228 research outputs found

    Using Facebook for Image Steganography

    Full text link
    Because Facebook is available on hundreds of millions of desktop and mobile computing platforms around the world and because it is available on many different kinds of platforms (from desktops and laptops running Windows, Unix, or OS X to hand held devices running iOS, Android, or Windows Phone), it would seem to be the perfect place to conduct steganography. On Facebook, information hidden in image files will be further obscured within the millions of pictures and other images posted and transmitted daily. Facebook is known to alter and compress uploaded images so they use minimum space and bandwidth when displayed on Facebook pages. The compression process generally disrupts attempts to use Facebook for image steganography. This paper explores a method to minimize the disruption so JPEG images can be used as steganography carriers on Facebook.Comment: 6 pages, 4 figures, 2 tables. Accepted to Fourth International Workshop on Cyber Crime (IWCC 2015), co-located with 10th International Conference on Availability, Reliability and Security (ARES 2015), Toulouse, France, 24-28 August 201

    An Exploration of covert channels within voice over IP

    Get PDF
    In the following thesis, an overview of covert channels within Voice over IP is given and then expanded upon by presenting an experiment which proves the ability to hide messages within the Session Initiation Protocol (SIP) and Session Description Protocol (SDP) of a Voice over IP packet. The plain text nature of the SIP and SDP packets allow for an easily embedded message to be encoded into the expected data, while also being hidden in plain sight due to the packet only being sent once per VoIP session. While previous papers [15] have proposed the ability to hide covert messages within the plain text SIP and SDP packets of a VoIP call stream, this thesis is the first to carefully analyze and test the ability to embed data in these packets and send a covert message, based on an agreement between the sending and receiving parties. Results include the success for covert messages to be hidden within the Max-Forwards field, a field used for the total number of hops between sender and receiver, the V field, a field used for the version of SIP being used, the T field, usually used for the time a session becomes active on the sending and receiving ends, and finally the O field which designates the owner the call was originally sent from. This success was met with equal failure of previously proposed abilities to hide messages [15] in the Branch statement, tag field, and Call-ID field. A method for systems administrators or network administrators to detect covert channels coming in over a VoIP enabled network using a simple, modified java based packet capture tool is then presented with the ability to check the Max-Forwards, V, T and O fields, due to their low entropy and easy detectability. Using this method, a discussion is given regarding the detectability of covert channels as compared to previous research papers

    A New Blind Method for Detecting Novel Steganography

    Get PDF
    Steganography is the art of hiding a message in plain sight. Modern steganographic tools that conceal data in innocuous-looking digital image files are widely available. The use of such tools by terrorists, hostile states, criminal organizations, etc., to camouflage the planning and coordination of their illicit activities poses a serious challenge. Most steganography detection tools rely on signatures that describe particular steganography programs. Signature-based classifiers offer strong detection capabilities against known threats, but they suffer from an inability to detect previously unseen forms of steganography. Novel steganography detection requires an anomaly-based classifier. This paper describes and demonstrates a blind classification algorithm that uses hyper-dimensional geometric methods to model steganography-free jpeg images. The geometric model, comprising one or more convex polytopes, hyper-spheres, or hyper-ellipsoids in the attribute space, provides superior anomaly detection compared to previous research. Experimental results show that the classifier detects, on average, 85.4% of Jsteg steganography images with a mean embedding rate of 0.14 bits per pixel, compared to previous research that achieved a mean detection rate of just 65%. Further, the classification algorithm creates models for as many training classes of data as are available, resulting in a hybrid anomaly/signature or signature-only based classifier, which increases Jsteg detection accuracy to 95%

    Firewall resistance to metaferography in network communications

    Get PDF
    In recent years corporations and other enterprises have seen a consolidation of security services on the network perimeter. Services that have traditionally been stand-alone, such as content filtering and antivirus scanning, are pushing their way to the edge and running on security gateways such as firewalls. As a result, firewalls have transitioned from devices that protect availability by preventing denial-of-service to devices that are also responsible for protecting the confidentiality and integrity of data. However, little, if any, practical research has been done on the ability of existing technical controls such as firewalls to detect and prevent covert channels. The experiment in this thesis has been designed to evaluate the effectiveness of firewalls—specifically application-layer firewalls—in detecting, correcting, and preventing covert channels. Several application-layer HTTP covert channel tools, including Wsh and CCTT (both storage channels), as well as Leaker/Recover (a timing channel), are tested using the 7-layer OSI Network Model as a framework for analysis. This thesis concludes that with a priori knowledge of the covert channel and proper signatures, application-layer firewalls can detect both storage and timing channels. Without a priori knowledge of the covert channel, either a heuristic-based or a behavioral-based detection technique would be required. In addition, this thesis demonstrates that application-layer firewalls inherently resist covert channels by adhering to strict type enforcement of RFC standards. This thesis also asserts that metaferography is a more appropriate term than covert channels to describe the study of “carried writing” since metaferography is consistent with the etymology and naming convention of the other main branches of information hiding—namely cryptography and steganography

    Malware Analysis on Android Using Supervised Machine Learning Techniques

    Get PDF
    In recent years, a widespread research is conducted with the growth of malware resulted in the domain of malware analysis and detection in Android devices. Android, a mobile-based operating system currently having more than one billion active users with a high market impact that have inspired the expansion of malware by cyber criminals. Android implements a different architecture and security controls to solve the problems caused by malware, such as unique user ID (UID) for each application, system permissions, and its distribution platform Google Play. There are numerous ways to violate that fortification, and how the complexity of creating a new solution is enlarged while cybercriminals progress their skills to develop malware. A community including developer and researcher has been evolving substitutes aimed at refining the level of safety where numerous machine learning algorithms already been proposed or applied to classify or cluster malware including analysis techniques, frameworks, sandboxes, and systems security. One of the most promising techniques is the implementation of artificial intelligence solutions for malware analysis. In this paper, we evaluate numerous supervised machine learning algorithms by implementing a static analysis framework to make predictions for detecting malware on Android

    Technical Reports (2004 - 2009)

    Get PDF
    Authors of Technical Reports (2005-2009): Choueiry, Berthe Cohen, Myra Deogun, Jitender Dwyer, Matthew Elbaum, Sebastian Goddard, Steve Henninger, Scott Jiang, Hong Lu, Ying Ramamurthy, Byrav Rothermel, Gregg Scott, Stephen Seth, Sharad Soh, Leen-Kiat Srisa-an, Witty Swanson, David Variyam, Vinodchandran Wang, Jun Xu, Lison

    Defensive Cyber Battle Damage Assessment Through Attack Methodology Modeling

    Get PDF
    Due to the growing sophisticated capabilities of advanced persistent cyber threats, it is necessary to understand and accurately assess cyber attack damage to digital assets. This thesis proposes a Defensive Cyber Battle Damage Assessment (DCBDA) process which utilizes the comprehensive understanding of all possible cyber attack methodologies captured in a Cyber Attack Methodology Exhaustive List (CAMEL). This research proposes CAMEL to provide detailed knowledge of cyber attack actions, methods, capabilities, forensic evidence and evidence collection methods. This product is modeled as an attack tree called the Cyber Attack Methodology Attack Tree (CAMAT). The proposed DCBDA process uses CAMAT to analyze potential attack scenarios used by an attacker. These scenarios are utilized to identify the associated digital forensic methods in CAMEL to correctly collect and analyze the damage from a cyber attack. The results from the experimentation of the proposed DCBDA process show the process can be successfully applied to cyber attack scenarios to correctly assess the extent, method and damage caused by a cyber attack

    The Importance of Generalizability to Anomaly Detection

    Get PDF
    In security-related areas there is concern over novel “zero-day” attacks that penetrate system defenses and wreak havoc. The best methods for countering these threats are recognizing “nonself” as in an Artificial Immune System or recognizing “self” through clustering. For either case, the concern remains that something that appears similar to self could be missed. Given this situation, one could incorrectly assume that a preference for a tighter fit to self over generalizability is important for false positive reduction in this type of learning problem. This article confirms that in anomaly detection as in other forms of classification a tight fit, although important, does not supersede model generality. This is shown using three systems each with a different geometric bias in the decision space. The first two use spherical and ellipsoid clusters with a k-means algorithm modified to work on the one-class/blind classification problem. The third is based on wrapping the self points with a multidimensional convex hull (polytope) algorithm capable of learning disjunctive concepts via a thresholding constant. All three of these algorithms are tested using the Voting dataset from the UCI Machine Learning Repository, the MIT Lincoln Labs intrusion detection dataset, and the lossy-compressed steganalysis domain

    TORKAMELEON. IMPROVING TOR’S CENSORSHIP RESISTANCE WITH K-ANONYMIZATION MEDIA MORPHING COVERT INPUT CHANNELS

    Get PDF
    Anonymity networks such as Tor and other related tools are powerful means of increas- ing the anonymity and privacy of Internet users’ communications. Tor is currently the most widely used solution by whistleblowers to disclose confidential information and denounce censorship measures, including violations of civil rights, freedom of expres- sion, or guarantees of free access to information. However, recent research studies have shown that Tor is vulnerable to so-called powerful correlation attacks carried out by global adversaries or collaborative Internet censorship parties. In the Tor ”arms race” scenario, we can see that as new censorship, surveillance, and deep correlation tools have been researched, new, improved solutions for preserving anonymity have also emerged. In recent research proposals, unobservable encapsulation of IP packets in covert media channels is one of the most promising defenses against such threat models. They leverage WebRTC-based covert channels as a robust and practical approach against powerful traf- fic correlation analysis. At the same time, these solutions are difficult to combat through the traffic-blocking measures commonly used by censorship authorities. In this dissertation, we propose TorKameleon, a censorship evasion solution de- signed to protect Tor users with increased censorship resistance against powerful traffic correlation attacks executed by global adversaries. The system is based on flexible K- anonymization input circuits that can support TLS tunneling and WebRTC-based covert channels before forwarding users’ original input traffic to the Tor network. Our goal is to protect users from machine and deep learning correlation attacks between incom- ing user traffic and observed traffic at different Tor network relays, such as middle and egress relays. TorKameleon is the first system to implement a Tor pluggable transport based on parameterizable TLS tunneling and WebRTC-based covert channels. We have implemented the TorKameleon prototype and performed extensive validations to ob- serve the correctness and experimental performance of the proposed solution in the Tor environment. With these evaluations, we analyze the necessary tradeoffs between the performance of the standard Tor network and the achieved effectiveness and performance of TorKameleon, capable of preserving the required unobservability properties.Redes de anonimização como o Tor e soluções ou ferramentas semelhantes são meios poderosos de aumentar a anonimidade e a privacidade das comunicações de utilizadores da Internet . O Tor é atualmente a rede de anonimato mais utilizada por delatores para divulgar informações confidenciais e denunciar medidas de censura tais como violações de direitos civis e da liberdade de expressão, ou falhas nas garantias de livre acesso à informação. No entanto, estudos recentes mostram que o Tor é vulnerável a adversários globais ou a entidades que colaboram entre si para garantir a censura online. Neste cenário competitivo e de jogo do “gato e do rato”, é possível verificar que à medida que novas soluções de censura e vigilância são investigadas, novos sistemas melhorados para a preservação de anonimato são também apresentados e refinados. O encapsulamento de pacotes IP em túneis encapsulados em protocolos de media são uma das mais promissoras soluções contra os novos modelos de ataque à anonimidade. Estas soluções alavancam canais encobertos em protocolos de media baseados em WebRTC para resistir a poderosos ataques de correlação de tráfego e a medidas de bloqueios normalmente usadas pelos censores. Nesta dissertação propomos o TorKameleon, uma solução desenhada para protoger os utilizadores da rede Tor contra os mais recentes ataques de correlação feitos por um modelo de adversário global. O sistema é baseado em estratégias de anonimização e reencaminhamento do tráfego do utilizador através de K nós, utilizando também encap- sulamento do tráfego em canais encobertos em túneis TLS ou WebRTC. O nosso objetivo é proteger os utilizadores da rede Tor de ataques de correlação implementados através de modelos de aprendizagem automática feitos entre o tráfego do utilizador que entra na rede Tor e esse mesmo tráfego noutro segmento da rede, como por exemplo nos nós de saída da rede. O TorKameleon é o primeiro sistema a implementar um Tor pluggable transport parametrizável, baseado em túneis TLS ou em canais encobertos em protocolos media. Implementamos um protótipo do sistema e realizamos uma extensa avalição expe- rimental, inserindo a solução no ambiente da rede Tor. Com base nestas avaliações, anali- zamos o tradeoff necessário entre a performance da rede Tor e a eficácia e a performance obtida do TorKameleon, que garante as propriedades de preservação de anonimato
    • …
    corecore