-Net
construction is used for all the experiments undertaken. The implementation of the
network is done using the Pytorch framework [82].

2.2.4 Generation of images during training
The 3D chest CT scans analyzed have a size much larger than the input size of the
network. Thus, we extract random patches of size 252×252×252 from the full-size
scans and ground truth to train the network. Moreover, the training datasets used
for our experiments are small and contain only 15–25 CT scans. Thus, we apply data
augmentation to the extracted image patches to increase artificially the amount of
training data available and improve generalization. To generate input images to the
network from the chest CT scans and ground truth, we apply the series of operations:

1. Crop the full-size scans to a bounding-box around the region of interest, the
pre-segmented lung fields. This operation removes the areas outside the lungs,
which are irrelevant for airway segmentation. The limits of the bounding-box
are defined as 30 voxels from the outer voxel of the lung mask, in each direction.
The extra 30-voxel buffer is used to prevent that boundary effects introduced by
the use of zero-padding in the last layers of the network affect the prediction of
peripheral airways, closer to the lung surface. Moreover, we mask the ground
truth to the mask of the lung fields to remove the trachea and part of the main
bronchi.

2. Extract image patches from the input image by cropping this to random bounding-
boxes of 252×252×252. We generate a total of 8 random patches per scan and
per epoch during training. To perform this operation, we randomly sample the
coordinates of the first corner of the bounding-box (x0, y0, z0) from a uniform
distribution in the ranges x0 ∈ [0, D − d], y0 ∈ [0,W − w] and z0 ∈ [0, H − h],
respectively, where (d,w, h) is the size of the extracted patch, and (D,W,H) the
size of the cropped input image. Then, the random bounding-box is generated
with the limits ([x0, x0 + d], [y0, y0 + w], [z0, z0 + h]).
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3. Apply random rigid transformations to the input image patches as data augmen-
tation. These transformations include 1) random flipping in the three directions,
2) random small 3D rotations up to 10 degrees, and 3) random scaling with a
scale factor in the range 0.75–1.25. The same transformations are applied to the
ground truth using nearest-neighbor interpolation.

This series of operations is schematically shown in Figure 2.1. We implemented the
patch extraction (2.) and data augmentation (3.) operations in an efficient on-the-fly
image generation pipeline that feed data to the network, to reduce any computational
overhead for the batch data loading part of the training algorithm. The initial cropping
(1.) operation is applied only once to the chest CT scans and ground truth and prior
to the training.

2.2.5 Airway extraction
To segment new CT scans, we extract image patches of size 252×252×252 from the
full-size scans in a sliding-window fashion in the three dimensions, with an overlap
of 50% between the patches in each direction. Each image patch is processed by the
trained network, producing a set of patch-wise airway probability maps. To obtain
the full-size binary segmentation of the airway tree from these output patches, we
apply the series of operations:

1. Aggregate the output patches from the network with airway probability maps
by stitching them together (i.e., reversing the sliding-window operation used
to extract the input patches). To account for the overlap between patches, we
divide the aggregated voxelwise airway probabilities by the number of patches
containing the given voxel.

2. Mask the full-size airway probability map to the mask of the lung fields. This is
to discard the noise predictions outside the lung regions, as only these regions
are included in the training of the networks by Equation 2.1.

3. Threshold the airway probability maps to obtain the airway binary segmentation,
using a threshold of 0.5 by default. This output does not contain the trachea
and part of the main bronchi that were outside the mask of the lung fields. To
include this, we merge the airway segmentation with a mask for the trachea and
main bronchi. This is easily computed by a region growing method [32], and
then masking its output to the mask of the lung fields.

4. Apply connected component analysis [83] to the airway segmentation and retrieve
the final airway tree as the largest 26-neighbor connected component.

2.3 Data

To conduct the experiments, we used chest CT scans and reference airway segmentations
from three different datasets:
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1. CF-CT: This dataset consists of 24 inspiratory low-dose chest CT scans from
pediatric patients at Erasmus MC-Sophia, 12 controls and 12 diseased [17]. The
12 controls were patients with normal lung assessment from CT reported by two
different radiologists, who received CT scanning for diagnostic purposes. The
12 diseased were 11 patients with cystic fibrosis (CF) lung disease and 1 with
common variable immune deficiency (CVID), who had structural lung damage
with airway abnormalities visible on the CT scan. The two groups were gender
and age matched, with the age range from 6 to 17 years old in both groups and
5 females per group. Scanning was undertaken using spirometry-guidance in a
Siemens SOMATOM Definition Flash scanner. Each CT scan has an in-plane
voxel size in the range 0.44–0.71 mm, with slice thickness between 0.75–1.0 mm,
and slice spacing between 0.3–1.0 mm.

2. DLCST: This dataset consists of 32 inspiratory low-dose chest CT scans from
the Danish Lung Cancer Screening Trial [84]. Participants to the trial were
subjects between 50 to 70 years old, with a history of at least 20 pack-years of
smoking, and without lung cancer related symptoms. Roughly half of the CT
scans are from subjects with chronic obstructive pulmonary disease (COPD),
reported from spirometry measures. Scanning was undertaken using a MDCT
scanner (16 rows Philips Mx 8000, Philips Medical Systems, Eindhoven, The
Netherlands). All CT scans have a voxel resolution of roughly 0.78×0.78×1 mm3.

3. EXACT’09: This is the multi-center, public dataset of the EXACT’09 airway
extraction challenge [38]. We used for evaluation purposes the EXACT’09 test
set consisting of 20 chest CT scans. The conditions of the scanned patients vary
largely, ranging from healthy volunteers to subjects with severe lung disease. The
data includes both inspiratory and expiratory CT scans, ranging from clinical to
low-dose. The CT scans were acquired with several different CT scanner brands
and models, using a variety of scanning protocols and reconstruction parameters.
Each CT scan has an in-plane voxel size in the range 0.55–0.78 mm, with slice
thickness between 0.5–1.0 mm.

2.3.1 Generation of reference segmentations
Networks were trained and evaluated using airway lumen segmentations that were
obtained by a combination of manual interaction and automated surface detection. For
the CF-CT data, we have centerline annotations manually drawn by trained experts.
For the DLCST data, we have airway extractions obtained from the union of the
results of methods [32] and [33], and corrected by a trained observer. The visual
assessment was done similarly to the EXACT’09 challenge [38], where the obtained
airways trees were divided in branches using a wave front propagation algorithm that
detects bifurcations, and spurious branches were removed manually. “Partly wrong”
branches whose segmentation covered the airway lumen but leaked outside the airway
wall were also removed. To obtain the ground truth airway segmentations, we applied
the optimal-surface graph-cut segmentation method [58] on top of these initial airway
references in order to 1) determine accurate lumen contours and 2) homogenize the
ground truth for the two datasets. To evaluate the networks, we used these two
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ground truth segmentations as well as (via submission to the EXACT’09 challenge)
the reference segmentations from the EXACT’09 test set. To build the EXACT’09
reference, the airway trees predicted by all 15 participating methods to the challenge
were evaluated by independent expert observers, and the group of correct-scored
branches were merged together.

2.4 Experiments

We performed three experiments to assess the performance of the proposed U-Net-
based method in the different datasets and in comparison with previously published
approaches:

1. CF-CT: We compared the performance of our method with that of a previously
published airway segmentation method on these data [62]. These results were
obtained by a kNN-classifier together with a vessel similarity measure [32], and
refined with an optimal-surface graph-cut method [58] to obtain an accurate
lumen segmentation. We denote this method by kNN-VS. We trained and
evaluated our U-Net model using the same 6-fold cross-validation setting as
in [62]. The training and testing data in each fold have an equibalanced number
of CT scans from control and diseased subjects.

2. DLCST: We compared the performance of our method with that of two previ-
ously published airway segmentation methods on these data [32] and [33]. The
method [32] is a kNN-classifier together with a vessel similarity measure, while
the method [33] extends the airways iteratively from an incomplete segmentation
with locally optimal paths. We refined these results [32, 33] with an optimal-
surface graph-cut method [58] to obtain a more accurate lumen segmentation,
and to homogenize them with the training data used to train our model, for a
fair comparison. We denote these methods by kNN-VS and LOP, respectively.
We trained and evaluated our U-Net model using the same 2-fold cross-validation
setting as in [32] and [33]. The training and testing data in each fold have a
similar number of CT scans from healthy and diseased subjects.

3. EXACT’09: We compared the performance of our method with that of the
15 methods participating in the challenge EXACT’09 based on the results
reported in [38], 6 post-challenge methods evaluated on the EXACT’09 data and
reported in [85], and 4 recent airway segmentation methods evaluated on these
data [43, 44, 52, 86]. The methods in Charbonnier et al. [43], Yun et al. [44]
and Qin et al. [52] were previously described in Section 2.1. The method
in Gil et al. [86], named PICASSO, uses locally adaptive optimal thresholds
learned from a graph-encoded measure of the airway tree branching. We denote
these methods by CNN-Leak, 2.5D CNN, U-Net-FRAD and PICASSO,
respectively. The method in Zheng et al. [53] is also evaluated on EXACT’09
data, but we did not include it in our comparison as the authors did not report
the same specificity metric (false positive rate) as in the EXACT’09 evaluation.
To our knowledge, these are all the recent methods in the literature that are
evaluated on the EXACT’09 data. We trained our U-Net model using half of the
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CT scans from the CF-CT and DLCST datasets (28 scans in total). This training
data has a similar number of CT scans from healthy and diseased subjects. We
did not include the EXACT’09 training set in our training data as there are
no reference segmentations available. Additionally, we compared our method
with the nnU-Net segmentation method proposed by Isensee et al. [87], applied
to airway segmentation. We denote this method by nnU-Net. To do this, we
performed an experiment with the nnU-Net model. We trained it using the
same training data as for our method, and we evaluated it on EXACT’09 data
following the same evaluation protocol. We provide implementation details of
the nnU-Net method and of our experiment in the Appendix.

For each cross-validation fold in the experiments, we used roughly 80% of images
in the training fold to train the models, and the remaining 20% is used to monitor
the validation loss. To train the models, we used the Adam optimizer [88] with an
initial learning rate of 1×10−4, which was chosen as large as possible while ensuring
convergence of the training and validation losses. As convergence criterion, we moni-
tored the moving average of the validation loss over 50 epochs, and training is stopped
when its value 1) increases by more than 5%, or 2) does not decrease more than 0.1%
over 20 epochs. We trained the models until convergence is reached, and we retrieved
the model with the overall minimum validation loss for testing. Training time was
approximately 1–2 days on a GPU NVIDIA Quadro P6000, while test time inference
was less than 1 min per scan including all post-processing steps to obtain the binary
airway tree.

To compute the airway predictions on the EXACT’09 data, we thresholded the
airway probability maps with a value of 0.1, and retrieved the final airway tree as
the largest 6-neighbor connected component. The lower threshold was to compensate
for the reduction of completeness in our results when computing a single 6-connected
structure, required by the submission guidelines to the EXACT’09 challenge [38]. In
contrast, for the predictions on the CF-CT and DLCST data, we used the default
threshold of 0.5 and 26-neighbor connected component analysis.

2.4.1 Evaluation
To compare the different methods on the CF-CT and DLCST data, we computed 1)
tree length detected, 2) centerline leakage and 3) Dice coefficient, with respect to the
ground truth segmentations. For the results on the EXACT’09 data, we evaluated 1)
tree length detected and 2) false positive rate, computed by the EXACT’09 challenge
organizers [38]. Moreover, we assessed the segmentation accuracy of our U-Net-based
method with respect to the presence of lung disease in the CT scans from each dataset.
For this, we computed 1) tree length detected, 2) centerline leakage (or false positive
rate on the EXACT’09 data) and 3) total tree length detected, and compared the
measures from both healthy and diseased subjects.

The metrics are defined as:

1. Tree length detected (TL): The number of ground truth centerline voxels that are
inside the predictions, as a percentage of the ground truth centerline full length.
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2. Centerline leakage (CL): The number of predicted centerline voxels outside the
ground truth, as a percentage of the ground truth centerline full length.

3. False positive rate (FPR): The number of false positive voxels outside the ground
truth, as a percentage of the total number of ground truth voxels.

4. Dice similarity coefficient (DSC): The voxelwise overlap between the predictions
and the ground truth according to Equation 2.2, with P and G the binary
prediction and ground truth masks, respectively.

DSC = 2|P ∩G|
|P |+ |G| 2.2

5. Total tree length detected: The sum of ground truth centerline voxels that are
inside the predictions, multiplied by a factor that represents the voxel length
unit (we used the geometrical mean of the voxel sizes in the three dimensions).

The trachea and main bronchi are removed in these measures from both the
predictions and ground truth, similar to [38]. The centerlines are obtained by applying
skeletonization [89] to the prediction and ground truth masks.

To compare the performance of the different methods, we used the paired two-sided
Student’s T-test on the performance measures over the test set. To compare the
accuracy of our U-Net-based method between healthy and diseased subjects, we used
the unpaired two-sided Student’s T-test on the measures from the two groups. We
considered that a p-value lower than 0.01 indicates that the two sets of measures
compared are significantly different.

2.5 Results

2.5.1 Evaluation on CF-CT data
We show in Figure 2.2 the evaluation on the CF-CT data of our U-Net-based
method and the kNN-VS method [62]. Comparing the U-Net with the kNN-VS
results, the former shows higher TL (83.5 (80.7–87.1) vs. 70.1 (58.9–73.9), p<0.001),
higher DSC (0.876 (0.854–0.883) vs. 0.806 (0.711–0.839), p<0.001) and a similar CL
(6.09 (4.41–13.6) vs. 9.58 (5.98–22.1), p=0.021). This indicates that our U-Net-based
method predicts more complete airway trees than the kNN-VS method [62], with more
and/or longer peripheral branches, and with a similar count of false positive errors.
We show in Figure 2.3 visualizations of airway trees obtained by the two methods.
We can see that the airways predicted by our U-Net-based method match better the
reference segmentations, with more and/or longer peripheral branches detected, while
the kNN-VS method misses many of these peripheral branches.

Comparing the measures from our U-Net-based method between control and
subjects with CF and airway abnormalities, we found no significant differences in
TL (84.1 (78.6–87.9) vs. 83.5 (81.7–86.4), p=0.87) and in CL (5.74 (3.91–13.8) vs.
6.45 (4.68–11.2), p=0.78), but they were significant in total tree length (146 (135–156)
vs. 263 (208–308), p<0.01). This indicates that our method has similar accuracy with
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Figure 2.2: Boxplots showing 1) tree length detected, 2) centerline leakage and
3) Dice similarity coefficient on the CF-CT data, for the results obtained by our
U-Net-based method and the kNN-VS method [62]. For each boxplot, the box shows
the quartiles of the data (defined by the median, 25% and 75% percentiles), the
whiskers extend to include the data within 1.5 times the interquartile range from
the box limits, and the markers show all the data points.

respect to the manual annotations on CT scans from both control and subjects with
CF, while segmenting more airway branches in the diseased cases. We show these
grouped measures in Figure 2.B.1a in the Appendix.

2.5.2 Evaluation on DLCST data
We show in Figure 2.4 the evaluation on the DLCST data of our U-Net-based method
and the kNN-VS [32] and LOP [33] methods. Comparing the U-Net with the kNN-VS
results, the former shows lower CL (8.25 (6.26–9.58) vs. 12.0 (9.68–14.9), p<0.001),
higher DSC (0.916 (0.909–0.924) vs. 0.810 (0.787–0.825), p<0.001) and a similar TL
(81.5 (79.2–84.1) vs. 80.3 (76.1–84.4), p=0.19). Comparing the U-Net with the LOP
results, the former shows lower CL (8.25 (6.26–9.58) vs. 21.0 (16.0–25.9), p<0.001),
higher DSC (0.916 (0.909–0.924) vs. 0.795 (0.780–0.812), p<0.001), but lower TL
(81.5 (79.2–84.1) vs. 96.8 (94.9–97.7), p<0.001). This indicates that our U-Net-based
method predicts an airway tree as complete as the kNN-VS method [32], and less
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Figure 2.3: Visualization of predicted airways trees on the CF-CT data, obtained
by our U-Net-based method and the kNN-VS method [62]. True positives are
displayed in yellow, centerline false negatives in blue and centerline false positives
in red. These false negatives and positives are the errors counted in the tree length
detected and centerline leakage measures reported in Figure 2.2, respectively. The
cases displayed correspond to, from left to right, the two U-Net results with Dice
score closest to the median of the test Dice measures, and the U-Net result with the
lowest Dice score.

complete than the LOP method [33], but with significantly less false positive errors
than these two methods. It should be noted that this comparison is biased towards the
kNN-VS and LOP methods that made up the reference segmentations, which partly
explains the very high completeness of the results by the LOP method. We show in
Figure 2.5 visualizations of airway trees obtained by the three methods. We can see
that the airways predicted by the LOP method have more peripheral branches detected
(with almost no false negative errors), however they have more false positive errors.
The results from our U-Net-based method have less peripheral branches detected, but
also have much less false positives.

Through visual inspection of the results, we observed that several false positive
errors correspond to real airways on the CT scan that were missing in the reference
segmentations. This is because this reference was built in a conservative way from
automatic airway extractions, where branches not extracted by either method [32]
or [33] were not included, and branches evaluated as “partly wrong” were removed, as
explained in Section 2.3.1. Thus, the reference segmentations are somewhat incomplete.
For the segmentation results obtained by the three methods, we inspected any false
positives that were of tubular shape and that were long enough to be clearly perceived
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Figure 2.4: Boxplots showing 1) tree length detected, 2) centerline leakage and 3)
Dice similarity coefficient on the DLCST data, for the results obtained by our U-Net-
based method and the kNN-VS [32] and LOP [33] methods. For each boxplot, the
box shows the quartiles of the data (defined by the median, 25% and 75% percentiles),
the whiskers extend to include the data within 1.5 times the interquartile range
from the box limits, and the markers show all the data points.

as possible airways. We found 41 such cases of false positives that were actual airways
when they were overlaid and analyzed on the CT scan. Out of these 41 misclassified
branches, 20 were segmented only by our U-Net-based method, 14 were segmented
by our U-Net-based method and either the kNN-VS or LOP method, and 7 were
segmented by either the kNN-VS or LOP method and not the U-Net-based method.
All cases segmented by our U-Net-based method were free of leakage. In contrast, all
cases segmented by the kNN-VS and LOP methods had errors: they were branches
longer than the real airway, or had leakage outside the airway wall. We show in
Figure 2.6 some examples of these misclassified false positive branches, where in the
corresponding overlay of the airway mask with the CT scan we can see that they
are real airways. Because of this, the CL leakage reported for the three methods in
Figure 2.4 are presumably overestimated, and to a larger extent for our U-Net-based
method. Interestingly, most of the 34 misclassified but correctly segmented branches
by our U-Net-based method were on CT scans from subjects with COPD, 26 out of
34 (76%).
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Figure 2.5: Visualization of predicted airways trees on the DLCST data, obtained
by our U-Net-based method and the kNN-VS [32] and LOP [33] methods. True
positives are displayed in yellow, centerline false negatives in blue and centerline
false positives in red. These false negatives and positives are the errors counted
in the tree length detected and centerline leakage measures reported in Figure 2.4,
respectively. The cases displayed correspond to, from left to right, the two U-Net
results with Dice score closest to the median of the test Dice measures, and the
U-Net result with the lowest Dice score.

Comparing the measures from our U-Net-based method between subjects with
normal lung function and subjects with COPD, we found no significant differences
in TL (81.0 (78.8–81.5) vs. 82.7 (80.0–85.2), p=0.15), but they were significant in CL
(6.27 (5.25–8.86) vs. 9.18 (7.64–10.4), p<0.01) and in total tree length (190 (174–247)
vs. 131 (123–169), p<0.01). This indicates that our method has slightly more false
positives errors on CT scans from subjects with COPD. However, this is partly
explained by the higher number of misclassified but correctly segmented branches that
we found in CT scans with COPD, for the U-Net results. We show these grouped
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Figure 2.6: Visualization of examples of predicted false positive branches on the
DLCST data, obtained by our U-Net-based method and missed by the kNN-VS and
LOP methods, that are actually real airways missing in the reference segmentations.
The last earmarked branch is detected by the LOP method but with errors, with
leakage outside the airway wall. In the 3D visualizations, the true positives are
displayed in yellow, centerline false negatives in blue and centerline false positives
in red. We also show the overlay of the predicted airway centerline masks with the
CT scan, showing that the earmarked branches are real airways. In this overlay,
the predicted centerlines by our U-Net method are displayed in green, those by the
LOP method in blue, and the reference segmentations in yellow.

measures in Figure 2.B.1b in the Appendix.

2.5.3 Evaluation on EXACT’09 data
We show in Figure 2.7 the evaluation on the EXACT’09 data of our U-Net-based
method, the 15 methods from the challenge EXACT’09 [38], the 6 post-challenge
methods [85], the 4 recent methods [43, 44, 52, 86] evaluated on the EXACT’09 data,
and our experiment with the nnU-Net method [87] on these data. The reported results
are the average TL and FPR measures obtained over the EXACT’09 test set. Our
U-Net-based method achieves an overall TL of 70.3% and FPR of 2.74%. When
compared to the EXACT’09 methods and the 6 post-challenge methods [85], our
U-Net-based method has a TL much higher (at least 10%) than the scores from all
methods except two, while the reported FPR is only slightly higher (≈ 1%) than the
average score among these methods. This indicates that our U-Net-based method
predicts more complete airway trees on average, and with limited false positive errors.
The two methods with higher TL also show a much higher FPR. When compared to
the CNN-Leak method [43] and the nnU-Net method [87], our U-Net-based method
has higher completeness but also more false positive errors. The nnU-Net method [87]
achieved a similar performance to the CNN-Leak method [43], with slightly lower
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TL for a similar FPR score. When compared to the U-Net-FRAD method [52], our
U-Net-based method has slightly lower completeness but also less false positive errors.
Our method together with the CNN-Leak [43], U-Net-FRAD [52] and nnU-Net [87]
methods seem to have the best trade-off between the TL and FPR scores among
all tested methods in Figure 2.7. However, the authors from [43] did not follow
the independent evaluation for the EXACT’09 benchmark, but they re-implemented
the evaluation algorithm using the reference standard from EXACT’09 [38]. Their
evaluation on one of the 15 submissions to EXACT’09 resulted in a slightly higher
tree length than the one originally reported in [38]. Thus, the TL score reported
for this method could be overestimated. Comparing our U-Net with the nnU-Net
results, the former shows higher TL (68.8 (61.2–79.7) vs. 63.9 (52.8–75.2), p=0.01)
and higher FPR (1.90 (0.51–3.86) vs. 1.07 (0.30–2.25), p=0.04), but they are not
significantly different. This indicates that both our U-Net-based method and the
nnU-Net have comparable accuracy. When compared to the 2.5D CNN method [44]
and the PICASSO method [86], our U-Net-based method shows better performance
measures, with higher completeness and less false positive errors.
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Figure 2.7: Average tree length detected versus average false positive rate over the
EXACT’09 test set, for our U-Net-based method, the 15 methods from the challenge
EXACT’09 [38], the 6 post-challenge methods [85], the 4 recent methods [43, 44,
52, 86] evaluated on the EXACT’09 data, and our experiment with the nnU-Net
method [87] on these data. Results are computed by the EXACT’09 challenge
organizers except for [43], who did the evaluation slightly differently, leading to
slightly better performance, as reported in their paper.

Through visual inspection of the results, we observed that for some CT scans a
large number of airways predicted by our U-Net-based method that were reported as
false positives in the EXACT’09 evaluation are real airways on the CT scan. We show
in Figure 2.8 visualizations of airway trees, obtained by our method and the nnU-Net
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Figure 2.8: Visualization of predicted airway trees on the EXACT’09 data obtained
by our U-Net-based method and the nnU-Net method [87]. True positives are
displayed in green and false positives in red, indicated according to the EXACT’09
evaluation. The cases displayed correspond to 3 out of the 5 U-Net results with the
highest false positive rate reported in the EXACT’09 evaluation, where we found
through visual inspection that many of the reported false positives are real airways
on the CT scan, which were presumably missing in the EXACT’09 reference.

method [87], for which most of the reported false positive errors are real airways. Our
method shows more misclassified false positive branches than the nnU-Net method [87],
which partly explain the higher FPR scores in the displayed cases. This is because the
reference standard from EXACT’09, constructed from all 15 participating methods to
the challenge, is somewhat incomplete. It was estimated that on average approximately
10% more branches were visible in the CT scans than those that were included in the
reference [38]. Thus, the false positive rate reported by our U-Net-based method and
the nnU-Net method [87] in Figure 2.7 may be overestimated, with a larger extent for
our method. This could be also for the other methods [43, 44, 52, 85, 86] we compared
with, which used the same reference for evaluation.

We compared the measures from our U-Net-based method between a group of
CT scans without any reported anomalies on the CT scan (cases 21, 22, 23, 28,
29, 35, and 37), and a group of CT scans with reported bronchiectasis (cases 33,
34, 36, and 39) [38]. We found no significant differences in TL (80.1 (65.6–83.2) vs.
79.4 (75.7–82.1), p=0.59), in FPR (2.98 (0.99–3.87) vs. 3.34 (1.99–6.50), p=0.21) and
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in total tree length (116 (100–193) vs. 275 (232–295), p=0.07). This indicates that our
method has similar accuracy with respect to the reference segmentations on both CT
scans without anomalies and CT scans with bronchiectasis. We show these grouped
measures in Figure 2.B.1c in the Appendix.

2.6 Discussion

2.6.1 Performance compared to other methods
The proposed U-Net-based method has shown good performance on the three different
datasets, achieving highly complete airway segmentations with low false positive
errors. The three datasets tested have very different characteristics: from subjects
of a wide age range (from children in CF-CT data to older adults in DLCST data)
and with airway abnormalities from diverse lung diseases, including CF and COPD.
On the CF-CT and DLCST data, our U-Net-based method obtained more accurate
airway segmentations than the other tested methods [32, 33, 62], shown by higher
completeness and Dice scores altogether, and lower false positive errors. On the
EXACT’09 data, our U-Net-based method achieved performance measures similar
to the best performing previous methods, with the second highest sensitivity score
among all methods that reported good specificity. Especially, it is noticeable that
our method achieved this good performance on the highly heterogeneous EXACT’09
data with models trained on different and more homogeneous datasets (CF-CT and
DLCST). This shows the robustness and the capacity to generalize across different
data of the proposed method. Furthermore, our U-Net-based method obtained similar
performance measures on CT scans from both healthy and diseased subjects, on the
CF-CT and EXACT’09 data. On the DLCST data, our method had slightly more false
positives errors on CT scans from subjects with COPD, where airway detection can be
more challenging due to emphysema. However, on CT scans with COPD we reported
a higher number of false positives in the U-Net results that were real airways on the
CT scan, which partly explains the lower specificity in the diseased cases. On the
CF-CT data, the method segmented more airway branches on CT scans from subjects
with CF, probably due to the widening of peripheral airways due to CF-bronchiectasis,
which makes them easier to detect on the CT scan.

When compared to other CNN-based methods evaluated on the EXACT’09 data,
our U-Net-based method shows a performance similar to that of the CNN-Leak [43],
U-Net-FRAD [52] and nnU-Net [87] methods. These four methods seem to have
the best trade-off between sensitivity and specificity among all tested methods in
Figure 2.7. However, the U-Net-FRAD method [52] was trained on data that included
the EXACT’09 training set, using their own manually drawn reference segmentations on
these data. Since the CT scans from the EXACT’09 training and test sets have similar
characteristics and scanning parameters [38], this gives an advantage to the U-Net-
FRAD method [52] over our U-Net-based method, which was trained on different data.
On the other hand, the CNN-Leak method [43] requires a coarse airway segmentation as
initialization to the CNN-based leakage removal algorithm, and thus the completeness
of the results is limited by that of the initial segmentation. In contrast, our U-Net-
based method segments the full airway tree directly. Moreover, CNN-Leak [43] applied
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leakage removal to a series of 15 runs of the region growing based algorithm [90], with
different parameters that control the extent of leakage, upon which the results were
merged. In fact, the results from applying the leakage removal only to the baseline
segmentation [90] had a much lower sensitivity (TL 51.8% in contrast to 65.4%) and a
slightly higher specificity (FPR 1.01% in contrast to 1.68%). Similarly, an ensemble of
U-Net results with different settings would likely have a slightly better performance,
but this is more time consuming. When compared with the nnU-Net method [87], our
U-Net-based method achieved slightly higher completeness and false positive errors,
but we found that the differences were not statistically significant. When compared
with the 2.5D CNN method [44], our U-Net-based method shows better performance
with both higher sensitivity and specificity. The higher accuracy of our method can be
because the 2.5D CNN method processes three perpendicular 2D slices around each
voxel, while the 3D U-Net can better capture the 3D morphological information of
airways.

Regarding computational efficiency, our U-Net-based method has a low execution
time during inference of about 1 min per scan, including all post-processing steps to
obtain a single connected binary airway tree. It should be noted that computation
times of different methods cannot easily be compared due to differences in hardware,
but the following may give a rough idea of the efficiency of our method compared
to previous work. The execution times reported by other methods evaluated on the
EXACT’09 data are: the kNN-VS method [32], 55 min per scan, although it was run
on a much older CPU and was not parallelized; the CNN-Leak method [43], 3–5 min
per scan; the U-Net-FRAD method [52], approximately 50 s per scan, although it does
not include any post-processing steps; the 2.5D CNN method [44], 2–8 min per scan;
and the PICASSO method [86], approximately 10 min per scan. Our experiments
with the nnU-Net method [87] required 5–15 min per scan, although this includes
some expensive pre-processing operations applied on the fly to the test images, such
as resampling. Additionally, the U-Net method in [55] reports approximately 6.5 min
per scan.

2.6.2 Advantages of the proposed method
The proposed U-Net-based method processes large 3D patches extracted from the CT
scan in a single pass through the network. This makes our method simple, robust, and
efficient at inference time, as only a few large patches are processed to segment a full
CT scan. Although processing large input patches does not necessarily imply better
performance, we observed that using large input patches resulted in better results and
faster convergence of the training and validation losses. This is likely due to the more
efficient use of the data during training. In contrast, when using smaller patches to
train the model, this requires sampling patches at every voxel to equally process the
same region of the CT scan comprised in a larger patch, which results in a high number
of total patches. Moreover, since convolution operations are accelerated on the GPU, it
is more efficient computationally to process a large patch at once through the network,
rather than sequentially loading to GPU and processing smaller patches to include the
same large region of the CT. In contrast to our approach, other U-Net-based methods
in the literature either 1) apply a small U-Net locally around detected candidate
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airway locations, processing many image patches per CT scan [45, 46], or 2) apply
a model with larger memory footprint on smaller image patches in a sliding-window
fashion [47, 48, 49, 50, 51, 52, 53, 54, 55]. With our simple U-Net-based method and
without further processing of the network output (except for computing the largest
connected component) we obtained highly complete and accurate airway segmentations
on the three datasets tested. On the EXACT’09 data, our method achieved a similar
performance to the more complex U-Net-FRAD method [52], which used manually
annotated EXACT’09 data for model training, and the nnU-Net method [87], using a
similar U-Net as backbone. An additional advantage of processing few, large patches
by our method is that fewer edge artifacts are introduced when tiling together the
predicted output patches of the network. These artifacts typically occur where the
tiled predicted patches meet in the full-size output (or where the patches overlap if
this occurs), because the predictions from each patch can be slightly different due to
border effects when using non-valid convolutions, and can cause discontinuities in the
predicted airway mask.

2.6.3 Limitations
A limitation of our validation of the proposed method is that we did not evaluate
it on CT scans with severe airway disease. The CF-CT data include subjects with
moderate CF disease, the DLCST data include subjects with moderate COPD, and the
EXACT’09 test data have various airways abnormalities but only one CT scan with
reported “extensive bronchiectasis” [38]. Testing the method on severe cases would be
important to assess its generalizability to tackle challenging airways with abnormally
deformed shapes due to severe disease. Moreover, our evaluation of segmentation
performance with respect to the presence of disease on the DLCST dataset may not
show the whole picture. This is because the reference segmentations on these data
were built in a conservative way from automatic airway extractions [32, 33], and could
be less complete for CT scans with severe emphysema.

A limitation of our U-Net-based method is that the prediction of the airway tree
output by the U-Net is not guaranteed to form a connected tree structure. This could
complicate the automatic extraction of airway biomarkers based on these segmentations
as some methods assume a fully connected tree as input [61, 62, 65]. The airway
predictions obtained in this work had typically some segmented peripheral airways
disconnected from the main airway tree, and these were discarded when computing
the largest connected component, which reduced the completeness of our airway
segmentations. Alternatively, airway measurements techniques that do not rely on
fully connected trees, such as [91], could be used. Several methods have been proposed
to extract more complete, connected tree structures. The voxel-connectivity U-Net
formulation [47] aims to improve connectivity in the airway prediction, resulting
however in a model that is significantly more complex than our U-Net used. The linear
programming-based tracking module on top of U-Net [49] attempts to link disconnected
components of airways from the U-Net output. The mean-field networks and graph
neural networks [80] emphasize the prediction of connected tree-like structures by
phrasing the tree extraction problem as graph refinement starting from an over-
connected input graph. The joint U-Net-GNN method [42] attempts to integrate
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this tree-like modeling in the U-Net prediction. However, none of these methods can
guarantee fully connected airway tree predictions.

Finally, the memory footprint of our U-Net-based method could be further reduced,
which would allow us to fit even larger images to the network, and possibly the entire
CT scan. It may be possible to reduce the number of feature maps, especially in the
decoding path of the U-Net, without decreasing much the performance. Also, using
the partially reversible U-Net formulation [92] in our method could largely reduce its
memory footprint, by lowering the number of activation maps in the network stored
in memory. However, this may result in an increase of training time (the authors
from [92] reported a 50% increase for their tested 5-level U-Net model, similar to ours).

2.7 Conclusions

We presented a fully automatic and end-to-end optimized method to segment the
airways from thoracic CT scans, based on the U-Net architecture. In contrast to
previous U-Net methods for airway segmentation, the proposed method processes
large 3D image patches often covering entire lungs. This is achieved by using a simple
and low-memory 3D U-Net as backbone. This makes the method robust and efficient,
which is important if the method is deployed in clinical software. Our method obtained
highly complete and accurate airway segmentations on three very different datasets
including CT scans with various airway and lung abnormalities. On the EXACT’09
test set, our method achieved the second highest sensitivity score among all methods
that reported good specificity; and it outperformed previous methods on the other
datasets.
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Appendix

2.A Learning curves of the proposed method

We computed the learning curve for the proposed U-Net-based method trained on
both CF-CT and DLCST data together. To do this, we trained several models with
different sizes of the training data. The maximum training size has half of the CT
scans from the CF-CT and DLCST datasets (28 scans in total), which is the same
data we used to train the model evaluated on the EXACT’09. We keep the remaining
28 CT scans for testing the trained models. For each training set used, the ratio
between CF-CT and DLCST CT scans is the same as in the full dataset. We did three
experiments for each training size, with randomly assigned training images (except
for the largest run with 28 CT scans). To compute the airway predictions on the
test data, we did not extract the largest connected component from the thresholded
output of the U-Net, as we did for the other experiments. This is to account for the
full prediction of the U-Net in assessing the method accuracy for all training sizes.
To compare the results for different training sizes, we applied the paired, two-sided
Student’s T-test on the average of the measures from the three experiments for a given
size, and consider that a p-value lower than 0.01 indicates a significant difference. We
show in Figure 2.A.1 the computed learning curves, with the different performance
metrics obtained for each run and training set size. The measures of tree length
detected increase progressively with the training size. The difference between the
scores with sizes of 18 and 28 images is still significant (p<0.001), and adding more
training images could still improve slightly the results. For the measures of centerline
leakage and Dice coefficient, they are more similar between sizes of 9 and 18 images
(p=0.35 and p=0.26, respectively) and between sizes of 18 and 28 images (p=0.99 and
p=0.019, respectively).
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Figure 2.A.1: Learning curve for our U-Net-based method trained on both CF-CT
and DLCST data together. Boxplots showing 1) tree length detected, 2) centerline
leakage and 3) Dice similarity coefficient on both CF-CT and DLCST data together,
for each experiment and training size. For each boxplot, the box shows the quartiles
of the data (defined by the median, 25% and 75% percentiles), the whiskers extend
to include the data within 1.5 times the interquartile range from the box limits, and
the markers show the data outliers.
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2.B Results grouped by the presence of lung disease

U-Net70

75

80

85

90

95 Tree Length (TL) (%)

Control
Diseased

U-Net0

5

10

15

20

25 Centerline Leakage (CL) (%)
Control
Diseased

U-Net0

100

200

300

400

500

600

700 Tree Length Total (cm)
Control
Diseased

(a) on CF-CT data, grouped by CF disease.
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(b) on DLCST data, grouped by COPD disease.
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(c) on EXACT’09 data, grouped by bronchiectasis.

Figure 2.B.1: Boxplots showing 1) tree length detected, 2) centerline leakage
or false positive rate, and 3) total tree length detected, grouped by the presence
of lung disease in the CT scans from each dataset, for the results obtained with
our U-Net-based method. For each boxplot, the box shows the quartiles of the
data (defined by the median, 25% and 75% percentiles), the whiskers extend to
include the data within 1.5 times the interquartile range from the box limits, and
the markers show the data outliers.

2.C Implementation details of the nnU-Net method

The nnU-Net method proposed by Isensee et al. [87] (https://github.com/MIC-DKFZ/
nnUNet) is a general segmentation framework designed for biomedical segmentation
tasks. We applied this method for airway segmentation from chest CT scans.

https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
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For our experiment, we used the so-called “full3d_UNet” in the nnU-Net framework,
which is the most similar to the U-Net in our method. This U-Net has 5 levels of
resolution, where each level in the downsampling / upsampling path has two 3×3×3
convolutional layers and a 2×2×2 pooling or deconvolution layer, respectively. Each
convolution operation is followed by an instance normalization layer and a leaky
rectified linear (leaky-ReLU) activation. The number of features in the top resolution
level is 32, and after each pooling or deconvolution layer the number of feature channels
is doubled or halved, respectively. The network uses deep supervision at all levels of
the U-Net. In this, the output of every last convolutional layer at every resolution
level is concatenated, after being resampled to the original resolution. Then, the final
layer is a 1×1×1 convolutional layer followed by a sigmoid activation function.

To train the network, we used the same 28 CT scans and ground truth segmentations
from the CF-CT and DLCST datasets as we used to train our method. The nnU-
Net method uses as training loss function a combination of the binary cross entropy
and soft Dice losses. We could not modify the loss computation in the nnU-Net to
consider only voxels within the lung regions, as we did for our method in Equation 2.1.
Instead, we masked the ground truth segmentations to the mask of the lung fields,
to remove the trachea and part of the main bronchi. The nnU-Net method uses the
SGD optimizer with an adaptable learning rate, starting with a value of 1×10−2. We
trained the model for a sufficiently large number of epochs, 600, until the training
and validation losses are clearly stabilized. We then retrieved the model with the
overall minimum validation loss for testing, denoted by “model_best” in the nnU-Net
framework. Training time was approximately 2–3 days on a GPU GeForce RTX 2080
Ti. Test time inference takes between 5–15 min per scan, including pre-processing.

The nnU-Net applies some pre-processing operations to the CT scans and ground
truth in the training dataset. First, the images are cropped to the region of non-
zero values in the ground truth airway masks. Then, the images are resampled to a
fixed resolution equal to the median over the training dataset, using 3rd order spline
interpolation for the CT scans and nearest neighbor interpolation for the ground truth
masks. During training, the nnU-Net extracts random patches from the CT scans and
ground truth, with a total of 1 patch per image and per epoch. Then, random rigid
transformations are applied for data augmentation, including 1) flipping in the three
directions, 2) random small 3D rotations, and 3) random scaling.

At inference time, the nnU-Net applies the same pre-processing operations to the
test CT scans as those applied on the training data used for the tested model. The
images are resampled to the same fixed resolution used for the training data, i.e.,
the median over these data. Input patches to the network are extracted from the
CT scans in a sliding-window fashion, with an overlap of roughly 50% between the
patches in each direction, and then are processed through the trained model. The
output predicted patches containing airway probability maps are aggregated and the
full-size output is reconstructed. Then, thresholding is used to obtain the airway
binary segmentation, and the pre-processing steps are reversed to recover the original
image resolution. Finally, we merge this segmentation with a mask for the trachea,
main bronchi, and the first 5 voxels of the next branches to obtain the full airway tree,
which is easily computed by a region growing method [32].
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Abstract

Deep convolutional neural networks for image segmentation do not
learn the label structure explicitly and may produce segmentations with
an incorrect structure, e.g., with disconnected cylindrical structures in the
segmentation of tree-like structures such as airways or blood vessels. This
chapter presents a novel label refinement method to correct such errors
from an initial segmentation, implicitly incorporating information about
label structure. This method features two novel parts: 1) a model that
generates synthetic structural errors, and 2) a label appearance simulation
network that produces synthetic segmentations (with errors) that are
similar in appearance to the real initial segmentations. Using these
synthetic segmentations and the original images, the label refinement
network is trained to correct errors and improve the initial segmentations.
The proposed method is validated on two segmentation tasks: airway
segmentation from chest computed tomography (CT) scans and brain
vessel segmentation from 3D CT angiography (CTA) images of the brain.
In both applications, our method significantly outperformed a standard
3D U-Net and other previous refinement approaches. Improvements are
even larger when additional unlabeled data is used for model training. In
an ablation study, we demonstrate the value of the different components
of the proposed method.

Based on: S. Chen*, A. Garcia-Uceda*, J. Su*, G. van Tulder, L. Wolff, T. van Walsum, and
M. de Bruijne, “Label refinement network from synthetic error augmentation for medical image
segmentation,” Submitted

* indicates equal contributions
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3.1 Introduction

Convolutional neural networks (CNNs) are the state-of-the-art for many biomedical
imaging segmentation tasks. Many CNN segmentation architectures have been pro-
posed, such as fully connected networks [76], Dense-Net [93] and the U-Net [56]. The
U-Net has become the most popular network for biomedical image segmentation, due
to its efficient structural design featuring skip-connections, showing superior accuracy
and robustness in various segmentation tasks [87, 94]. Most CNN-based segmentation
methods including the U-Net do not fully exploit and encode the structural information
of the objects to be segmented. Consequently, these methods may produce segmenta-
tions with errors that become obvious when looking at the full segmented structure.
Examples of such errors are discontinuities in the segmentations of elongated tubular
structures, such as airways in the lungs, as shown in Figure 3.1. Using label structural
knowledge such as continuity in the branches of the airway tree can help prevent these
errors. However, it is not trivial to explicitly encode this global information in CNNs.

Figure 3.1: Common structural errors in the segmentations obtained by a U-Net,
trained to segment airways in the lungs [41]. True positives are displayed in yellow,
false negatives in blue and false positives in red. Detailed views a-b show errors as
missing terminal branches, and view c shows a discontinuity error in the branch.

In this work, we propose a framework to implicitly encode the label structural
information into CNNs by formulating this as a label refinement step. Specifically, we
generate structural errors in labels (such as the ground truth or initial segmentations)
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and train a label refinement network to correct these errors. The trained network is
expected to generalize to the real errors in the initial segmentations produced by a
baseline segmentation network and correct them. To enhance the generalizability of the
label refinement network on the initial segmentations, a label appearance simulation
network is applied to reduce the appearance difference between the synthetic labels and
the initial segmentations. With these synthetic labels (and the initial segmentations)
together with the original image as inputs and the ground truth segmentations as
reference, the label refinement network can learn to correct those errors and incorporate
this in its segmentation decisions.

We validated the proposed label refinement method on two segmentation tasks:
airway segmentation from chest computed tomography (CT) scans [41] and brain
vessel segmentation from 3D CT angiography (CTA) images of the brain [95]. We
compared our method with a U-Net baseline and other refinement networks, including
DoubleU-Net [96] and SCAN [97], an adversarial refinement network. Moreover, we
conducted an ablation study to show the contribution of each individual component of
the label refinement method. Finally, we performed experiments in a semi-supervised
setting to train our method using additional unlabeled data.

3.1.1 Related work

Label refinement

In this work, we apply a refinement network on the initial segmentation from a
baseline segmentation network together with the original image, with the aim of
correcting errors in the initial segmentation. A similar approach has been used in
other previous works. Jha et al. [96] attached a second U-Net network to a baseline
U-Net, using as inputs the original image multiplied with the output of the first U-Net.
Yang et al. [98] refined low-quality manual annotations made by non-experts by training
their method with added noise in order to reduce the inter-observer inconsistency of
the annotations. Unlike our method, Yang et al. do not focus on refining an initial
automatic segmentation and therefore the label appearance simulation network is not
needed. Dai et al. [97] refined the segmentations from a fully convolutional network
by using adversarial training to reduce the domain gap between the target predictions
and the ground truth segmentations on training data. Araujo et al. [99] attached a
variational auto-encoder after a U-Net network to encode the label topology of the
ground truth segmentations for a better label reconstruction. Different from Dai et al.
and Araujo et al., our work does not focus on encoding [99] or discriminating [97] the
overall label topology, but instead on learning to correct the most common errors in
the segmentations.

Airway segmentation

The airway tree in the lungs forms a complex 3D tree-like branching network, with
many branches of different sizes and orientations. The peripheral branches of smaller
size are challenging to segment from chest CT scans, as they have obscured borders
due to partial volume effects. Many classical methods for airway tree extraction are
based on a region growing algorithm [30, 32, 33]. However, their accuracy is limited,
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and they typically miss a large number of the smaller peripheral airways [38]. Many
state-of-the-art airway segmentation methods are based on CNNs, and especially
the U-Net [41, 52, 100, 101]. CNN-based methods can obtain more accurate and
complete segmentations than previous intensity-based methods. However, even the
latest U-Net-based methods usually miss several terminal branches, and make errors
in continuity around the smaller segmented branches.

Brain vessel segmentation

The brain vessels form a complex 3D branching network that consists of veins and
arteries. In 3D CTA images of the brain, many seemingly isolated vessel structures can
be present due to the image acquisition and vascular diseases, such as ischemic large
vessel occlusions. State-of-the-art vessel segmentation methods have been applied to
3D time-of-flight (TOF) magnetic resonance angiography (MRA) images [102, 103,
104], and to 3D and 4D CTA images [105] using U-Nets. Su et al. [95] used a U-
Net-based method to extract a dilated vessel centerline approximation. Compared to
previous vessel segmentation methods [102, 103, 104, 105], centerline extraction recovers
the topology of the vessel structure more accurately (e.g., “kissing vessels” appear
connected in the full segmentations but are disconnected in centerline extraction).
However, the U-Net still makes other topological errors such as local connectivity gaps
in vessel branches.

3.2 Methods

3.2.1 Overview
The proposed method consists of four steps, schematically shown in Figure 3.2. Firstly,
a baseline segmentation network generates the initial segmentations (Section 3.2.2).
Secondly, synthetic errors are generated and added to every ground truth segmentation,
in order to generate synthetic labels to train the label refinement network (Section 3.2.3).
Thirdly, a label appearance simulation network (LASN) based on adversarial learning
is used to reduce the appearance difference between the synthetic labels and the
initial segmentations (Section 3.2.4). Finally, a label refinement network is trained to
predict the final segmentation, using the synthetic labels (or the initial segmentations)
and the original images as inputs, and the ground truth segmentations as reference
(Section 3.2.5).

3.2.2 Base segmentation network
We use a base segmentation network f1 to predict an initial segmentation. Given a
medical imaging dataset that contains an image I and the ground truth segmentation
g for each subject, the model f1(I|θ1), with θ1 the trainable parameters, is trained by
minimizing the Dice loss L1 = Ldc(f1(I), g),

Ldc(y, g) = −
2
∑

i∈I yigi∑
i∈I yi +

∑
i∈I gi

3.1
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where yi and gi are the ith voxel values of the probability maps output by the model
(in this case y = f1(I)), and the ground truth segmentation, respectively.

The initial predicted segmentation is x1, obtained by thresholding the output
probability maps y1 of the network with value 0.5. x1 may contain label structural
errors, such as discontinuous branches in a tree-like structure. Next, we show how
to design synthetic errors similar to those in x1 that can be used to train the label
refinement network.

3.2.3 Generation of synthetic segmentation errors
We use synthetic labels xsyn with added synthetic errors to train the label refinement
network. Depending on the experimental set-up, the errors can be added to the ground
truth or to the initial segmentations. The synthetic errors are generated to resemble
those in the initial segmentations x1, based on our initial analysis of common errors.
In this work, we focus on two structures: airways in the lungs and vessels in the
brain. Airways and vessels share several characteristics: they both form 3D branching
networks, with branches of cylindrical shape and various sizes and orientations. We
use this prior shape knowledge to generate synthetic errors, as described below for
each structure.

Synthetic errors for airways

Most of the errors in airway segmentations can be grouped into two types: 1) missing
terminal branches, partially or totally, and 2) discontinuity in the segmented branches,
which occurs more frequently in smaller branches. Examples of errors in airway
segmentations obtained by the baseline segmentation network in Section 3.2.2 are
shown in Figure 3.1. To generate similar, synthetic errors, we select a random subset
of branches in the airway tree and partially remove the segmentation of the selected
branches by masking it at a random position and with a random length. Branches are
identified using the airway centerline tree, extracted from the airway segmentation [38].
Single branches are defined as the segments between two bifurcation points or between
the last bifurcation and the end of terminal branches. The applied masking is defined
differently for each type of error:

Missing terminal branches: The subset of branches in which to synthesize errors
is randomly sampled from all the terminal branches in the airway tree, defined as
branches with no further bifurcations downstream. A mask of cylindrical shape is
applied to (partially) remove the selected branch. The mask is defined by 1) a start
point, that is a random position along the branch centerline between the branch start
and middle points; 2) a length, that is the distance between the mask start point and
branch end; and 3) a width, that is three times the branch diameter.

Discontinuity in branches: The subset of branches with errors is randomly sampled
from all the branches in the airway tree, excluding the trachea, the two main bronchi
and the 2nd generation airways, and including the terminal branches. We assign
a higher sampling probability to branches of higher airway generation, where the
generation is defined as the number of branch bifurcations counted in the path linking
the given branch and the root of the airway tree, i.e., the trachea. The sampling
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probability pi for each candidate branch is defined as pi = gi/
∑Nc

k=1 gk,∀i = 1 . . . Nc,
where gi is the airway generation and Nc the number of candidate branches. A mask of
cylindrical shape is applied to create a gap in the selected branch. The mask is defined
by 1) a center, that is a random position along the branch centerline; 2) a length, that
is a random distance between a minimum of 10 voxels and the total branch length;
and 3) a width, that is three times the branch diameter.

Parameters: The extent of each type of errors in the airway synthetic labels is
determined by a separate parameter, denoted as pa

1 and pa
2. pa

1 is the proportion of
selected branches with errors of type “missing terminal branches”, with respect to all
the terminal branches. pa

2 is the proportion of selected branches with errors of type
“discontinuity in branches”, with respect to all the branches in the airway tree.

Synthetic errors for brain vessels

Most of the errors in brain vessel segmentation are in the form of incomplete or missing
vessel branches. To generate similar, synthetic errors, we create random discontinuous
gaps in the segmentation of each vessel by masking it at a random position and with
a random length. Since the errors occur more frequently for long vessels than for
short ones, we group all the vessels into three equal-sized groups: long, medium size
and short, based on the relative centerline segment lengths in each subject. The
distribution of vessel lengths (in voxels), using the median and interquartile range
(IQR), is: for long segments 70 (49–106), for medium-size segments 29 (22–36), and
for short segments 13 (9–17). For long segments, the maximum number of injected
gaps is 6 (randomly sampled from a uniform distribution between 0 and 6 positions)
with gap length between 10–35 voxels. For medium-size segments, the maximum
number of gaps is 4 with gap length between 10–20 voxels. For the short segments,
the maximum number of gaps is 2 with gap length between 6–15 voxels. Those error
injections are applied on the 1 voxel-wide ground truth centerlines, by dilating it with
a 3×3×3 cubic structure element to generate the final vessel synthetic label.

Parameters: The extent of errors in the vessel synthetic labels is determined by
only one parameter, denoted as pv. pv is the proportion of selected branches with
errors with respect to all the branches in the vessel network.

3.2.4 Label appearance simulation network
Although the synthetic labels xsyn are designed to have similar structural errors to
the initial segmentation x1, there may be an appearance difference between x1 and
xsyn (see an example in Figure 3.3). The label refinement network trained on xsyn
may therefore generalize poorly to x1. To prevent this, we use a label appearance
simulation network fa(·|θa) to change the appearance of xsyn to be more similar to
that of x1, while preserving the synthetic errors that we added to xsyn.

The label appearance simulation network fa(·|θa), with θa the trainable parameters,
is optimized by adversarial learning via a discriminator D,

f∗a = arg min
fa

((max
D
Ladv(fa, D)) + λLdc(xa, xsyn)) 3.2
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with the adversarial loss Ladv defined as,

Ladv(fa, D) = Ex1 [logD(x1)] + Exa [log(1−D(xa))] 3.3

where D is a classifier, discriminating between the given label x and the initial
segmentation x1. It outputs a probability between 0.0 and 1.0. xa = fa(xsyn) is the
appearance-enhanced label of xsyn. We added a Dice-based identity loss Ldc(xa, xsyn)
to train fa(·), in order to preserve the synthetic errors that we added in xsyn. The
hyperparameter λ controls the balance between the identity loss and the dissimilarity
adversarial loss.

Initial segmentation

Figure 3.3: Example of segmentation of airways in the lungs obtained by the
different components of the proposed method. In the detailed views, true positives
are displayed in yellow, false negatives in blue and false positives in red.

3.2.5 Label refinement network
Finally, we optimize a label refinement network f2 to predict the ground truth
segmentations, based on the synthetic labels with errors xa together with the original
image as inputs. This way, f2 learns to correct segmentation errors and can be used
to improve the initial segmentations x1. The model f2(I|θ2), with θ2 the trainable
parameters, is trained by minimizing the Dice loss L2 = Ldc(f2(I, x̃), g), given by
Equation 3.1. The final segmentation result is x2, obtained by thresholding the output
probability maps y2 of the refinement network with value 0.5.
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3.3 Experiments

3.3.1 Datasets
We validated the proposed method on two biomedical imaging segmentation tasks:
segmenting airways from chest CT scans and brain vessels from CTA images of the
brain.

Chest CT data

The dataset of chest CT scans is from a retrospective study of pediatric patients (6
to 17 years old) with cystic fibrosis lung disease, acquired routinely at the hospital
Erasmus MC-Sophia Rotterdam [106]. The CT scans show noticeable structural airway
abnormalities resulting from the disease. In our study, we used 178 low-dose CT scans
acquired at full inspiration breath-hold. All CT scans have slice dimensions 512×512,
with a variable number of slices between 200–1000. Each CT scan has an in-plane
voxel size in the range 0.35–0.65 mm, with slice thickness between 0.75–1.0 mm, and
slice spacing between 0.3–0.8 mm. A random subset of 65 CT scans from the total 178
scans have annotations of the airway lumen. To obtain these annotations, Thirona’s
lung quantification software LungQ (Thirona, Nijmegen, the Netherlands) was used to
automatically extract the airway lumen from the CT scan. Then, these segmentations
were visually checked by trained data analysts for accuracy, and corrected as needed.

For our experiments, we used as testing data 41 random CT scans from the subset
of 65 CT scans with ground truth segmentations. From the remaining 24 CT scans
with annotations, we used three different random data splits with 20 CT scans for
training the networks and 4 CT scans for validation. The remaining 113 CT scans
without ground truth segmentations were used as unlabeled training data for the
experiments with semi-supervised learning.

CTA data of the brain

The dataset of CTA images of the brain is from the MR CLEAN Registry [107], an
ongoing registry for patients who underwent endovascular treatment for acute ischemic
stroke in one of 19 hospitals in the Netherlands since March 2014. The data was
collected during clinical practice, and we applied the following data inclusion criteria:
1) slice thickness ≤1.5 mm, 2) slice spacing ≤1.5 mm, 3) the contrast acquisition
phase has to be peak arterial phase, equilibrium or early venous phase [108], and
4) the image should cover at least half of the brain. In our study, we used 69
CTA images from 69 different subjects used in [95]. All CTA images were skull-
stripped with an atlas-based registration method [109]. 20 CTA images had no vessel
annotations, 9 CTA images had a complete brain vessel centerline annotation, and
the remaining 40 CTA images (randomly sampled from the whole dataset) had vessel
centerline annotations in a randomly sampled sub-volume of 140×140×140 voxels.
The centerline annotations were dilated with a 3×3×3 cubic structure element to
obtain the ground truth segmentations. Each CTA image has an in-plane voxel size in
the range 0.4–0.68 mm, with slice thickness between 0.5–1.5 mm, and slice spacing
between 0.3–1.0 mm.
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For our experiments, we used as testing data 2 random full-volume CTA scans and
20 random CTA cubes from the set of 9 full-volume, annotated CTA scans and 40
CTA cubes, respectively. From the remaining data with annotations, we used three
different random data splits with 7 full-volume CTA scans and 14 CTA cubes for
training the networks, and 6 CTA cubes for validation. The remaining 20 full-volume
CTA scans without manual annotations were used as unlabeled training data for the
experiments with semi-supervised learning.

3.3.2 Parameters for generating synthetic errors
The generation of synthetic errors depends on the parameters pa

1 and pa
2 for airways,

and pv for vessels, described in Section 3.2.3. We will refer to these parameters as
“synthetic error rate”, for each type of error. For each training sample, the synthetic
error rate is randomly sampled from a uniform distribution between 0.0 and the upper
bound, or maximum synthetic error rate. These upper bounds are hyperparameters
for the proposed method, denoted as P a

1 and P a
2 for airways, and P v for vessels.

We conducted experiments varying the hyperparameters for the error generation in
the proposed method, i.e., the maximum synthetic error rates (P a

1 and P a
2 for airways,

and P v for vessels), to investigate their influence in the method performance. The
results are shown in Section 3.4.3 below.

In our further experiments, the optimal hyperparameters were determined on
the validation set for each of the three random data splits that we used, for both
applications. Each hyperparameter was searched independently, from 0.0 to 1.0, while
fixing the parameters for other error types to 0.0.

3.3.3 Network architecture
The baseline segmentation network f1 is a 3D U-Net [78], shown in Figure 3.2. The
label refinement network f2 and the label appearance simulation network fa use a
similar U-Net layout, with the discriminator D in fa using the same layout as the U-Net
encoder. The U-Net consists of an encoding path followed by a decoding path, with
skip-connections linking the two paths. The network has 5 levels of depth, 16 feature
channels in the first layer, and an input image size of 128×128×128. Each level of the
encoding / decoding paths consists of two 3×3×3 convolutional layers followed by a
2×2×2 pooling or upsampling layer, respectively. Each convolutional layer consists of
3×3×3 convolution with zero-padding followed by instance normalization and leaky
rectified linear (leaky-ReLU) activation. The number of feature channels is doubled
or halved after every pooling or upsampling layer, respectively. The last layer of
the U-Net is a 1×1×1 convolution, combining the outputs into a single feature map,
followed by a sigmoid activation. A training batch contains only one image due to
GPU memory limits. The networks are implemented using PyTorch [82].

3.3.4 Details of training and inference of networks
For training, we first apply random rigid transformations as data augmentation, in
the form of 1) random 3D rotations up to 30 degrees for all axes, 2) random scaling
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with factor between 0.7–1.4, and 3) random flipping in the three directions. Then,
we generate samples by extracting random image patches of size 128×128×128 on
the fly from the input training images and corresponding ground truth segmentations.
For the airway segmentation experiments, a lung mask is applied to the output of
the network and the ground truth patches before computing the training loss. For
this operation, we use a pre-computed lung mask that is easily obtained with a region
growing algorithm [32]. During training, we used the Adam optimizer [88] with an
initial learning rate of 1×10−2. To train the refinement network f2, the label x̃ in
each training sample is randomly sampled with equal probability from either the
initial segmentation x1 or the synthetic label xa after the label appearance simulation
network.

During inference on new images, the input patches are extracted in a sliding-window
fashion, with an overlap of 50% in the three directions. Then, the patch-wise predicted
output by the network is aggregated by stitching the patches together, to reconstruct
the full-size segmentation result. For the airway segmentation experiments, we applied
a lung mask to the final segmentation to remove any spurious noise prediction outside
the lungs. For this operation, we use the same region growing lung mask as during
training.

For the adversarial loss in Equation 3.2, the weight λ is set to 0.01 for all experiments
in this work, based on visual inspection of the generated synthetic labels xa.

3.3.5 Comparisons
We compared the results of our proposed method with the baseline 3D U-Net seg-
mentation network described in Section 3.3.3 (U-Net baseline). Additionally, we
compared our method with two previous refinement approaches: DoubleU-Net [96]
and SCAN [97]. For both baselines, we reimplemented the methods from the original
papers. The DoubleU-Net method consists of two consecutive U-Nets, with skip
connections from the encoder of the first U-Net to the decoders of both U-Nets. The
SCAN method uses a U-Net with a discriminator and adversarial loss, discriminating
between the segmentation results and the ground truth. The weight for balancing the
segmentation loss and the adversarial loss (low value on the adversarial term) is tuned
between 0.001 and 0.1, on the validation sets for each application. For DoubleU-Net,
no additional hyperparameters need to be tuned. Our implementations of DoubleU-Net
and SCAN use the same 3D U-Net backbone as our proposed method and the first
baseline.

We also conducted an ablation study of the proposed method (LR+Syn+LASN)
by removing some of the components. We evaluated 1) a simple label refinement
method with input data the original images and the initial segmentations without any
synthetic errors (LR), 2) a label refinement method with synthetic errors added to the
initial segmentations (LR+Syn(init)), and 3) a label refinement method with synthetic
errors added to the ground truth segmentations but without the label appearance
simulation network (LR+Syn).



3.4. Results

3

55

3.3.6 Evaluation metrics
We evaluated the methods with the Dice coefficient to measure the overall segmentation
quality, as well as with three metrics designed for tree-like structures: 1) centerline
completeness, 2) centerline leakage, and 3) number of gaps. For the airway segmenta-
tion experiments, the required centerlines were obtained by applying a skeletonization
method [89] to the ground truth segmentation mask. For the vessel segmentation
experiments, the ground truth centerlines were manually annotated. The evaluation
metrics are defined below:

Dice coefficient measures the voxelwise overlap between the predicted mask Y and
the ground truth mask G:

Dice = 2|Y ∩G|
|Y |+ |G| 3.4

Centerline completeness measures the proportion of the length of correctly detected
centerlines (i.e., the intersection between the predicted mask Y and the ground truth
centerlines Gcl) with respect to the length of ground truth centerlines Gcl:

Completeness = |Y ∩Gcl|
|Gcl|

3.5

Centerline leakage measures the proportion of the length of false positive centerlines
(i.e., the intersection between the predicted centerlines Ycl and the ground truth
background 1−G) with respect to the length of ground truth centerlines Gcl:

Leakage = |Ycl ∩ (1−G)|
|Gcl|

3.6

Gaps measures the number of continuity gaps in the correctly detected centerlines
(i.e., the intersection between the predicted mask Y and the ground truth centerlines
Gcl). It is calculated with connected component analysis [83] as follows:

Gaps = NCC(Y ∩Gcl)−NCC(Gcl) 3.7

with NCC counting the number of 26-neighbor connected components in the input
centerlines.

3.4 Results

3.4.1 Segmentation results
The results of our experiments for airway and brain vessel segmentation are shown in
Tables 3.1 and 3.2, respectively. In both applications, the proposed label refinement
method achieves the highest Dice and completeness scores, the lowest number of gaps,
with a moderate leakage compared to the other methods. This indicates that our
method succeeds in learning from the errors in the synthetic labels to correct errors
in the real data. In both applications, the baselines with the highest completeness
(SCAN for airways and DoubleU-Net for vessels) show a much higher leakage than
our method. This indicates that these methods may lack the ability to learn relevant
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Methods Dice Completeness Leakage Gaps
U-Net baseline [41] 0.76 (0.05) 0.74 (0.12) 0.23 (0.19) 95.73 (47.94)
DoubleU-Net [96] 0.77 (0.05)↑ 0.73 (0.11) 0.21 (0.18) 99.93 (48.11)
SCAN [97] 0.77 (0.05)↑ 0.75 (0.11)↑ 0.31 (0.23)↓ 98.83 (48.81)

LR 0.76 (0.05) 0.74 (0.11)↑ 0.23 (0.17) 94.90 (47.66)
LR+Syn(init) 0.77 (0.06) 0.73 (0.12) 0.19 (0.17) 94.92 (50.14)
LR+Syn 0.79 (0.05)↑ 0.73 (0.12) 0.17 (0.17)↑ 93.54 (50.83)↑
LR+Syn+LASN
(proposed) 0.79 (0.05)↑ 0.75 (0.11)↑ 0.20 (0.16)↑ 91.63 (48.63)↑

LR+Syn+LASN
+Unlabeled 0.81 (0.04)⇑ 0.77 (0.10)⇑ 0.19 (0.16)↑ 90.53 (48.80)↑

Table 3.1: Results for airway segmentation. Average performance (standard
deviation) over the results obtained from three random data splits. LR: simple
label refinement network. LR+Syn(init): label refinement method with synthetic
errors on initial segmentations. LR+Syn: label refinement method with synthetic
errors on ground truth segmentations. LR+Syn+LASN: label refinement method
with label appearance simulation network. ↑: significantly better than the U-Net
baseline (p<0.05). ↓: significantly worse than the U-Net baseline (p<0.05). ⇑:
significantly better than the proposed method (p<0.05). P -values are calculated
by the paired two-sided Student’s T-test (on the average results from the three
data splits). Boldface: best and not significantly different from the best results
(semi-supervised results are not considered).

label structural information, and over-segment branches to increase the completeness
rather than correcting errors in continuity.

In the ablation study, the label refinement method with synthetic errors (LR+Syn)
achieves better Dice, leakage, and number of gaps scores than the baseline refinement
network (LR), for both applications. For airway segmentation, the (LR+Syn) method
has slightly lower completeness, while this is similar for vessel segmentation. Moreover,
adding synthetic errors to the initial segmentations (LR+Syn(init)), in contrast to
doing so to the ground truth segmentations (LR+Syn), achieves similar results in all
metrics when compared to the baseline U-Net, for both applications. This suggests
that the initial segmentations are too incomplete to add sufficient useful synthetic
errors to train the refinement network. The proposed method, combining the synthetic
errors and the label appearance simulation network (LR+Syn+LASN), achieves a
much higher completeness, with similar Dice, leakage and number of gaps scores when
compared to the method with only synthetic errors (LR+Syn), for both applications.

3.4.2 Semi-supervised results
We conducted experiments using semi-supervised learning to train the proposed
label refinement method, to investigate the benefit of using additional unlabeled
data for training. As labels in which to synthesize errors for the unlabeled data,
we used segmentation results on the same data obtained by the proposed method
(LR+Syn+LASN) trained on the labeled data. We denote these results as “pseudo
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Methods Dice Completeness Leakage Gaps
U-Net baseline [95] 0.57 (0.10) 0.70 (0.18) 0.19 (0.18) 106.68 (161.41)
DoubleU-Net [96] 0.59 (0.09)↑ 0.73 (0.18)↑ 0.18 (0.16) 92.41 (151.27)↑
SCAN [97] 0.57 (0.09) 0.70 (0.18) 0.17 (0.15) 104.05 (160.91)

LR 0.57 (0.10) 0.70 (0.18) 0.16 (0.16)↑ 82.05 (139.45)↑
LR+Syn(init) 0.58 (0.11) 0.71 (0.19) 0.18 (0.15) 69.91 (126.89)↑
LR+Syn 0.60 (0.11)↑ 0.71 (0.19) 0.12 (0.11)↑ 64.86 (115.21)↑
LR+Syn+LASN
(proposed) 0.62 (0.10)↑ 0.74 (0.20)↑ 0.14 (0.11)↑ 46.64 (76.57)↑

LR+Syn+LASN
+Unlabeled 0.63 (0.09)⇑ 0.75 (0.18)↑ 0.13 (0.11)↑ 42.45 (71.26)⇑

Table 3.2: Results for brain vessel segmentation. Average performance (standard
deviation) over the results obtained from three random data splits. LR: simple
label refinement network. LR+Syn(init): label refinement method with synthetic
errors on initial segmentations. LR+Syn: label refinement method with synthetic
errors on ground truth segmentations. LR+Syn+LASN: label refinement method
with label appearance simulation network. ↑: significantly better than the U-Net
baseline (p<0.05). ↓: significantly worse than the U-Net baseline (p<0.05). ⇑:
significantly better than the proposed method (p<0.05). P -values are calculated
by the paired two-sided Student’s T-test (on the average results from the three
data splits). Boldface: best and not significantly different from the best results
(semi-supervised results are not considered).

labels”. The error generation in these pseudo labels follows the same strategy and
hyperparameters as in the previous experiments (Sections 3.2.3 and 3.3.2). The pseudo
labels are also used as ground truth segmentations for the unlabeled images. These
unlabeled data together with the labeled data in the previous experiments are then
used to train a new label refinement network.

The results of our semi-supervised experiments for airway and brain vessel segmen-
tation are shown in the last rows in Tables 3.1 and 3.2, respectively. Adding unlabeled
data for training significantly improves the Dice score while the leakage remains similar,
for both applications. For airway segmentation, the completeness is also improved,
while this is similar for vessel segmentation. This suggests that for vessels, the labeled
data provides enough information for the method to obtain segmentations with good
completeness. For vessels, the number of gaps is also improved.

3.4.3 Influence of the synthetic error rate
The results of our experiments varying the maximum synthetic error rates (Sec-
tion 3.3.2) are shown in Figure 3.4. For airway segmentation, with a smaller amount
of “discontinuity” errors (0.1) the completeness is increased. Between 0.1 and 0.5,
changing the amount of “discontinuity” errors in the synthetic labels does not affect
much the method performance. In contrast, increasing the amount of “missing terminal
branches” errors improves both Dice and completeness scores, reaching a peak when
the maximum error rate is ≈ 0.75. This supports our hypothesis that missing terminal



3

58 Chapter 3. Label refinement from synthetic error augmentation

branches are relevant errors to be corrected in the initial airway segmentations. For
vessel segmentation, a moderate amount (0.6) of “discontinuity” errors has a positive
effect in the method performance.

When compared to the LR+Syn and LR+Syn(init) methods, the proposed label
refinement method is able to learn from higher amounts of synthetic errors, thereby
improving the label refinement performance.

3.5 Discussion

In this work, we proposed a novel label refinement method that can correct errors
in the initial segmentations from a standard deep segmentation network such as the
U-Net. The novelty of our method is that it uses labels augmented with realistic,
synthetic errors as training samples, from where the label refinement network can learn
to correct the errors. The synthetic errors are automatically generated to simulate
common errors observed in the initial segmentations, and are then refined by a label
appearance simulation network to resemble the appearance of real errors in the initial
segmentations.

We evaluated our method on the segmentation of airways from chest CT scans
and brain vessels from CTA images of the brain. In both applications, our method
achieved significantly higher Dice overlap and completeness scores, with lower number
of gaps and a comparable leakage, when compared to the baseline U-Net and other
previous label refinement methods. When segmenting branching structures, a higher
completeness means that more and/or longer branches are detected, especially the
smaller ones which are challenging to segment.

The ability of our method to segment highly complete tree-like structures with
more branches is clinically important, as this could lead to more sensitive biomarkers.
For example, in airway analysis, the airway-artery ratio [17] and airway tapering [65]
measures can be used to assess cystic fibrosis lung disease, and including more
measurements from the smaller peripheral branches can allow earlier detection of the
disease [110]. Moreover, the ability of our method to correct errors in continuity and
thereby connect the segmentation is beneficial, as most methods to measure branches
assume a fully connected segmentation and discard branches after a discontinuity.

The proposed method outperformed the state-of-the-art label refinement methods
DoubleU-Net [96] and SCAN [97]. Moreover, using semi-supervised learning techniques
to train our method with additional unlabeled data we can further improve the method
performance, when compared to the fully supervised setting.

3.5.1 Comparison to other label refinement methods
The main difference between the proposed method and other label refinement methods
is the use of a training dataset that includes labels augmented with synthetic errors.
Instead of synthetic errors, the DoubleU-Net [96] method uses the original images
masked by the initial segmentations to train the second network. Although the
increased model capacity of DoubleU-Net may improve the segmentations, its ability
to correct the errors may be limited by the fact that no new errors are introduced to the
input of the second network. This makes it less efficient to implicitly exploit the label
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LR+Syn+LASN:

LR+Syn:

LR+Syn(init):

: Airway : Vessel

Figure 3.4: Influence of the hyperparameters of the proposed method, the maxi-
mum synthetic error rates, in the method performance, for airway and brain vessel
segmentation. Results are shown as average performance with standard deviation
(error bars), for Dice and completeness metrics, over three random data splits. The
results for the baseline (LR) are displayed as dashed line.
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structural information similar to a standard U-Net. The SCAN [97] method refines
the segmentation by making it indistinguishable from the ground truth segmentation
through an adversarial loss, where the distribution of the learned features may also
provide the general structural information of the objects to be segmented. SCAN
mainly focuses on simulating the appearance of the ground truth segmentations.
However, SCAN is not designed to learn to correct structural errors explicitly, thus it
may not capture the local continuity information as efficiently as our method. This
is reflected by the significantly worse completeness reported by SCAN in Tables 3.1
and 3.2, for both applications. Our method provides an implicit way to enhance the
network awareness of the structural information in the ground truth segmentations.
For example, after seeing many errors in continuity, the refinement network is expected
to understand the local continuity within elongated structures, and consequently to
be able to correct these errors in the initial segmentations.

3.5.2 Synthetic errors for semi-supervised learning
With the proposed method, synthetic errors can be added to any pseudo labels obtained
on unlabeled data, to be used in semi-supervised learning. In Section 3.4.2 we have
shown that our method performance was significantly improved when using additional
unlabeled data for training. Our approach to generate synthetic errors could be used
together with other common semi-supervised approaches using pseudo labels, e.g., to
optimize the prediction consistency of the same image from different models [111],
or the prediction consistency of the same image with different transformations [112].
Using synthetic errors in these methods may improve the segmentation quality of
pseudo labels from the unlabeled data, which could provide more informative features
from these data and thereby improve the method performance.

3.5.3 Importance of realistic synthetic errors
The proposed label refinement network may underperform if the synthetic labels with
errors used for training are too different from the initial segmentations. In our method,
the synthetic errors are added to the ground truth segmentations, which have a fine
and smooth appearance. In contrast, the initial segmentations are more irregular. Our
proposed solution is to use a label appearance simulation network trained with an
adversarial loss in order to make the appearance of the synthetic labels resemble that
of the real initial segmentations. The results in Tables 3.1 and 3.2 clearly show the
benefit of using the LASN network in our method. In both applications, without the
LASN network could our method (LR+Syn) only slightly improve the segmentation
performance with a reduced leakage, when compared to the baseline (LR). This may
be due to the positive regularization effect of increasing the variety in the training
data by including the synthetic labels with errors. Only after introducing the LASN
network was our method able to improve the completeness while retaining an adequate
leakage.
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3.5.4 Applications to other segmentation tasks
The proposed label refinement method via error synthesis can be applied to other
segmentation tasks. The core step is to identify common types of errors in the
initial segmentations. For example, a common error we observed in prior work using
the U-Net for the segmentation of the aorta and pulmonary arteries from chest CT
scans [113] was that the segmentation of one of the structures often leaked into the
other one, while being both independent anatomical structures. This is mostly due
to the obscured boundaries of both arteries on the CT scan. This type of error can
be simulated by locally removing the boundaries between the aorta and pulmonary
artery classes. Applying our method to correct such errors may improve the overall
segmentation performance for this application.

3.5.5 Limitations of the proposed method
The main limitation of the proposed method lies in the two-step design and implemen-
tation: 1) analyze the errors in the initial segmentations to identify the relevant types
of errors, and 2) design and generate the synthetic errors based on these results. The
first step requires observation and interpretation by the developers. The synthetic
errors we used in this work are suitable for the segmentation of tree-like structures.
However, the relevant types of errors generally differ across different applications and
datasets, and therefore the synthetic errors we used are not directly applicable to other
segmentation tasks. The second step is typically a complex image processing task.
Nevertheless, once the synthetic errors are successfully designed for a given application,
the training of our label refinement method can be done fully automatically.

A limitation of our validation of the proposed method is that we considered only two
types of false negative errors (i.e., missing terminal branches and errors in continuity).
We did not consider false positive errors because these were much less frequent in
the initial segmentations and often appeared as disconnected blobs that can be easily
removed without the need for more complex label refinement. Nevertheless, from the
results obtained in this work we expect that our method can successfully correct other
types of errors as well.

3.6 Conclusions

We presented a novel label refinement method that is able to learn from synthetic
errors to refine the initial segmentations from a base segmentation network. A
label appearance simulation network was applied to reduce the appearance difference
between the synthetic labels and the real initial segmentations, thereby improving the
generalizability of our method. On two segmentation tasks for branching structures,
the proposed method achieved a significantly higher Dice overlap and centerline
completeness, together with an improved continuity, when compared to previous
label refinement methods. The segmentation performance of our method was further
improved by using additional unlabeled data for training with semi-supervised learning
techniques.
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Abstract

This chapter presents an end-to-end deep learning segmentation
method by combining a 3D U-Net architecture with a graph neural
network (GNN) model. In this approach, the convolutional layers at the
deepest level of the U-Net are replaced by a GNN-based module with a
series of graph convolutions. The dense feature maps at this level are
transformed into a graph input to the GNN module. The incorporation
of graph convolutions in the U-Net provides nodes in the graph with
information that is based on node connectivity, in addition to the local
features learned through the downsampled paths. This information can
help improve segmentation decisions. By stacking several graph convolu-
tion layers, the nodes can access higher-order neighborhood information
without substantial increase in computational expense. We propose two
types of node connectivity in the graph adjacency: 1) one pre-defined and
based on a regular node neighborhood, and 2) one dynamically computed
during training and using the nearest neighbor nodes in the feature space.
We applied this method to the task of segmenting the airway tree from
chest computed tomography (CT) scans. Experiments were performed
on 32 CT scans from the Danish Lung Cancer Screening Trial dataset.
We evaluated the performance of the U-Net-GNN models with two types
of graph adjacency and compared it with the regular U-Net.

Based on: A. Garcia-Uceda Juarez, R. Selvan, Z. Saghir, and M. de Bruijne, “A joint 3D
UNet-graph neural network-based method for airway segmentation from chest CTs,” in Machine
Learning in Medical Imaging, 2019, pp. 583–591. doi: 10.1007/978-3-030-32692-0_67

https://doi.org/10.1007/978-3-030-32692-0_67


4.1. Introduction

4

67

4.1 Introduction

Since recently, fully convolutional neural networks (CNN) are the state-of-the-art
for many segmentation tasks [76], and in particular the U-Net architecture [56] for
biomedical image segmentation. The U-Net consists of an encoding path, in which
high-order features are extracted at several downsampled resolutions, followed by a
decoding path, in which these features are leveraged to the full resolution to perform
voxel-wise segmentation decisions. An extension of CNNs to graph structured data
are graph neural networks (GNN) [114, 115], which have seen early application for
segmenting structures that resemble graphs [116, 117]. Initial work of combining CNNs
and GNNs was proposed by Shin et al. [117] for 2D vessel segmentation. This was
a sequential pipeline in which the CNN was trained for feature extraction prior to
applying the GNNs to learn global connectivity.

The segmentation of tree-like structures such as the airways from chest computed
tomography (CT) scans is a complex task, with branches of varying sizes and different
orientations while taking into account bifurcations. A comparison of airway extraction
methods (prior to CNNs) was performed in the EXACT’09 challenge [38]. The results
showed that all methods missed a significant amount of the small, peripheral branches.
The U-Net has since been applied for airway segmentation in [45, 46, 77]. The 3D
U-Net-based method in [77] is fully automatic and can segment the airways in a
full lung in a single pass through the network. However, this method had problems
to capture various small terminal branches. Moreover, GNNs have been applied to
airway extraction as a graph refinement approach [116]. However, this method was
not end-to-end optimized and relied on handcrafted features as input to the graph.

In this work, we present an end-to-end deep learning segmentation approach by
combining the 3D U-Net with GNNs. This method replaces the two convolutional layers
in the deepest level of the U-Net by a GNN-based module, comprising a series of graph
convolutions. This end-to-end approach simultaneously learns local image features
and global information based on graph neighborhood connectivity. We evaluated this
U-Net-GNN method on the task of segmenting the airway tree from chest CT scans.

4.2 Methods

The proposed joint U-Net-GNN architecture is described in the following subsections.
This approach integrates a GNN module at the deepest level of a 3D U-Net, and is
schematically shown in Figure 4.1. The GNN module uses a graph structure obtained
from the dense feature maps resulting from the contracting path of the U-Net. Each
graph node can be viewed as a “supervoxel” from the downsampled regions with
the corresponding vector of features. The connectivity of nodes in such a graph is
described by the adjacency matrix and determines the neighborhood of each node
when performing graph convolutions, as shown in Figure 4.2. The GNN module learns
combinations of the input feature maps based on the graph topology, and outputs
another graph with same “supervoxel” nodes as the input graph and the corresponding
vector of learned features for each node. This GNN output are feature maps that are
input to the upsampling path of the U-Net.
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Figure 4.1: Schematics of the proposed U-Net-GNN model with 3 resolution levels.

We tested two types of node connectivity: 1) pre-defined and based on a regular
neighborhood, with each node connected to its 26-direct neighbors, and 2) dynamically
computed during training and based on choosing the nearest neighbors in the node
feature space. Stacking several GNN layers allows nodes to access longer range
information beyond the initial neighborhood, which can improve the segmentation
decisions as more complex features that include relevant information from nodes far
away in the 3D image can be used. This is in contrast with CNNs which rely on local
feature extraction, and access long range information via successive convolutions and
pooling, with a detriment of strong reduction in resolution. This long range access by
the GNN module is useful when segmenting tree-like structures such as airways, as
information from branches with similar features (e.g., shape, orientation) but that are
further away in the 3D image can be used to segment a given branch. The computation
of the dynamic graph adjacency is further explained in Section 4.2.2.

4.2.1 Graph neural network module
The main component of the GNN module is a series of graph convolutional layers [114,
115]. This operation can be seen as a generalization of the cartesian convolution to a
graph setting. One of the formulations of graph convolution operation with separate
processing of self connections is proposed in Kipf et al. [115], given by the equation,

H(l+1) = σ
(

H(l)W(l)
0 + D−1AH(l)W(l)

1

)
4.1

where σ(·) is the rectified linear unit activation function. H(l) ∈ RN×E is the node
feature matrix comprising N nodes and E features input to the lth GNN layer. The
learnable GNN filter weights are W(l)

0 ,W(l)
1 ∈ RE×E . A ∈ {0, 1}N×N is the binary
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Figure 4.2: Illustration of the two types of node connectivity in the graph adjacency
proposed for the GNN module, for a given voxel in the initial graph: regular and
pre-defined (left) vs. irregular and dynamically computed (right).

adjacency matrix. D is the degree matrix derived from A with diagonal entries
Dii =

∑N
j=1 Aij ,∀i = 1 . . . N . The adjacency matrix is largely sparse, with non-zero

entries per node corresponding to the size of each node neighborhood (26 for the
regular neighborhood case above). By processing the adjacency matrix as a sparse
tensor, operations in Equation 4.1 are done efficiently.

The GNN module in the proposed method has L equal to 4 layers performing
the operations in Equation 4.1 successively. By stacking several graph convolutions
together, each node in the output graph updates its features with information from a
higher-order neighborhood, which can improve the segmentation decisions. The initial
graph features H(0) are obtained as,

H(0) = f(Z) 4.2

where Z ∈ RN×F is the F -dimensional node feature matrix derived from the U-Net and
f(·) is a two-layered perceptron with F input units and E output units and rectified
linear units, followed by a normalization layer. The transformation in Equation 4.2
allows for more complex representations of the input node features useful for the GNN
module.

4.2.2 Irregular neighborhood
A GNN module with regular adjacency has limited node connectivity comprising only
the direct neighbors. This constraint is imposed primarily to keep the adjacency
matrix sparse to reduce the large memory footprint. In order to allow nodes in the
graph to access information well beyond their directly connected neighbors, we propose
an extension to the GNN module in Section 4.2.1 by using a graph adjacency with
node connectivity as the k-nearest neighbors in the feature space. Node neighborhood
is decided from the pairwise euclidean distance between nodes from Z in the F -
dimensional feature space. In this work, we set the number of neighbors k equal to 26.
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The graph adjacency is dynamically computed during training for every input image
in every epoch. This approach, we argue, enables the method to access irregular but
meaningful neighborhoods and utilizes the inherent capabilities of using GNN-based
learning over irregular neighborhoods in an improved fashion.

4.3 Experiments

4.3.1 Dataset
For our experiments, we used 32 low-dose chest CT scans from the Danish Lung Cancer
Screening Trial [84]. All CT scans have a voxel resolution of roughly 0.78×0.78×1 mm3.
The reference segmentations are airway lumen extractions obtained from the method [58]
applied on the union of the results of methods [32] and [33], and corrected by an
expert observer.

4.3.2 Network implementation
The 3D U-Net upon which the U-Net-GNN approach is built derives from the method
in [77] with 3 levels of resolution. Each level in the downsampling / upsampling path
is composed of two 3×3×3 convolutional layers with rectified linear (ReLU) activation,
and followed by a 2×2×2 pooling or upsampling layer, respectively. No padding is
used in the convolutions in order to reduce the model memory footprint. There are 8
feature maps in the first level, and this is doubled or halved after every pooling or
upsampling, respectively. The GNN module in the deepest level has twice as many
output features per voxel as input units, i.e., E = 2F in Equations 4.1 and 4.2. The
final layer consists of a 1×1×1 convolutional layer followed by a sigmoid activation
function.

We apply a series of operations to extract input images from the chest CT scans.
These are 1) cropping the CT scans to a bounding-box around pre-segmented lung
fields, 2) extracting input image patches in a sliding-window fashion in axial dimension,
and 3) applying image rigid transformation for data augmentation. The U-Net-GNN
model used in our experiments is designed for the largest input images that can fit in
GPU memory, for a GPU NVIDIA GeForce GTX 1080 Ti with 11 GB memory. This
corresponds to an image size of 176×352×240 in a batch containing only one image.
The models were implemented using the Pytorch framework [82].

4.3.3 Training the models
The loss function used for training the models is the soft Dice loss [81],

L = 1−
2
∑

x∈NL
p(x)g(x)∑

x∈NL
p(x) +

∑
x∈NL

g(x) + ε
4.3

where p(x), g(x) are the predicted voxel-wise airway probability maps and airway
ground truth, respectively. The ground truth is masked to the region of interest
(ROI), the lungs, indicated by the sub-index L, so that only voxels within this region
contribute to the loss. This mask removes the trachea and part of the main bronchi
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from the ground truth, so that training is focused on the smaller branches. The lung
segmentation needed for this masking operation is easily computed by a region growing
method in [32]. ε is a tolerance needed when there are no ground truth voxels in the
image patch.

To train the networks, we used 16 CT scans for training, 4 CT scans for model
validation and hyperparameter tuning, and the remaining 12 CT scans for testing.
The Adam optimizer [88] is used with a learning rate that is chosen for each model
as large as possible while ensuring convergence of the losses. This was 1×10−4 for
U-Net-GNN models and 5×10−5 for U-Net models. All models were trained until
convergence, and we retrieved the model with the overall minimum validation loss for
testing. As convergence criterion, we monitored the moving average of the validation
loss over 50 epochs, and training was stopped when its value 1) increases by more
than 5%, or 2) does not decrease more than 0.1% over 20 epochs (patience). Training
time was approximately 1–2 days on a GPU NVIDIA GeForce GTX 1080 Ti, while
test time inference was less than 1 min per scan.

4.3.4 Experiments set-up
We evaluated four different models: two regular U-Nets with 3 levels (UNetLev3)
and 5 levels (UNetLev5) of resolution, and two U-Net-GNN models each with 3 levels.
The two U-Net-GNN models differ in the type of graph neighborhood used: 1) regular
graph adjacency with 26 direct neighbors (UGnnReg), and 2) dynamic computation
of the adjacency matrix (UGnnDyn), with 26 connections per node as described in
Section 4.2.2. With our experiments we evaluated 1) the benefit of the GNN module
at the deepest level of the U-Net when compared to the two convolutional layers of
the regular U-Net, and 2) the difference in performance of the U-Net-GNN models
when compared to a more complex U-Net like the UNetLev5.

The models are compared based on 1) Dice similarity coefficient, 2) airway com-
pleteness, 3) volume leakage, and two centerline distance error measures: 4) false
negative dF N and 5) false positive dF P distances, as in [116]. Airway completeness
is defined as the ratio of ground truth centerline length inside the predictions with
respect to ground truth centerline full length. Volume leakage is defined as the ratio
of number of false positive voxels with respect to the number of voxels in the ground
truth. We refer the reader to [116] for the definition of the distance error measures
dF N and dF P . The centerlines are obtained by applying skeletonization [89] to the
prediction and ground truth masks. The trachea and main bronchi are removed in
these measures from both the predictions and ground truth, similar to [38].

We computed the receiver operating characteristic (ROC) curves for all the models,
with the mean airway completeness and volume leakage measured over the test set, and
varying the threshold in the output probability maps used to obtain the final binary
segmentations. Moreover, we computed the ROC operating point corresponding to a
fixed mean volume leakage of 13% by estimating the correct threshold (with a minimum
error of 1×10−4). This threshold was, for the different models: UNetLev3 (0.1),
UNetLev5 (0.04), UGnnReg (0.66), UGnnDyn (0.33). We used the resulting airway
segmentations to evaluate the performance measures on the test set. To compare the
models, we used the paired two-sided Student’s T-test on these performance measures.
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We considered that a p-value lower than 0.01 indicates that the two sets of measures
compared are significantly different.

The calculation of the dynamic graph adjacency as described in Section 4.2.2 is
computationally expensive, both in runtime and memory. In order to fit the U-Net-
GNN model in GPU memory and reduce its computational cost, we constrained the
searching space of candidate nodes to compute the node connectivity to a cube area
of maximum 5 voxels away from the given node. This limits the range for direct node
connections, however long range information is still accessed via the four stacked graph
convolutions as described in Section 4.2.1.

4.4 Results and discussion

The ROC curves for all the models are shown in Figure 4.3. The proposed U-Net-GNN
models and the baseline UNetLev3 show similar results. In the detailed view, the
UGnnReg shows a small improvement, i.e., higher airway completeness for a given
volume leakage, over the baseline UNetLev3. Moreover, the UNetLev5 shows lower
completeness than the other models for volume leakage higher than 11%, while the
contrary occurs for lower leakage levels.
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Figure 4.3: ROC curves for all the models, computed with the mean airway
completeness and volume leakage measured over the test set, and varying the
threshold in the output probability maps. Right: detailed view, showing the ROC
operating points for all models corresponding to a threshold of 0.5.

Performance measures on the test set for all the models are shown in Figure 4.4,
corresponding to an ROC operating point with mean volume leakage 13%. In Dice
coefficient, airway completeness and volume leakage, there is no significant difference
between all the models (p>0.1). Nevertheless, in centerline distance error measures,
the proposed U-Net-GNN models show significantly lower dF N and higher dF P with
respect to the baseline UNetLev3: in dF N , comparing UGnnDyn (p=0.001) and
UGnnReg (p<0.01) with UNetLev3; and in dF P , comparing both U-Net-GNN models
with UNetLev3 (p<0.001). Moreover, the UNetLev5 shows no significant difference in
dF P and dF N with the other models (p>0.1).
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Figure 4.4: Performance measures on the test set for all the models, corresponding
to an ROC operating point with mean volume leakage 13%. From left to right: 1)
Dice similarity coefficient, 2) airway completeness, 3) volume leakage, 4) distance
false negative error dF N , and 5) distance false positive error dF P . For each boxplot,
the box shows the quartiles of the data (defined by the median, 25% and 75%
percentiles), the whiskers extend to include the data within 1.5 times the interquartile
range from the box limits, and the markers show all the data points.
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The small and significant improvement in distance false negative error dF N , with
an on par Dice score and airway completeness, indicates that the proposed U-Net-GNN
models can segment slightly more complete airway trees, when compared to the two
U-Net models, with more and/or longer peripheral branches. This is because the
centerline distance error measure dF N is not dependent on the scale of airways and
provides a uniform measure of accuracy in detecting branches. In contrast, the airway
completeness measure is a binary evaluation of branches with respect to the reference,
and small improvements in centerline detection may not be reflected in the overall
score. The more complex model UNetLev5 does not show any difference in any measure
over the baseline UNetLev3. Moreover, the U-Net-GNN models have fewer trainable
parameters (≈ 50k) than the UNetLev3 (≈ 90k) and much less than the UNetLev5
(≈ 1.4M).

One aspect that might limit the performance of the proposed U-Net-GNN models
is that the GNN module is operating only on the deepest level of the U-Net, where
the input images have undergone three downsampling operations. A more powerful
U-Net-GNN model can be formulated by replacing all skip connections in the U-Net
with separate GNN modules, each operating at that image resolution level. However,
we did not experiment with this model design due to the large memory footprint
required, which exceeded the available GPU resources at our disposal.

4.5 Conclusions

We presented a joint U-Net-GNN-based segmentation method with an application to
segment airways from chest CT scans. By introducing a GNN module with graph
convolutions at the deepest level of the U-Net, the proposed method is able to learn
and combine information from a larger region of the image. The proposed U-Net-GNN
models show a small and significant improvement in the centerline distance false
negative error measure over the regular U-Net, with on par Dice score and airway
completeness, for a fixed mean volume leakage. This indicates that the proposed
U-Net-GNN models can segment slightly more complete airway trees. Moreover, this
is achieved with fewer trainable parameters.
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Abstract

Airway segmentation is important for research about pulmonary dis-
ease, but require a large amount of time by trained specialists. We used
an openly available software to improve airway segmentations obtained
from an artificial intelligence (AI) tool, and retrained the tool to achieve
a better performance. Fifteen initial airway segmentations from low-dose
chest computed tomography scans were obtained with a 3D U-Net AI tool
previously trained on Danish Lung Cancer Screening Trial and Erasmus-
MC Sophia datasets. Segmentations were manually corrected in 3D
Slicer. The corrected airway segmentations were used to retrain the 3D
U-Net. Airway measurements were automatically obtained, and included
airway count, airway length and luminal diameter per generation from
the segmentations. Correcting segmentations required 2–4 hours per scan.
Manually corrected segmentations had more branches (p<0.001), longer
airways (p<0.001) and smaller luminal diameters (p=0.004) than initial
segmentations. Segmentations from the retrained 3D U-Net trended
towards more branches and longer airways compared to the initial seg-
mentations. The largest changes were seen in airways from 6th generation
onwards. Manual correction results in significantly improved segmenta-
tions and is potentially a useful and time-efficient method to enhance the
AI tool performance on a specific hospital or research dataset.

Based on: I. Dudurych, A. Garcia-Uceda, Z. Saghir, H. Tiddens, R. Vliegenthart, and M. de
Bruijne, “Creating a training set for artificial intelligence from initial segmentations of airways,”
European Radiology Experimental, vol. 5, no. 1, p. 54, 2021. doi: 10.1186/s41747-021-00247-9

https://doi.org/10.1186/s41747-021-00247-9
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5.1 Introduction

Airway segmentation from chest computed tomography (CT) scans is important
in the study of pulmonary disease such as chronic obstructive pulmonary disease
(COPD) [118]. High-quality airway segmentation datasets are difficult to create,
yet they are necessary for the training of artificial intelligence (AI) tools. Manually
segmenting airways from noisy low-dose CT scans is time consuming and error prone.
Automatic methods that can provide an adequate segmentation of large airways via
region growing may fail and require manual correction [38, 119].

The volume of thoracic CT scans in clinical care will increase due to a growing
burden of respiratory diseases and the introduction of imaging-based cancer screen-
ing [120]. Computer assistance will become increasingly important in the radiology
workflow. This should be supplemented with robust AI tools that can increase the
accuracy and speed of the diagnosis. Medical datasets used to train AI tools are
typically small, due to the limited availability of imaging data and ground truth
annotations. In contrast, there is a wide range in possible CT scanning and population
characteristics. Thus, pre-trained AI tools have issues generalizing when tested on
new data, with typically different characteristics. In this scenario, the need for quickly
adapting existing AI models trained on different data may prove very useful.

AI segmentation tools are being widely studied for their potential in automation,
accuracy and reliability. However, their usability comes at the cost of flexibility
inherent in AI systems. To achieve the highest accuracy, AI tools require training on
CT scans that are similar to those it will be applied on. X-ray tube current, voltage,
reconstruction methods and other parameters change the resulting CT image and may
have an impact on segmentation performance [3].

So far, the methodology for obtaining high-quality ground truth segmentations of
airways using openly available software is lacking. While many airway segmentation
tools already exist, those that provide a highly detailed segmentation may be only
available for sale, run as a service or are tied to specific CT scanner brands and
hospital / research set-ups [44, 75].

In this work, we propose a solution to generate good ground truth airway segmen-
tations by improving initial segmentations obtained using openly available AI software.
We also assessed the change in AI performance on our low-dose chest CT protocol
after retraining the AI tools using the corrected segmentations [121].

5.2 Methods

5.2.1 Initial segmentations
We used a 3D U-Net method designed for automatic airway segmentation [41]. The
3D U-Net is a deep learning model for biomedical image segmentation, which classifies
image voxels as airway / non-airway. The image filters in the convolution layers of the
method were optimized automatically using training images and reference segmenta-
tions. For all our experiments, we used the same U-Net layout and hyperparameters
as in [41], which are well-suited for airway segmentation.
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The 3D U-Net was trained on Danish Lung Cancer Screening Trial (DLCST) [84]
and Erasmus MC-Sophia data (ErasmusMC) (pediatric patients with cystic fibro-
sis) [17]. This model was used to obtain the initial airway segmentations from CT
scans of fifteen randomly selected participants from the Imaging in Lifelines (ImaLife)
study [121]. The CT scans used were low-dose unenhanced, obtained using a 16-slice
CT scanner (SOMATOM Sensation 16, Siemens Medical Solutions) with a pitch of
3 (with FOV 350) or 2.5 (with FOV 400) and 1 mm increments at a tube voltage
of 120 kVp and reference current of 20 mAs [122]. Images were reconstructed with
overlapping 0.7 mm increments using the Qr59 kernel. The ImaLife study is part of
the northern Netherlands study and includes participants of at least 45 years of age
from the general population. Complete details on ImaLife patient characteristics can
be found in Table 5.1 and in the referenced material [121]. Differences in population
and scanning parameters for DLCST and ErasmusMC datasets compared to ImaLife
dataset contributed to incomplete initial airway segmentations. The prediction thresh-
old of the 3D U-Net probability maps was set to 0.5, which resulted in a low number
of false positive airways in the initial segmentations. Thus, most manual corrections
required addition of missing branches, rather than removal of false branches.

Participants Number or
Mean ± SD

Males 7
Females 8
Age (years) 57.3 ± 6.3
Height (cm) 174.1 ± 7.6
Weight (kg) 74.67 ± 12.1
Current smokers 7

Table 5.1: Population characteristics of the ImaLife CT scans included in the
study (n=15). SD: standard deviation.

5.2.2 Manual correction of segmentations
The initial airway segmentations were imported into 3D Slicer 4.1 (https://www.
slicer.org) [123]. Window settings were set to a width of 800 and a level of -625 to
better visualize the airway lumen. One medical doctor with 6 months of work and
training in pulmonology (I.D.) performed the manual corrections of the segmentations.

The workflow screen displayed the coronal, sagittal, transverse and three-dimensional
(3D) views, as shown in Figure 5.1. Corrections were performed using the segment
editor tool in 3D Slicer [123]. The binary segmentation provided by the 3D U-Net was
imported into the segment editor. Next, the airways segmentations were completed
using the paint tool, with a spherical brush and brush size dynamically set to 1–3% of
the active window size, based on the size of the airway. 3D Slicer provides tools to
follow along an incomplete airway in the 3D view and identify it on the three views.
In this manner, it was possible to quickly complete airway segmentations as they were
identified on all three orientations simultaneously, with the results instantly visible on
the 3D view.

https://www.slicer.org
https://www.slicer.org
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Figure 5.1: A 3D Slicer workspace for fast identification and correction of incom-
plete airways. Yellow: Incomplete airway segmentation of an ImaLife participant.
Red: manual correction of the airways.

The initial airway segmentations were combined with the manual corrections and
exported as a set of DICOM slices.

5.2.3 3D U-Net evaluation
We used 15 ImaLife CT scans and the corrected airway segmentations to train a new
3D U-Net, referred to as “retrained” model. For training and evaluation, we used a
5-fold cross-validation setting, splitting the dataset into 5 groups of equal size, and
training 5 different models. For each model, one split group is assigned as testing set,
and the remaining 4 groups are used as training set. Within each training fold, 83% of
data is used for model weight optimization, and the remaining 17% for model selection.
We evaluated each trained model on their corresponding independent testing set. Each
training fold contains 12 CT scans. Despite the small number of scans, the used 3D
U-Net [41] was validated with varying sizes of training sets and the learning curves
showed good performance with similar numbers of CT scans.

To assess the change in AI performance when introducing a larger heterogeneous
dataset, we trained a second model with a combination of ImaLife, DLCST and
ErasmusMC data, referred to as “combined” model. We used the same 5-fold cross-
validation split of the ImaLife data as for the “retrained” model above, and added
20 CT scans each from DLCST and ErasmusMC data to the training folds. Trained
models were used to segment airways from the ImaLife CT scans for comparison with
the initial segmentations. The overall process is summarized in the flowchart shown in
Figure 5.A.1 in the Appendix.

5.2.4 Analysis of segmentations and statistical analysis
From the airway segmentations obtained by the 3D U-Net, branches and their gener-
ation number were extracted automatically, similarly to the evaluation used in the
EXACT’09 challenge [38]. The airway generation is defined as the number of branch



5

82 Chapter 5. Creating an AI training set for airway segmentation

bifurcations counted in the path linking the given branch and the first branch in the
airway tree, i.e., the trachea. Thus, the trachea is generation 0, main bronchi genera-
tion 1, etc. Automatic measurements of lumen diameter were extracted every 1 mm
along the centerline of and averaged per branch. The branch length was calculated as
the distance between bifurcations along the branch centerline.

Comparison were made between the initial segmentations and segmentations from
the retrained and combined models trained with the manually corrected segmentations.
Results were analyzed using Python (Python Software Foundation, https://www.
python.org/) and the SciPy package [124]. We used the Wilcoxon signed-rank test
with Bonferroni correction for analysis. All comparisons were with respect to the
initial, incomplete segmentations. A p-value lower than 0.05 was considered significant.

5.3 Results

5.3.1 Segmentations
Fifteen ImaLife CT scans were segmented by the 3D U-Net. The obtained initial
airway segmentations were manually corrected, as shown in Figure 5.2. In two cases
of large mucus plugging, the 3D U-Net continued to segment the airways beyond the
blockage without the need for manual interaction, as shown in Figure 5.3. The time
to complete a manual correction ranged from 2 to 4 hours.

5.3.2 Airway count
The initial, incomplete segmentations had the lowest count of airways 151 (interquartile
range (IQR) 131–169). This was followed by the retrained model segmentation with
170 airways (IQR 161–197) (p=0.098, initial vs. retrained), and the combined model
segmentation with 174 airways (IQR 146–201) (p=0.089, initial vs. combined). The
manually corrected segmentation had the highest count of airways with 179 (IQR
167–215) (p<0.001, initial vs. manual). These results are shown in Figure 5.4a, and in
Table 5.2. The largest differences were seen in airways from 6th generation onwards,
as shown in Figure 5.A.2 in the Appendix.

5.3.3 Airway length
Airway length increased with manual correction and retraining. The initial segmenta-
tion had a total airway length of 2319 mm (IQR 1905–2588 mm) which was the lowest
among all segmentations. This was followed by the combined model segmentation
with total length 2561 mm (IQR 2309–3067 mm) (p=0.079, initial vs. combined), and
the retrained model segmentation with total length 2622 mm (IQR 2296–3345 mm)
(p=0.051, initial vs. retrained). The manually corrected segmentation had the highest
total length of 2917 mm (IQR 2508–3492 mm) (p<0.001, initial vs. manual). These
results are shown in Figure 5.4b, and in Table 5.2. Airways from the 6th generation
onwards showed the largest differences, as shown in Figure 5.A.3 in the Appendix.

https://www.python.org/
https://www.python.org/


5.3. Results

5

83

Figure 5.2: Example of an incomplete segmentation of the airway tree for an
ImaLife participant (in yellow), and a manually corrected segmentation (in red) of
the right lung.

Figure 5.3: Two examples of large mucus plugging with total focal occlusion of
the airway of an ImaLife participant. The 3D U-Net completed segmentation of
branches distal to the occlusion without supervision.

5.3.4 Airway lumen diameter
Relative to the initial segmentation with mean airway luminal diameter of 5.5 mm (IQR
5.0–5.9 mm), the lumen diameters decreased with manual correction to 5.3 mm (IQR
4.9–5.6 mm) (p=0.009, initial vs. manual), and with the retrained model segmentation
to 4.9 mm (IQR 4.7–5.5 mm) (p=0.004, initial vs. retrained). There was no significant
difference between the mean luminal diameter of the initial segmentation and the
combined model segmentation with 5.0 mm (IQR 4.6–6.1 mm) (p=0.172, initial vs.
combined). These results are shown in Figure 5.4c, and in Table 5.2. A detailed
breakdown per generation is shown in Figure 5.A.4 in the Appendix.
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Figure 5.4: Boxplots showing 1) total airway count, 2) total airway length and 3)
mean luminal diameter, for the segmentation results obtained with the retrained
and the combined 3D U-Nets. ns: not significant, *p<0.05, **p<0.01, ***p<0.001.

Measurements Count Length (mm) Diameter (mm)
Initial 151 (131 – 169) 2319 (1905 – 2588) 5.5 (5.0 – 5.9)
Corrected 179 (167 – 215) 2917 (2508 – 3492) 5.3 (4.9 – 5.6)
Retrained 170 (161 – 197) 2622 (2296 – 3345) 4.9 (4.7 – 5.5)
Combined 174 (146 – 201) 2561 (2309 – 3067) 5.0 (4.6 – 6.1)

Table 5.2: Summary of measurements for each set of segmentations (n=15). Data
is displayed as median (interquartile range).

5.4 Discussion

We outlined the process for correcting airway segmentations from initial, incomplete
segmentations on low-dose CT scans for the purpose of training AI tools. Manual
correction resulted in significantly more complete airway segmentations, and retraining
the 3D U-Net resulted in improved segmentations, with the greatest changes seen
from the 6th generation onwards. Notably, small airways play an important role
in lung diseases such as asthma, COPD, and cystic fibrosis, and their accurate
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detection is important for an accurate diagnosis and sensitive monitoring of respiratory
diseases [110, 125]. A focus on improving the segmentation of smaller airways could
therefore help in the research of bronchial parameters of early disease [126]. With the
proposed method, it is possible to quickly improve airway segmentations and retrain
an AI model.

The research for robust bronchial parameters sometimes includes the evaluation of
aggregate measures, such as the total airway count and airway tapering [127, 128]. If
these measures are obtained from incomplete segmentations, the summary measure
may be incorrect. This is illustrated in our study by the decrease in median lumen
diameter after correction and retraining. The initial segmentations included too much
of the lumen wall and did not include enough of the smaller airways that were visible
on the CT scan. This resulted in a significantly larger median airway lumen aggregate
measure.

A major challenge for training AI models in radiology is that often only small,
specific datasets from a narrow range of scanning parameters and population charac-
teristics are available for training AI models, and the ground truth segmentations are
difficult and tedious to obtain (for airways, this takes up to 15 hours to complete for
one patient [17]). This makes the design of AI tools that generalize well to data from
a broader range of scanning parameters and population characteristics very difficult.
In turn, pre-trained AI segmentation models may fail when applied on data dissimilar
to their training data. Several AI airway segmentation tools have been reported in the
literature, which are typically trained and tested on their own in-house datasets and
reference segmentations [32, 34]. However, when deploying the trained AI models on
other data with different characteristics and scanning parameters, their performance
may drop drastically [129]. Retraining with use-case specific data allows for the use of
AI models in institutions with different scanning techniques.

The aim of adding the DLCST and Erasmus MC-Sophia datasets for training was
to improve the AI performance with heterogeneous data, as the DLCST scanning
protocol differs slightly to that from ImaLife, and Erasmus MC-Sophia includes
pediatric patients with cystic fibrosis. However, the combined AI model did not
significantly improve the AI performance for ImaLife CT scans.

A strength of the proposed methodology is the use of openly available software.
While this work focuses on airway segmentation, the same methodology can be used
to optimize potentially any other AI segmentation model. Moreover, it is much less
time costly than generating fully manual airway reference segmentations.

A limitation of our study is that we investigated only one dataset, with a small
sample size and based on low-dose CT scans acquired at high-pitch in a general adult
population. Nevertheless, the used 3D U-Net can operate on small datasets, as shown
by the learning curves where a model trained with only 14 images had just slightly
lower performance than a model trained with 28 images [41]. Another limitation is
that the manual corrections were performed by only one researcher, and we did not
assess the impact of inter-observer variability on the completeness of the corrected
segmentations.
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5.5 Conclusions

We showed that openly available software can be used to manually correct initial,
incomplete airway segmentations with significant improvement. The resulting seg-
mentations can be used to retrain AI models to increase their efficacy for different
scanning protocols and applications. This allows for the quick creation of datasets for
training AI models that match their use case.
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Appendix

5.A Additional figures and tables

Figure 5.A.1: Flowchart demonstrating the segmentation, retraining and mea-
surement process.

Figure 5.A.2: Boxplot of total airway count per generation. ns: not significant,
*p<0.05, **p<0.01, ***p<0.001.
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Figure 5.A.3: Boxplot of total airway length per generation. ns: not significant,
*p<0.05, **p<0.01, ***p<0.001.

Figure 5.A.4: Boxplot of mean luminal diameter per generation. ns: not significant,
*p<0.05, **p<0.01, ***p<0.001.
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Abstract

Computed tomography (CT)-based bronchial parameters correlate
with disease status. Segmentation and measurement of the bronchial
lumen and walls usually requires significant manpower. We evaluated
a combined method of deep learning and optimal-surface graph-cut to
automatically segment the airway lumen and wall from chest CT scans
and calculate bronchial parameters. A deep learning model designed
for automatic airway extraction was trained on 24 Imaging in Lifelines
(ImaLife) low-dose CT scans. This model was combined with an optimal-
surface graph-cut method for airway wall segmentation. These tools were
used to calculate bronchial parameters from CT scans of 188 ImaLife
participants who had two scans an average of 3 months apart. Bronchial
parameters were compared for reproducibility assessment, assuming no
change between scans. 374/376 CT scans were successfully measured.
Segmented airway trees contained a mean of 10 generations and 250
branches. Coefficient of determination (R2) ranged from 0.93 at the tra-
chea to 0.68 at the 6th generation, dropping to 0.51 at the 8th generation,
for luminal area (LA). Corresponding values for wall area percentage
(WAP) were 0.86, 0.67 and 0.42, respectively. Bland-Altman analysis of
LA and WAP demonstrated mean difference close to 0 per generation and
limits of agreement (LoA) ranging ±10–23% of the overall measurement
range per generation for each parameter. From 7th generation on, there
was a sharp decrease in reproducibility of measurements and a widening of
LoA spread. The proposed approach for automatic bronchial parameter
measurement on low-dose chest CT scans is a reliable way to assess the
airway tree down to the 6th generation.

Based on: I. Dudurych*, A. Garcia-Uceda*, J. Petersen, Y. Du, R. Vliegenthart, and M. de
Bruijne, “Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method
to automate bronchial parameter extraction,” Submitted

* indicates equal contributions
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Abstract

Newly developed quantitative chest computed tomography (CT) out-
comes designed specifically to assess structural abnormalities related to
cystic fibrosis (CF) lung disease are now available. CFTR modulators
potentially can reduce some structural lung abnormalities. We aimed
to investigate the effect of CFTR modulators on structural lung disease
progression using different quantitative CT analysis methods specific for
people with CF (PwCF). PwCF with a gating mutation (ivacaftor) or
two Phe508del alleles (lumacaftor-ivacaftor) provided clinical data and
underwent chest CT scans. Chest CT scans were performed before and
after initiation of CFTR modulator treatment. Structural lung abnormal-
ities on the CT scan were assessed using the Perth Rotterdam Annotated
Grid Morphometric Analysis for CF (PRAGMA-CF), airway-artery (AA)
dimensions, and CF-CT methods. Lung disease progression (0 to 3 years)
in exposed and matched unexposed subjects was compared using analysis
of covariance. To investigate the effect of treatment in early lung disease,
subgroup analyses were performed on data of children and adolescents
aged <18 years. We included 16 modulator exposed PwCF and 25
unexposed PwCF. Median (range) age at the baseline visit was 12.55
(4.25 to 36.49) years and 8.34 (3.47 to 38.29) years, respectively. The
change in PRAGMA-CF %airway disease (-2.88 (-4.46,-1.30), p=0.001)
and %bronchiectasis extent (-2.07 (-3.13,-1.02), p<0.001) improved in
exposed PwCF compared to unexposed. Subgroup analysis of pediatric
data showed that only PRAGMA-CF %bronchiectasis (-0.88 (-1.70,-0.07),
p=0.035) improved in exposed PwCF compared to unexposed. In this
preliminary real-life retrospective study CFTR modulators improve sev-
eral quantitative CT outcomes. A follow-up study with a large cohort
and standardization of CT scanning is needed to confirm our findings.

Based on: L. Mok*, A. Garcia-Uceda*, M. Cooper, M. Kemner van de Corput, M. de Bruijne,
N. Feyaerts, T. Rosenow, K. De Boeck, and S. Stick, “The effect of CFTR modulators on structural
lung disease in cystic fibrosis,” Submitted

* indicates equal contributions
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Abstract

This chapter presents a newly developed computed tomography (CT)
scoring system (BEST-CT) to quantify and phenotype structural lung
disease in bronchiectasis (BE) patients. Recent CT scans of BE patients
with chronic Pseudomonas aeruginosa infection enrolled in the iBEST
study were collected and analyzed with the BE scoring technique for CT
(BEST-CT). BEST-CT scores are expressed as % of total lung volume.
Scoring items are: consolidation / atelectasis, BE with mucus plugging
(BEMP), BE without mucus plugging (BEwMP), airway wall thickening
(AWT), mucus plugging (MP), ground-glass opacities, emphysema / bul-
lae, healthy airways (HA), and healthy parenchyma (HP). Furthermore,
composite scores total bronchiectasis (%TBE = %BEMP + %BEwMP),
airway disease (%AD = %TBE + %MP + %AWT) and total disease
(%DIS = all but %HA and %HP) were calculated. Intra-class correla-
tion coefficients (ICC) were calculated. BEST-CT scores were compared
with the Hartmann CT scoring method, intra-branch tapering, FEV1,
bronchiectasis severity index (BSI), quality of life (QOL), and exacerba-
tions. 84 inspiratory CT scans were included. BEST-CT subscores were
(median (interquartile range)): %TBE 3.0 (1.4–5.1), %AD 6.5 (3.4–11.8),
and %DIS 9.4 (6.0–17.7). ICC values for %TBE, %AD and %DIS were
good to excellent. Significant correlations were found between %TBE
and Hartmann BE scores (r=0.69, p<0.001), FEV1 (r=-0.24, p=0.027),
and intra-branch tapering (r=-0.34, p=0.002). No significant correlations
were found between BEST-CT scores and BSI, QOL, or exacerbations.
The BEST-CT is a reproducible CT scoring system to phenotype BE
patients, that correlates with other CT parameters and spirometry. Using
this method, considerable heterogeneity of lung disease was observed.

Based on: J. Meerburg, A. Garcia-Uceda, O. Dragt, E. Andrinopoulou, M. Kemner van de
Corput, P. Ciet, G. Angyalosi, J. Elborn, J. Chalmers, M. Tunney, M. de Bruijne, H. Tiddens, and
on behalf of the iABC study group, “Quantitative chest computed tomography scoring technique for
bronchiectasis (BEST-CT),” Submitted
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9.1 General discussion

A general discussion of the main findings and achievements of the research presented
in this thesis is given below:

1. Deep learning methods, and particularly convolutional neural networks,
are a powerful and robust methodology to segment the bronchial tree from
chest CT scans.

In Chapter 2 we showed that our method based on the deep learning U-Net archi-
tecture obtains high-quality airway segmentations in various datasets. This included
challenging cases such as 1) CT scans with a wide range of airway abnormalities, and
2) CT scans that are dissimilar to those used for training the method. Moreover,
we used relatively small training datasets composed of 20–30 CT scans and yet our
method obtained good performance. We believe this is partly because our method
uses as backbone the original U-Net with minimal modifications. This makes our
method simple and with a reduced number of trainable parameters, which helps
prevent overfitting to the training data when using small training sets. Thanks to
this, our method is more likely to generalize well to CT data that are dissimilar to the
training data. This was illustrated in the evaluation on the public EXACT’09 dataset
in Chapter 2, where our method was among the best performing ones when compared
to other deep learning segmentation methods, while using smaller training datasets
composed of CT data that are dissimilar to EXACT’09.

Our method needs to be validated on more varied data cohorts and including
severe structural airway abnormalities due to lung diseases, such as cystic fibrosis
or COPD, as well as other lung abnormalities not present in the training datasets.
In Chapter 2 we showed that the method had good generalizability and performed
well on the highly heterogeneous EXACT’09 dataset, which includes 1) 65% of CT
scans with different lung and airway abnormalities, often due to bronchiectasis, 2)
different scanning protocols, 3) two expiratory CT scans and 4) three CT angiography
(CTA) scans. A more complex and varied dataset where to evaluate our method is the
cohort from Chapter 8 of patients with severe non-cystic fibrosis bronchiectasis. In
preliminary work not included in this thesis, we tested our method on this cohort and
observed that the resulting airway segmentations included more peripheral branches
than the segmentations based on manual centerlines that were used in Chapter 8,
suggesting a possible advantage of automated analysis. However, the accuracy of
our method on this dataset needs to be further studied. Additionally, our method
should be evaluated on 1) CT scans with different scanning protocols than those in
the EXACT’09 dataset, or 2) more CT scans with some of the protocols included in
EXACT’09, particularly for expiratory and CTA scans. Furthermore, our method can
be tested on data cohorts with airway abnormalities due to other lung diseases not
considered in this thesis, such as asthma, pneumonia or COVID.

2. The proposed deep learning methods, 1) the label refinement method
using synthetic labels with errors, and 2) the combination of the U-Net
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with graph neural networks, are promising to improve regular segmenta-
tion networks.

In Chapter 3 we showed that our label refinement method can correct errors and
improve the accuracy of the segmentations obtained by the U-Net. For airway segmen-
tation, by correcting relevant false negative errors, the completeness of our method in
Chapter 2 was significantly increased. This is highly beneficial as state-of-the-art meth-
ods for airway segmentation have a limited completeness, as we showed in Chapter 2 in
the evaluation on the public EXACT’09 dataset, where the best performing methods
missed roughly 30% of the total length of the airway tree annotations. Moreover, in
Chapter 3 we showed that training the proposed method with semi-supervised learning
techniques and additional unlabeled data can improve its performance when compared
to supervised learning. This is highly relevant for airway segmentation, as a large
amount of CT data do not have ground truth segmentations and otherwise cannot be
used.

A limitation of our label refinement method is that it requires the design of synthetic
errors specific for the segmented structure, which is a complex image processing task.
In Chapter 3 we generated synthetic errors for airway segmentation limited to two
types of false negative errors, yet relevant for general cases. When applying the method
on CT scans with different structural airway abnormalities, such as those in Chapters 7
and 8, new types of errors and possibly more complex will likely be present, thus
requiring additional work to design new synthetic errors.

In Chapter 4 we showed that the combination of the U-Net with graph neural
networks can slightly increase the completeness of our method in Chapter 2 for airway
segmentation, at the expense of more false positive errors. Graph neural networks are
by design suited to analyze tree-like structures, and its combination with the U-Net
in an end-to-end optimized approach is promising, so that the U-Net can extract
powerful local features to be used by the graph model. However, our method did not
show a clear gain in performance when compared to the U-Net. This may be due
to the proposed design using a small graph model in the deepest level of the U-Net.
Moreover, in our method we had to impose several constraints to the computation of
the graph adjacency due to its high runtime and memory footprint. We believe that a
method design using a larger and constraint-free graph model that replaces the skip
connections in an upper level of the U-Net, or ideally several skip connections, could
have achieved a significantly better performance than our method tested in Chapter 4.
Additionally, an ablation study to quantify the benefit of including the graph model
in the U-Net is needed.

3. The proposed tools that complement the airway segmentation method,
1) to create ground truth segmentations, and 2) to segment the lumen and
wall surfaces of airways, are promising and make the method more easily
applicable to other cohorts.

A limitation of our method in Chapter 2 is that it requires ground truth airway
segmentations for training, as is in general the case for learning-based segmentation
methods. Airway references are complex and tedious to obtain manually, requiring
roughly 15 hours per CT scan [17], and their completeness is often limited due to small
branches being missed by the annotators. In the two training datasets we used in
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Chapter 2, the ground truth segmentations were obtained by refining airway references
that were either 1) manual annotations of the airway centerlines, which were limited
in number, or 2) automated airway extractions, which were of limited quality. To
alleviate this limitation, in Chapter 5 we showed a promising approach to reduce
the time and effort needed to generate ground truth airway segmentations for model
training. This approach is simple to perform and uses open-source software tools
readily available: our software in the public repository provided in Chapter 2, and 3D
Slicer [123]. Thus, it can be implemented as an easy annotation protocol for future
datasets.

In Chapter 6 we showed that our pipeline, combining two existing open-source
methods, is reliable and efficient in obtaining both the airway lumen and wall segmen-
tations. It can be applied to new cohorts with a relatively small manpower investment,
needing only 1) to retrain the method in Chapter 2 on a small subset of 20–30 CT
scans from the cohort, with annotations that can be obtained with our method in
Chapter 5, and 2) to adapt parameters of the optimal-surface graph-cut method to the
given CT protocol, for instance using an airway phantom. This pipeline can be used
to automatically obtain the airway measurements needed to compute quantitative
airway biomarkers, such as those in Chapters 7 and 8.

4. The automated airway biomarkers, 1) the median luminal intra-branch
tapering over all the airways, and 2) the median airway-artery ratio and
airway tapering over the small airways, are promising to quantify struc-
tural lung abnormalities from CT scans.

In Chapter 8 we showed that luminal intra-branch tapering measures can be
used to quantify severe bronchiectasis, as a reduced median intra-branch tapering
correlated well with the BEST-CT scores. In Chapter 7, different airway-artery ratio
and airway tapering measures (including the luminal intra-branch tapering) were not
sensitive enough to detect improvements in structural cystic fibrosis lung disease due
to CFTR therapy. This could be due to the small and retrospective cohort used in this
longitudinal study, whose outcome is affected by the use of non-standardized intervals
between CT scans. These automated airway measures have been used successfully
in other studies to quantify bronchiectasis and airway wall thickening due to cystic
fibrosis lung disease, with airway-artery ratio [62, 70, 71] to a greater extent than
airway tapering [65, 200]. Automated airway biomarkers are promising to quantify
structural abnormalities due to lung diseases. In contrast to visual scoring systems,
they can provide objective and reproducible scores, and can be obtained effortlessly.
Computing the airway tapering is advantageous over the airway-artery ratio as 1) its
evaluation does not require the dimensions of the adjacent arteries, and 2) airway
tapering measures are less influenced by differences in the lung volumes and scanning
parameters [65].

A limitation of the airway biomarkers studied in Chapters 7 and 8 is that we used
the median as the descriptive score of the distribution of airway measures extracted
per subject. While the median is robust as it is independent of data outliers that
can be due to inaccurate measurements, it also neglects other relevant extreme data
measurements. Consequently, the median may be not sensitive enough to capture
lung diseases that are heterogeneous and characterized by localized structural airway
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abnormalities. This is the case for both cystic fibrosis, where the disease starts in the
smaller airways [110] and its severity can vary widely between areas in the lungs [201],
as well as bronchiectasis, which can be diffuse or localized depending on its underlying
causes [202]. Other descriptive scores that can be more sensitive to capture localized
bronchiectasis, while still neglecting extreme outliers, are larger percentiles (e.g., 90%
or 95% percentiles).

Another limitation of the automated airway biomarkers in Chapters 7 and 8
is that we used airway segmentations obtained with an automated method that
segments airways around manual annotations of the airway centerlines. Several small
branches were missed by the annotators in various CT scans, especially for the cohort
in Chapter 8 with complex airway trees due severe structural airway deformations.
Consequently, the computed biomarkers did not quantify these small branches and this
may have reduced their sensitivity, especially for those used in Chapter 7 which were
evaluated over the smaller airways. An alternative could have been to use the method
in Chapter 2 to automatically detect airways, and use these either to replace or to
extend the manual centerline annotations. However, this method was not sufficiently
mature at the time of performing the studies in Chapters 7 and 8, especially for the
latter with a very complex data cohort.

9.2 Implications for clinical practice

The methods developed in this thesis can be integrated into medical imaging software
to improve existing clinical workflows in radiology. We have validated these methods
in a few data cohorts and in a research setting, however for them to be used in
clinical practice they need to meet more strict requirements for validation. The airway
segmentation method in Chapter 2 is especially promising as it performed well on
various datasets and is fully automatic and easy to operate, requiring few to no
user-defined input settings. The open-source software in the public repository provided
in Chapter 2 could be a good starting point to implement this method in medical
software.

At the current time, the use of artificial intelligence (AI) methods for clinical
practice is scarce and often limited to large academic centers [203]. To reach a
widespread implementation of AI methods into clinical routine, some relevant aspects
to tackle are:

1. Training datasets: image data cohorts used to train AI algorithms are often
from the same medical center, with a limited range of population characteristics,
scanner parameters and protocols. Additionally, this can lead to unrecognized
biases in the training data [204]. Varied training datasets are required to build
robust AI methods for clinical routine, including diverse imaging data from
different regions and acquired with scanners from different vendors. This makes
crucial the sharing of medical data between different medical centers. However,
this is restricted due to privacy concerns, among others. An alternative to
alleviate this limitation is federated learning [205], where the AI algorithm is
trained at different locations while the data remains in the medical center.
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2. Testing datasets: most AI algorithms reported in research are trained, vali-
dated, and tested in a research setting, isolated from clinical practice [206], and
few methods include validation on independent external data. Testing datasets
must be representative, yet independent, and of very high quality as they are
used to evaluate the performance of AI methods and obtain regulatory approval.
Moreover, testing datasets are typically from retrospective studies, which do not
represent a routine clinical setting. Prospective multi-center trials are needed to
evaluate the performance of AI methods for clinical diagnosis [206].

3. Ground truth: the availability of image annotations that can be used as ground
truth to train, validate, and test AI algorithms is an important bottleneck for
manufacturing AI medical software [207]. Annotations are tedious and need to
be obtained by clinical experts or medical students. An alternative to alleviate
this limitation is crowd-funding, where cost-effective large-scale annotations
can be obtained by the general non-expert population [208, 209]. A previous
study on liver segmentation from CT data [208] showed that annotations from
non-experts, medical students and radiologists had similar accuracy, while the
latter were more time efficient.

4. Technical deployment: technical integration of AI medical software into
the IT infrastructure of medical centers is the leading bottleneck for their
implementation into the clinical routine [210]. Computational resources required
by AI software can rapidly exceed the capabilities of local servers. A cost-effective
solution for this is cloud computing, but this poses several challenges regarding
security and data access privileges.

5. Security: AI algorithms are often regarded as “black-boxes”, and security
and safety is crucial for their implementation in clinical routine. Adversarial
attacks on AI methods for imaging data are particularly relevant [211, 212].
These attacks are small imperceptible perturbations to the image data that are
designed to intentionally mislead the method into giving the wrong predictions.
Several defense methods against adversarial attacks have been proposed [213],
however they are only effective against some types of attacks [212] and universal
protection is currently not possible.

Any medical software to be used in clinical practice must be approved by regulatory
bodies such as the American Food and Drug Administration (FDA) and the European
Medicine Agency (EMA), which impose strict requirements for software validation [214,
215]. For AI methods, this regulatory framework is not ideal [215] and modifications are
being currently proposed [214]. Particularly, retraining AI methods with new datasets
is generally considered as software modification and requires new FDA clearance. At
the current time, roughly 160 AI methods in medical imaging software have received
approval by the FDA [216]. A relevant example for the research in this thesis is the lung
quantification software LungQ (Thirona, Nijmegen, the Netherlands). These cleared
AI software tools assist radiologists with their workload of repetitive tasks, enabling
the automatic extraction of information and automated analysis, while experts can
be in charge of the decision making and diagnosis. Radiologists should also receive
training in AI to facilitate their acceptance of AI methods in clinical routine [217].
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9.3 Recommendations for future research

A list of recommendations and possible directions to continue the research presented
in this thesis is given below:

1. To further improve the developed airway segmentation methods.
Our method in Chapter 2 needs to be validated in more data cohorts. For every

new dataset, the method can be retrained by reserving a small subset of the CT data
to be added to the existing training datasets. To obtain the ground truth airway
segmentations needed for training, we recommend using the proposed approach in
Chapter 5 to correct initial segmentations obtained with the best pre-trained U-Net
model available. These steps can be implemented as a protocol to gradually improve
the generalizability of our method.

Some improvements to the pipeline for our method in Chapter 2 are straightforward.
First, the U-Net can be used to automatically obtain the masks of the lungs and
the trachea and main bronchi needed as inputs to the method, contrary to using the
region growing method which requires user-defined settings. Second, image elastic
deformations [56] can be implemented as data augmentation. This can improve the
performance of our method for a limited overhead in runtime during training [77].

Our method in Chapter 2 can be extended to segment both the airway lumen and
the wall, using a U-Net backbone for dual-class segmentation, so that both surfaces
are obtained in an end-to-end optimized setting. Additionally, this could improve the
accuracy of the lumen segmentation as the U-Net can learn more specialized features
that discriminate between the lumen and wall surfaces. The ground truth airway wall
surfaces needed for training can be obtained for instance with the optimal-surface
graph-cut method [58] used in Chapters 6, 7 and 8. Moreover, the U-Net in our
method can be used to obtain the segmentation of the vascular tree in the lungs [52,
218, 219]. The resulting segmentations will likely be more accurate than those used in
Chapter 7 to compute the airway-artery ratio. The ground truth vessel segmentation
needed for training can be obtained with previous methods [32].

An idea to improve our method in Chapter 2 is to use the prior structural knowledge
of airways as being adjacent to an artery [16, 32]. This information can be incorporated
in the U-Net by adding a penalty term to the training loss that penalizes the prediction
of airways distant from arteries. This penalty can be formulated for instance as the
L2-norm of the product of the airway probability maps output by the network and a
voxelwise distance map to the closest artery. Computing the distance map requires
the segmentation of the vascular tree in the lungs, which can be obtained with the
U-Net [52, 218, 219].

Semi-supervised and weakly-supervised learning techniques [220] may be useful for
airway segmentation. With semi-supervised learning, unlabeled CT data can be used
during training to extract additional relevant information by the network. In Chapter 3
we showed that using semi-supervised learning to train our label refinement method
increased the performance of the method. With weakly-supervised learning, weak
labels or annotations that are coarser and cheaper than voxelwise airway segmentations
can be used for training. Examples of weak labels can be the PRAGMA-CF and
BEST-CT visual scores used in Chapters 7 and 8, respectively, which can give insights
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to the network into which lung regions have structural abnormalities and thus detecting
airways is more difficult. Finally, transfer learning, and particularly domain adaptation
techniques [220], can be useful to obtain more robust airway segmentations across
different scanners and scanning protocols.

2. To improve the automated airway biomarkers to quantify lung abnor-
malities from CT scans.

The airway biomarkers proposed in Chapters 7 and 8 need to be further validated.
They can be evaluated on longitudinal studies using prospective cohorts and stan-
dardized scanning intervals and protocols. For cystic fibrosis lung disease, the airway
tapering has been relatively poorly studied to assess structural airway abnormali-
ties [65, 200], in contrast to the airway-artery ratio [17, 62, 68, 69, 70, 71]. If further
studies show that the automated airway tapering is equally or more sensitive than
the airway-artery ratio, we recommend using it as it is easier to evaluate. Moreover,
the airway tapering can be evaluated to capture the heterogeneity of bronchiectasis
and cystic fibrosis, by studying the segregation of airway tapering measures according
to the airway generation, similarly to other previous studies using the airway-artery
ratio [17, 68]. Finally, the airway tapering and airway-artery ratio biomarkers can be
evaluated to assess other lung diseases characterized by bronchiectasis and bronchial
wall thickening, such as COPD or asthma.

Machine learning methods can be used in combination with the airway measures
studied in Chapters 7 and 8 to obtain better airway biomarkers. A neural network can
be developed to predict a meaningful biomarker from the equispaced histograms of
the distributions of both airway tapering and airway-artery measures, using a relevant
patient outcome as ground truth for model training. Moreover, a convolutional neural
network can be developed to extract directly the airway measurements from the CT
scan, using manual annotations of individual airway dimensions [17, 62] for model
training. This approach could be more robust than using an airway segmentation as
an intermediate step to extract the measurements, as we did in Chapters 7 and 8.

9.4 Conclusion

In this thesis, we have developed automatic image processing methods to segment the
bronchial tree from chest CT scans. These methods are based on deep convolutional
neural networks, in particular the U-Net, and include various approaches to improve
the performance of regular segmentation networks. We validated these methods on
several data cohorts, including challenging CT scans with severe airway abnormalities.
We showed that convolutional neural networks are a powerful and robust methodology
for airway segmentation. Moreover, we extracted automated airway biomarkers
to quantify structural lung abnormalities from CT scans. We studied two airway
biomarkers, derived from airway tapering and airway-artery ratio measures, to quantify
bronchiectasis. The developed methods in this thesis are promising to be integrated in
automated imaging tools for clinicians to assess accurately and efficiently pulmonary
diseases affecting the airways.







Summary

In this thesis we developed automatic image processing methods to segment the
bronchial tree from chest CT scans and subsequently extracted airway measurements.
These automated measurements can be used as quantitative biomarkers reflecting
clinically relevant structural abnormalities of the airways. Moreover, we applied these
automated biomarkers to analyze CT scans for various lung diseases. With these
developed methods, we aim to contribute to the development of automated tools for
clinicians to assess accurately and efficiently pulmonary diseases affecting the airways.

The content of this thesis is split into two main research topics:Chapters 2, 3, 4, 5
and 6 address the development of airway segmentation methods from CT scans,
while Chapters 7 and 8 address the application of CT analysis methods to assess
various lung diseases from CT scans.

In Chapter 2 we developed a fully automatic and end-to-end optimized method to
segment the bronchial tree. This method is based on the state-of-the-art deep learning
U-Net architecture. The method can process at once large 3D patches extracted from
the CT scans, which makes it simple, robust and efficient. We validated this method
on three datasets with different population characteristics and scanning protocols,
that included subjects with a wide range of airway abnormalities. The results show
that this method can obtain high-quality and complete airway segmentations, even on
challenging CT scans with severe airway abnormalities. The method also showed good
generalizability and was accurate on CT scans of different characteristics to those used
for training. Moreover, the method achieved top performance scores when compared
to other relevant deep learning airway segmentation methods.

In our work in Chapter 2 we identified two major limitations when building a deep
learning airway segmentation method. First, the segmentation of the smaller peripheral
branches in the bronchial tree is challenging, and even state-of-the-art methods miss
several terminal airways. Thus, there is still room for improvement. Second, training
sets are typically small due to the lack of ground truth airway segmentations. To
address the first limitation, in Chapters 3 and 4 we developed two extensions to the
airway segmentation method in Chapter 2 in order to increase its performance. To
address the second limitation, in Chapter 5 we developed an approach to efficiently
create airway segmentations for model training.

In Chapter 3 we developed a novel method to correct errors in the initial seg-
mentations from a U-Net. This method uses a set of synthetic labels augmented with
realistic errors, together with the original image as inputs, and is trained to correct
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these errors in the segmentation results. As part of the method, we developed an
automated tool to generate synthetic errors on the fly during training. We validated
this method for both tasks of 1) airway segmentation from chest CT scans and 2) vessel
segmentation from brain CTA scans. For airway segmentation, we generated synthetic
errors that resemble those found in the segmentation from our method in Chapter 2,
which are false negative errors of two types: 1) missing terminal branches and 2)
discontinuities in the segmented airways. The results show that this method can
correct errors and increase the completeness of the segmentation results from the
U-Net.

In Chapter 4 we developed a novel end-to-end optimized segmentation method
that combines the U-Net with a graph neural network model. In this method the
normal convolutions in the deepest level of the U-Net are replaced by a series of graph
convolutions. This method can extract information from a larger region of the images
and incorporate this in the features learned in the U-Net. This can help improve the
segmentation decisions by the network, and in turn the results. We validated this
method on the task of airway segmentation from chest CT scans. The results show
that this method can extract slightly more complete airway segmentations than the
U-Net, with slightly more false positive errors.

In Chapter 5 we proposed an approach to efficiently generate ground truth airway
segmentations. This approach consists of manually correcting an initial segmentation
of the bronchial tree that is obtained with our method in Chapter 2. Correcting
segmentations was relatively quick using open-source software and required 2–4 hours
per CT scan, in contrast to 15 hours for a fully manual segmentation. We validated
this approach by correcting the initial airway segmentations obtained with a model
trained on a small dataset, and using these as ground truth to retrain the U-Net,
validated in cross-validation. The results from the retrained model were more accurate
and complete than the initial segmentations.

In Chapter 6 we developed an automated pipeline to segment both the lumen and
wall surfaces of the bronchial tree. This pipeline combines our method in Chapter 2
for automatic airway extraction with an optimal-surface graph-cut method to obtain
the lumen and wall segmentations around the extracted airways. Then bronchial
parameters are automatically measured from the segmentations. We assessed the
repeatability of this approach in a dataset with two short-term repeated CT scans
per subject, by comparing the bronchial parameters obtained in each scan. The
results show that the bronchial measurements were reproducible up to the 6th airway
generation.

In Chapters 7 and 8 we conducted two clinical studies using quantitative analysis
of CT scans to assess structural lung abnormalities in patients with lung diseases. In
both studies, we extracted automated airway biomarkers that are relevant to assess
bronchiectasis: airway tapering, airway-artery ratio and wall-artery ratio. Computing
these biomarkers requires the segmentation of the airway lumen and outer wall, which
we obtained with an automated method that segments the lumen and wall surfaces
around manual annotations of the airway centerlines. Additionally, the airway-artery
and wall-artery ratios require the segmentation of the blood vessels in the lungs, which
we obtained with an automated method that detects elongated tubular structures
with high intensity in the CT scan.
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In Chapter 7 we studied the effect of CFTR modulator therapy on structural
lung abnormalities in patients with cystic fibrosis lung disease. To quantify these
abnormalities from CT scans, we used three different CT analysis methods: a quanti-
tative method based on automated biomarkers, and two visual scoring systems. The
automated biomarkers are the median of airway-artery ratio and airway tapering
measures extracted over the small airways, identified as being adjacent to a small
artery of diameter lower than 3.08 mm. The two visual systems are: 1) PRAGMA-CF,
a quantitative grid-based scoring method based on manual annotations for the presence
of common abnormalities in cystic fibrosis; and 2) CF-CT, a semi-quantitative method
based on an estimate of the overall extent of abnormalities in each lung lobe. The
results show that quantitative methods were more sensitive than semi-quantitative
ones to detect improvements in structural lung disease due to therapy.

In Chapter 8 we proposed a quantitative CT analysis method to assess structural
lung abnormalities in patients with non-cystic fibrosis bronchiectasis, named BEST-
CT, especially developed for these patients. BEST-CT is a grid-based visual scoring
method, where a grid is overlaid on axial CT slices and cells are annotated for the
presence of common abnormalities in bronchiectasis, according to a predefined list
of possible items and in hierarchical order. We validated the BEST-CT method
on a cohort of patients with severe bronchiectasis and chronic bacterial infection.
We compared BEST-CT with two other methods: 1) a quantitative method based
on automated biomarkers, the median of luminal intra-branch tapering measures
extracted over all the airways; and 2) Hartmann, a semi-quantitative method based on
an estimate of the overall extent of abnormalities in each lung lobe. The results show
that the BEST-CT method can capture the heterogeneity of structural lung changes
due to bronchiectasis, and the BEST-CT scores correlate well with the intra-branch
tapering and the Hartmann scores.





Samenvatting

In dit proefschrift hebben we automatische beeldverwerking methoden ontwikkeld
om de luchtwegboom te segmenteren uit CT-scans van de borstkas en vervolgens
luchtwegmetingen te extraheren. Deze geautomatiseerde metingen kunnen worden
gebruikt als kwantitatieve biomarkers die klinisch relevante structurele afwijkingen van
de luchtwegen weergeven. Binnen dit proefschrift hebben we deze geautomatiseerde
biomarkers toegepast om CT-scans te analyseren voor verschillende longziekten. Met
deze ontwikkelde methoden willen we bijdragen tot de ontwikkeling van geautoma-
tiseerde hulpmiddelen voor clinici om longaandoeningen die de luchtwegen aantasten
nauwkeurig en efficiënt te beoordelen.

De inhoud van dit proefschrift is opgesplitst in twee belangrijke onderzoeksthema’s:
de Hoofdstukken 2, 3, 4, 5 en 6 behandelen de ontwikkeling van luchtwegsegmen-
tatiemethoden uit CT-scans, terwijl de Hoofdstukken 7 en 8 de toepassing van
CT-analysemethoden behandelen om verschillende longaandoeningen uit CT-scans te
beoordelen.

In Hoofdstuk 2 hebben we een volledig automatische en end-to-end geopti-
maliseerde methode ontwikkeld om de luchtwegboom te segmenteren. Deze methode is
gebaseerd op het state-of-the-art deep learning U-Netwerk. De methode kan in één keer
grote driedimensionale patches verwerken die uit de CT-scans zijn geëxtraheerd, wat de
methode eenvoudig, robuust en efficiënt maakt. We hebben deze methode gevalideerd
op drie datasets met verschillende populatiekenmerken en scanprotocollen, die proefper-
sonen omvatten met een breed scala aan luchtwegafwijkingen. De resultaten tonen aan
dat deze methode kwalitatief goede en volledige luchtwegsegmentaties kan verkrijgen,
zelfs op uitdagende CT-scans met ernstige luchtwegafwijkingen. De methode bleek ook
goed generaliseerbaar en was ook nauwkeurig op CT-scans met andere kenmerken dan
die gebruikt werden voor de training. Bovendien behaalde de methode topprestaties
in vergelijking met andere relevante deep learning luchtwegsegmentatiemethoden.

In ons werk in Hoofdstuk 2 hebben we twee belangrijke beperkingen geïden-
tificeerd bij het bouwen van een deep learning luchtwegsegmentatiemethode. Ten
eerste, de segmentatie van de kleinere perifere luchtwegen is een uitdaging, en zelfs
state-of-the-art methoden missen een aantal perifere luchtwegen. Er is dus nog ruimte
voor verbetering. Ten tweede, training sets zijn meestal klein. Om de eerste beperking
aan te pakken, hebben we in Hoofdstukken 3 en 4 twee uitbreidingen ontwikkeld
op de luchtwegsegmentatiemethode uit Hoofdstuk 2 om de prestaties te verbeteren.
Om de tweede beperking aan te pakken, hebben we in Hoofdstuk 5 een aanpak
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ontwikkeld om efficiënt meer luchtwegsegmentaties te maken voor het trainen van
verbeterde modellen.

In Hoofdstuk 3 hebben we een nieuwe methode ontwikkeld om fouten in de
initiële segmentaties van een U-Net te corrigeren. Deze methode gebruikt een set van
synthetische labels, aangevuld met realistische fouten, samen met het originele beeld
als input, en wordt getraind om deze fouten in de segmentatie resultaten te corrigeren.
Als onderdeel van de methode hebben we een geautomatiseerd instrument ontwikkeld
om synthetische fouten te genereren tijdens de training. We hebben deze methode
gevalideerd voor beide taken van 1) luchtwegsegmentatie in CT-scans van de borstkas
en 2) vaatsegmentatie in CT-scans van de hersenen. Voor luchtwegsegmentatie hebben
we synthetische fouten gegenereerd die lijken op de fouten die gevonden zijn in de
segmentatie van onze methode uit Hoofdstuk 2, namelijk vals-negatieve fouten van
twee typen: 1) ontbrekende eindtakken en 2) discontinuïteiten in de gesegmenteerde
luchtwegen. De resultaten laten zien dat deze methode fouten kan corrigeren en de
volledigheid van de segmentatie resultaten van het U-Net kan verhogen.

In Hoofdstuk 4 hebben wij een nieuwe end-to-end geoptimaliseerde segmen-
tatiemethode ontwikkeld die het U-Net combineert met een graaf neuraal netwerk
model. In dit model worden de normale convoluties in het diepste niveau van het
U-Net vervangen door een serie van graaf convoluties. Zo kan de methode informatie
extraheren uit een groter gebied en deze opnemen in de kenmerken die in het U-Net
worden geleerd. Dit kan helpen om de door het netwerk genomen beslissingen te
verbeteren, en op zijn beurt de resultaten. We hebben deze methode gevalideerd op
de taak van luchtwegsegmentatie uit CT-scans van de borstkas. De resultaten tonen
aan dat deze methode iets vollediger luchtwegsegmentaties kan maken dan het U-Net,
met iets meer vals-positieve fouten.

In Hoofdstuk 5 hebben we een aanpak voorgesteld om efficiënt annotaties van
luchtwegen te genereren. Deze aanpak bestaat uit het handmatig corrigeren van
een initiële segmentatie van de luchtwegboom die is verkregen met onze methode
in Hoofdstuk 2. Het corrigeren van segmentaties was relatief snel met behulp van
open-source software, en vereiste 2–4 uur per CT scan, vergeleken met 15 uur voor
een volledig handmatige segmentatie. We hebben deze aanpak gevalideerd door de
initiële luchtwegsegmentaties behaald met een model getraind op een kleine dataset te
corrigeren, en deze te gebruiken om het netwerk opnieuw hertrainen, gevalideerd in
kruisvalidatie. De resultaten van het opnieuw getrainde model bleken nauwkeuriger
en vollediger te zijn dan de aanvankelijke segmentaties.

In Hoofdstuk 6 hebben we een volledige, geautomatiseerde pijplijn ontwikkeld
om zowel het lumen als de wand van de luchtwegboom te segmenteren. Deze pijplijn
combineert onze methode in Hoofdstuk 2 voor automatische luchtweg extractie met
een optimal-surface graph-cut methode om de lumen- en wandsegmentaties rond de
geëxtraheerde luchtwegen te verkrijgen. Vervolgens worden bronchiale parameters au-
tomatisch gemeten op basis van de segmentaties. Wij hebben deze aanpak gevalideerd
in een dataset met twee binnen een korte periode herhaalde CT-scans per proefpersoon.
De resultaten tonen aan dat de metingen reproduceerbaar zijn tot en met de 6de

luchtweggeneratie.
In de Hoofdstukken 7 en 8 hebben wij twee klinische studies uitgevoerd met

gebruikmaking van kwantitatieve analyse van CT-scans om structurele longafwijkingen
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bij patiënten met longaandoeningen te beoordelen. In beide studies hebben we geau-
tomatiseerde luchtwegbiomarkers geëxtraheerd die relevant zijn voor de beoordeling
van bronchiëctasieën: verandering in luchtwegdiameter, luchtweg-arterie verhouding en
luchtwegwand-arterie verhouding. Berekening van deze biomarkers vereist de segmen-
tatie van het lumen en de buitenwand van de luchtwegen, die we verkregen met een
geautomatiseerde methode die het lumen en de wand segmenteert rond handmatige
annotaties van de luchtwegmiddellijnen. Bovendien vereisen de luchtweg-arterie en
luchtwegwand-arterie verhoudingen de segmentatie van de bloedvaten, die we verkregen
met een geautomatiseerde methode die langgerekte cilindervormige structuren met
hoge intensiteit in de CT scan detecteert.

In Hoofdstuk 7 bestudeerden we het effect van een therapie op structurele
longafwijkingen bij patiënten met cystische fibrose longziekte. Om deze afwijkingen
op basis van CT-scans te kwantificeren, gebruikten we drie verschillende CT-analyse
methoden: een kwantitatieve methode op basis van geautomatiseerde biomarkers, en
twee visuele scoring systemen. De geautomatiseerde biomarkers zijn de mediaan van
de luchtweg-arterie verhouding en de verandering in luchtwegdiameter die geëxtraheerd
worden over de kleine luchtwegen, geïdentificeerd als grenzend aan een kleine slagader
met een diameter kleiner dan 3.08 mm. De twee visuele systemen zijn: 1) PRAGMA-
CF, een kwantitatieve raster-gebaseerde scoringsmethode op basis van handmatige
annotaties voor de aanwezigheid van veel voorkomende afwijkingen bij cystische fibrose;
en 2) CF-CT, een semikwantitatieve methode op basis van een schatting van de totale
omvang van afwijkingen in elke longkwab. De resultaten tonen aan dat kwantitatieve
methoden gevoeliger waren dan semikwantitatieve methoden om verbeteringen in
structurele longaandoeningen als gevolg van therapie te detecteren.

In Hoofdstuk 8 hebben we een kwantitatieve CT-analyse methode voorgesteld
om structurele longafwijkingen te beoordelen bij patiënten met niet-cystische fibrose
bronchiëctasieën, BEST-CT genaamd, speciaal ontwikkeld voor deze patiënten. BEST-
CT is een raster-gebaseerde visuele scoringsmethode, waarbij een raster over de axiale
CT doorsneden wordt gelegd en cellen worden geannoteerd voor de aanwezigheid van
veel voorkomende afwijkingen in bronchiëctasieën, volgens een lijst van mogelijke items
en in hiërarchische volgorde. We hebben de BEST-CT methode gevalideerd op een
cohort van patiënten met ernstige bronchiëctasieën en chronische bacteriële infectie.
We vergeleken BEST-CT met twee andere methoden: 1) een kwantitatieve methode
op basis van geautomatiseerde biomarkers, de mediaan van de verandering in luminale
luchtwegdiameter metingen geëxtraheerd over alle luchtwegen; en 2) Hartmann, een
semikwantitatieve methode op basis van een schatting van voor de totale omvang van
afwijkingen in elke longkwab. De resultaten tonen aan dat de BEST-CT methode de
heterogeniteit van structurele long veranderingen ten gevolge van bronchiëctasieën
kan vastleggen, en dat de BEST-CT score goed correleert met de andere methoden.
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CL Centerline Leakage.

cm centimeter.

CNN Convolutional Neural Network.

COPD Chronic Obstructive Pulmonary Disease.

CPU Central Processing Unit.

CT Computed Tomography.

CTA Computed Tomography Angiography.

CUDA Compute Unified Device Architecture.

CVID Common Variable Immune Deficiency.

dB decibel.

DIS Total (airway) DISease.

DL Deep Learning.

DLCST Danish Lung Cancer Screening Trial.

DLP Dose Length Product.

DSC Dice Similarity Coefficient.

EMA European Medicine Agency.

EMC Erasmus MC, University Medical Centre Rotterdam.

EMPBUL EMPhysema or BULlae.

EXACT EXtraction of Airways from CT.

FDA Food and Drug Administration.

FEF Forced Expiratory Flow.

FEV Forced Expiratory Volume.

FN False Negative.

FOV Field Of View.

FP False Positive.

FPR False Positive Rate.
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FRC Functional Residual Capacity.

FVC Forced Vital Capacity.

FWHM Full-Width at Half-Maximum method.

g gram.

GB GigaByte.

GGO Ground-Glass Opacities.

GLI Global Lung Initiative.

GLILD Granulomatous Lymphocytic Interstitial Lung Disease.

GNN Graph Neural Network.

GPU Graphics Processing Unit.

HA Healthy Airways.

HM Hartmann method.

HP Healthy Parenchyma.

HU Hounsfield Units.

ICC Intra-Class Correlation coefficient.

ImaLife Imaging in Lifelines.

Inter-BT Inter-Branch Tapering.

Intra-BT Intra-Branch Tapering.

IQR InterQuartile Range.

kg kilogram.

kHz kiloHertz.

kNN k-Nearest Neighbors.

kVp kiloVoltage peak.

L liter.

LA Luminal Area.

LAR Low Attenuation Regions.

LASN Label Appearance Simulation Network.
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LoA Limits of Agreement.

LR Label Refinement.

m meter.

mAs milliAmpere second.

MDCT MultiDetector Computed Tomography.

mg milligram.

mGycm milliGray per centimeter.

min minute.

ML Machine Learning.

mm millimeter.

MP Mucus Plugging.

MR Magnetic Resonance.

MRA Magnetic Resonance Angiography.

MRI Magnetic Resonance Imaging.

NN Neural Network.

NOR Normal Or high attenuation Regions.

Pa Pseudomonas aeruginosa.

Pi Internal Perimeter.

Pi10 Square root of the wall area of a hypothetical airway with internal perimeter of
10mm.

PRAGMA-CF Perth Rotterdam Annotated Grid Morphometric Analysis for CF.

PwCF People with Cystic Fibrosis.

QOL Quality Of Life.

R2 Coefficient of Determination.

RAM Random-Access Memory.

ReLU Rectified Linear Unit.

ROC Receiver Operating Characteristic.
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ROI Region Of Interest.

s second.

SD Standard Deviation.

SGD Stochastic Gradient Descent.

SRWA Square Root of the Wall Area.

TAC Total Airway Count.

TBE Total BronchiEctasis.

TL Tree Length.

TLV Total Lung Volume.

TMP Total Mucus Plugging.

TOF Time-Of-Flight.

TPE Tree-structured Parzen Estimator algorithm.

TPR True Positive Rate.

WAP Wall Area Percentage.

WAR Wall thickness-Artery Ratio.

WHO World Health Organization.
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